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Spiking neural networks (SNNs) o�er a promising energy-e�cient alternative to

artificial neural networks (ANNs), in virtue of their high biological plausibility, rich

spatial-temporal dynamics, and event-driven computation. The direct training

algorithms based on the surrogate gradient method provide su�cient flexibility

to design novel SNN architectures and explore the spatial-temporal dynamics

of SNNs. According to previous studies, the performance of models is highly

dependent on their sizes. Recently, direct training deep SNNs have achieved

great progress on both neuromorphic datasets and large-scale static datasets.

Notably, transformer-based SNNs show comparable performance with their

ANN counterparts. In this paper, we provide a new perspective to summarize

the theories and methods for training deep SNNs with high performance in

a systematic and comprehensive way, including theory fundamentals, spiking

neuron models, advanced SNN models and residual architectures, software

frameworks and neuromorphic hardware, applications, and future trends.

KEYWORDS

deep spiking neural network, direct training, transformer-based SNNs, residual

connection, energy e�ciency, high performance

1 Introduction

Regarded as the third generation of neural network (Maass, 1997), the brain-
inspired spiking neural networks (SNNs) are potential competitors to traditional artificial
neural networks (ANNs) in virtue of their high biological plausibility, and low power
consumption when implemented on neuromorphic hardware (Roy et al., 2019). In
particular, the utilization of binary spikes allows SNNs to adopt low-power accumulation
(AC) instead of the traditional high-power multiply-accumulation (MAC), leading to
significantly enhanced energy efficiency and making SNNs increasingly popular (Chen
et al., 2023).

There are two mainstream pathways to obtain deep SNNs: ANN-to-SNN conversion
and direct training through the surrogate gradient method. Firstly, in ANN-to-SNN
conversion (Cao et al., 2015; Hunsberger and Eliasmith, 2015; Rueckauer et al., 2017;
Bu et al., 2022; Meng et al., 2022; Wang Y. et al., 2022), a pre-trained ANN is
converted to an SNN by replacing the ReLU activation layers with spiking neurons
and adding scaling operations like weight normalization and threshold balancing.
This conversion process suffers from long converting time steps, which causes high
computational consumption in practice. In addition, the converted SNNs obtained in
this way are constrained by the original ANNs’ architecture and are hard to adapt to
dynamic signal (DVS, DAVIS, ATIS data) processing. Thus, the direct exploration of the
virtues of SNNs is limited in ANN-to-SNN conversion. Secondly, in the field of direct
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training, SNNs are unfolded over simulation time steps and trained
with backpropagation through time (Lee et al., 2016; Shrestha and
Orchard, 2018). Due to the non-differentiability of spiking neurons,
the surrogate gradient method is employed for backpropagation
(Neftci et al., 2019; Lee et al., 2020b; Fang et al., 2021a,b; Zhou
Z. et al., 2023). On one hand, this direct training method can
handle temporal data and also achieve decent performance on
large-scale static datasets, with only a few time steps. On the
other hand, it can provide sufficient flexibility for designing novel
architectures specifically for SNNs and exploring the properties of
SNNs directly. Therefore, the direct training method has received
more attention recently.

Given the significant benefits and rapid advancement of
directly trained deep SNNs, particularly the emergence of high-
performance transformer-based SNNs, this review systematically
and comprehensively summarizes the theories and methods for
directly trained deep SNNs. Combining theory fundamentals,
spiking neuron models, advanced SNN models and residual
architectures, software frameworks and neuromorphic hardware,
applications, and future trends, this article offers fresh perspectives
into the field of SNNs. This review is structured as follows: Section 2
presents the evolution and recent advancements in spiking neuron
models. Section 3 introduces the fundamental principles of spiking
neural networks. Section 4 focuses on the most recent advanced
SNNmodels and architectures, especially transformer-based SNNs.
Section 5 concludes the software frameworks for training SNNs and
the development of neuromorphic hardware. Section 6 summarizes
the applications of deep SNNs. Finally, Section 7 points out future
research trends and concludes this review.

2 Spiking neuron models

LIF (Leaky Integrate-and-Fire) neuron is one of the most
commonly used neurons in SNNs (Zhou et al., 2023a,b; Zhou Z.
et al., 2023), which is simple but retains biological characteristics
(Figure 1A). The dynamics of LIF are described as Equations (1–3):

H[t] = V[t − 1]+ 1

τ
(X[t]− (V[t − 1]− Vreset)) , (1)

S[t] = 2 (H[t]− Vth) , (2)

V[t] = H[t] (1− S[t]) + VresetS[t], (3)

where τ in Equation (1) is the membrane time constant, X[t] is the
input current at time step t. Vreset represents the reset potential,
Vth represents the spike firing threshold, H[t] and V[t] represent
the membrane potential before and after spike firing at time step
t, respectively. 2(v) is the Heaviside step function, if v ≥ 0 then
2(v) = 1, meaning a spike is generated; otherwise 2(v) = 0. S[t]
represents whether a neuron fires a spike at time step t.

LIF also comes with notable limitations in practical
applications. For instance, LIF needs to manually adjust the
hyperparameters, such as membrane time constant τ and firing
threshold Vth, which constrains its expressiveness. In addition,
LIF is simple in modeling, which limits the range of neuronal
dynamics. Overall, there is a lack of diversity and flexibility in LIF,

which calls for more advanced neuron models to enhance SNNs’
performance and broaden their applications. Table 1 lists some
recently developed spiking neuron models and their performance
on typical tasks.

2.1 Spiking neurons with trainable
parameters

Based on LIF, many improved spiking neuron models with
trainable parameters have been proposed, which expand the
representation space of neurons through parameter learning and
improve the expression ability of SNNs. Fang et al. proposed
Parametric LIF (PLIF) (Fang et al., 2021b) by using trainable
membrane time constant as follows:

H[t] = V[t − 1]+ k (a) (X[t]− (V[t − 1]− Vreset)) , (4)

where k (a) in Equation (4) denotes a clamp function and k (a) =
1

1+exp(−a) ∈ (0, 1). The trainable membrane-related parameter
of PLIF is biologically plausible, as neurons in the brain are
heterogeneous. LTMD (Wang S. et al., 2022) also leverages this
biological plausibility but approaches it differently by employing
learnable firing thresholds. An increase in the threshold of LTMD
results in a reduction of output spikes, making an SNN less sensitive
to its input and thus more robust. On the contrary, a decrease in
the threshold leads to an increment of output spikes, making an
SNN more sensitive to its input, which is particularly beneficial
for processing transient small signals. Therefore, the learnable
threshold Vth = tank(k), of which k is trainable, can lead to the
optimal sensitivity of an SNN.

Diet-SNN (Rathi and Roy, 2023) adopts an end-to-end gradient
descent optimization algorithm to train the membrane-related
parameters and firing thresholds of LIF neurons while optimizing
the network weights. The trained neuron parameters selectively
reduce the membrane potential, making spikes in the network
sparser, thereby improving the computational efficiency of SNN.
Spiking neurons with dynamic thresholds are adopted in LSNN
(Bellec et al., 2018). After firing a spike each time, the firing
threshold of a neuron will increase by a fixed amount, and
then it will decay exponentially according to the time constant.
Adaptive spiking neuron (ASN) (Yin et al., 2020) was proposed for
sequence and streaming media tasks. In ASN, the time constant of
membrane potential is trainable. In addition, similar to LSNN, the
firing threshold will increase after each spike of the neuron, thus
improving sparsity and efficiency.

In KLIF (Jiang and Zhang, 2023), a trainable scaling factor k and
a nonlinear ReLU activation function are inserted between charging
and firing. The dynamics of KLIF can be described by Equations (1),
(5–7).

F[t] = ReLU
(

kH[t]
)

, (5)

S[t] = 2 (F[t]− Vth) , (6)

V[t] = F[t] (1− S[t]) + VresetS[t]. (7)

Compared with LIF, KLIF can automatically adjust the
membrane potential and the gradient of backpropagation within
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TABLE 1 Overview of spiking neurons for direct training and their performance.

Method Architecture Dataset Acc (%) Training

PLIF (Fang et al., 2021b) PLIF-Net CIFAR10 93.50 Time dependent

LTMD (Wang S. et al., 2022) DenseNet CIFAR10 94.19 Time dependent

GLIF (Yao et al., 2022) ResNet-34 CIFAR10 95.03 Time dependent

MLF (Feng L. et al., 2022) DS ResNet CIFAR10 94.25 Time dependent

LIFB (Shen et al., 2023) ResNet-19 CIFAR10 96.32 Time dependent

Deit-SNN (Rathi and Roy, 2023) VGG16 CIFAR10 93.44 Time dependent

KLIF (Jiang and Zhang, 2023) CNN CIFAR10 92.52 Time dependent

MT-SNN (Wang X. et al., 2023) MT-VGG9 CIFAR10 94.74 Time dependent

PSN (Fang et al., 2023b) PLIF-Net CIFAR10 95.32 Parallel

GLIF (Yao et al., 2022) ResNet-34 CIFAR100 77.35 Time dependent

Deit-SNN (Rathi and Roy, 2023) VGG16 CIFAR100 69.67 Time dependent

LIFB (Shen et al., 2023) ResNet-19 CIFAR100 78.31 Time dependent

MT-SNN (Wang X. et al., 2023) MT-VGG9 CIFAR100 75.53 Time dependent

GLIF (Yao et al., 2022) ResNet-34 ImageNet 69.09 Time dependent

Deit-SNN (Rathi and Roy, 2023) VGG16 ImageNet 69.00 Time dependent

LIFB (Shen et al., 2023) SEW ResNet-34 ImageNet 70.02 Time dependent

PSN (Fang et al., 2023b) SEW ResNet-34 ImageNet 70.54 Parallel

PLIF (Fang et al., 2021b) PLIF-Net CIFAR10-DVS 74.80 Time dependent

GLIF (Yao et al., 2022) ResNet-34 CIFAR10-DVS 78.10 Time dependent

MLF (Feng L. et al., 2022) DS ResNet CIFAR10-DVS 70.36 Time dependent

LTMD (Wang S. et al., 2022) DenseNet CIFAR10-DVS 73.30 Time dependent

KLIF (Jiang and Zhang, 2023) CNN CIFAR10-DVS 70.90 Time dependent

MT-SNN (Wang X. et al., 2023) MT-VGG9 CIFAR10-DVS 76.30 Time dependent

PSN (Fang et al., 2023b) VGG CIFAR10-DVS 85.90 Parallel

PLIF (Fang et al., 2021b) PLIF-Net DVS128-Gesture 97.57 Time dependent

MLF (Feng L. et al., 2022) DS ResNet DVS128-Gesture 97.29 Time dependent

KLIF (Jiang and Zhang, 2023) CNN DVS128-Gesture 94.10 Time dependent

LSNN (Bellec et al., 2018) LSTM Sequential 96.40 Time dependent

MNIST

ASN (Yin et al., 2020) RNN PS-MNIST 97.90 Time dependent

SPSN (Yarga and Wood, 2023) MLP SHD 86.89 Parallel

the neuron. GLIF (Yao et al., 2022) introduces a gating unit that
fuses multiple biometric features, with the ratio of these features
adjusted by a trainable gating factor. Moreover, inspired by various
spiking patterns of brain neurons, LIFB (Shen et al., 2023) has
threemodes: resting, regular spiking, and burst spiking. The density
of the burst spiking can be learned automatically, which greatly
enriches the representation capability of neurons.

In addition, there are other studies trying to improve
performance by multi-level firing thresholds instead of trainable
parameters. To reduce the performance loss caused by the
transmission of binarized spikes in the network, MT-SNN (Wang
X. et al., 2023) introduces multi-level firing thresholds. MT-SNN
performs convolution operations on the binarized spikes generated
by different firing thresholds and then sums them up. Similarly,

MLF (Feng L. et al., 2022) can also fire spikes under different firing
thresholds, thus improving the performance of SNNs.

2.2 Parallel spiking neurons

A typical neuron model like LIF is time-dependent, that is, its
state at time t relies on its state at time t − 1, resulting in a high
computation load. Fang et al. (2023b) proposed a parallel spiking
neuron (PSN) to accelerate the computation by parallel computing.
By eliminating the resetting process, they represent the charging
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A B

FIGURE 1

(A) The scheme of a spiking neuron, of which the input and output are both binary spikes. (B) The sigmoid function approximates the Heaviside

activation function of a spiking neuron, and its derivative can be utilized to calculate gradients during backpropagation.

process of PSN by a non-iterative equation as Equation (8):

H[t] =
T−1
∑

i=0

Wt,i · X[i], (8)

where Wt,i is the weight between input X[i] and membrane
potentialH[t]. For LIF neuron,Wt,i = 1

τm
(1− 1

τm
)t−i. The dynamics

of PSN are as Equations (9, 10):

H = WX, W ∈ R
T×T ,X ∈ R

T×N (9)

S = 2(H − B), B ∈ R
T , S ∈ {0, 1}T×N (10)

where X is the input, W and B are trainable weights and trainable
firing thresholds, respectively. H is the membrane potential after
charging, and S denotes whether a neuron spikes. N and T are the
batch size and the number of time steps, respectively. For step-
by-step serial forward computation and variable-length sequence
processing, the masked PSN and the sliding PSN are also derived.

The stochastic parallel spiking neuron (SPSN) (Yarga and
Wood, 2023) adopts an idea similar to PSN, by removing
the resetting mechanism. The neuronal dynamics of SPSN
contains two parts, namely parallel leaky integrator and stochastic
firing. The leaky integrator is a linear time-invariant system,
which can be transformed into the Fourier domain to realize
parallel computation. Stochastic firing adaptively adjusts the
firing probability through trainable parameters, enhancing the
network’s capability to process information in a dynamic and
efficient manner.

3 Fundamentals of spiking neural
networks

3.1 Information coding

To process image data through SNNs, it is essential to first
encode the data into spike trains. Rate coding (Adrian and

Zotterman, 1926) is the most commonly used information coding
method in SNNs, in which the firing rate is proportional to the
intensity of the input signal and spikes are typically generated
by a Poisson process (Wiener and Richmond, 2003). To encode
information more accurately, rate coding requires a longer time
window, which leads to a slower information transmission rate.
In contrast, utilizing a shorter time window may result in loss of
information during encoding, presenting a trade-off between speed
and accuracy in information transmission.

Different from rate coding, temporal coding represents
information through the timing of spikes. Time-to-first-spike
(TTFS) (Park et al., 2020; Guo W. et al., 2021) stands out for
its simplicity and efficiency in temporal coding, which uses the
time of the first spike fired by the neuron to represent the input
signal. TTFS effectively reduces the total number of spikes, thereby
accelerating the computation of SNNs. TTFS algorithm can be
described as Equation (11):

S[t] =







1, if t =
(

Xmax−X
Xmax

)

tmax

0, otherwise
, (11)

where S[t] represents whether a spike is fired at time t after
encoding, tmax denotes the maximum time allowed during
encoding, X and Xmax represent the input signal and its maximum
value, respectively. In the TTFS encoding method, larger values of
the input signal lead to earlier firing of spikes.

3.2 Network training

3.2.1 Surrogate gradient
As the core components of SNNs, neurons are essential for

information processing and transmission, since spikes are fired
by neurons. However, the firing of spikes involves the non-
differentiable Heaviside step function, which presents a significant
challenge in the direct training of SNNs. To address the non-
differentiability of the Heaviside step function, Neftci et al. (2019)
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TABLE 2 Overview of direct training deep SNNs and their performance on ImageNet, CIFAR10, CIFAR100, DVS128-Gesture, CIFAR10-DVS.

Method Architecture Param (M) Time steps Dataset Top-1
Acc (%)

Spiking ResNet (Hu et al., 2021a) ResNet-50 25.56 350 ImageNet 72.75

SEW ResNet (Fang et al., 2021a) SEW-ResNet-152 60.19 4 ImageNet 69.26

MS-ResNet (Hu et al., 2021b) MS-ResNet-104 77.28 5 ImageNet 76.02

Att MS-ResNet (Yao et al., 2023b) Att-MS-ResNet-104 78.37 4 ImageNet 77.08

Spikformer (Zhou Z. et al., 2023) Spikformer-8-768 66.34 4 ImageNet 74.81

Spikingformer (Zhou et al., 2023a) Spikingformer-8-768 66.34 4 ImageNet 75.85

CML (Zhou et al., 2023b) Spikformer-8-768 66.34 4 ImageNet 77.34

Spike-driven Transformer (Yao et al.,
2023a)

S-Transformer-8-768 66.34 4 ImageNet 77.07

SpikingResformer (Shi et al., 2024) SpikingResformer-L 60.38 4 ImageNet 79.40

Spike-driven Transformer V2 (Yao et al.,
2024)

Meta-SpikeFormer 55.40 4 ImageNet 80.00

Spikformer V2 (Zhou Z. et al., 2024) Spikformer V2-8-512 51.55 4 ImageNet 80.38

SGLFormer (Zhang et al., 2024) SGLFormer-8-768 64.02 4 ImageNet 83.73

QKFormer (Zhou C. et al., 2024) HST-10-768 64.96 4 ImageNet 85.65

Hybrid training (Rathi et al., 2020) VGG-11 9.27 125 CIFAR10 92.22

STBP-tdBN (Zheng et al., 2021) ResNet-19 12.63 4 CIFAR10 92.92

TET (Deng et al., 2022) ResNet-19 12.63 4 CIFAR10 94.44

MS-ResNet (Hu et al., 2021b) MS-ResNet-110 – 4 CIFAR10 92.12

Spikformer (Zhou Z. et al., 2023) Spikformer-4-384 9.32 4 CIFAR10 95.51

Spikingformer (Zhou et al., 2023a) Spikingformer-4-384 9.32 4 CIFAR10 95.81

CML (Zhou et al., 2023b) Spikformer-4-384 9.32 4 CIFAR10 96.04

Spike-driven Transformer (Yao et al.,
2023a)

S-Transformer-2-512 10.23 4 CIFAR10 95.60

SGLFormer (Zhang et al., 2024) SGLFormer-4-384 8.85 4 CIFAR10 96.76

Hybrid training (Rathi et al., 2020) VGG-11 9.27 125 CIFAR100 67.87

STBP-tdBN (Zheng et al., 2021) ResNet-19 12.63 4 CIFAR100 70.86

TET (Deng et al., 2022) ResNet-19 12.63 4 CIFAR100 74.47

Spikformer (Zhou Z. et al., 2023) Spikformer-4-384 9.32 4 CIFAR100 78.21

Spikingformer (Zhou et al., 2023a) Spikingformer-4-384 9.32 4 CIFAR100 79.21

CML (Zhou et al., 2023b) Spikformer-4-384 9.32 4 CIFAR100 80.02

Spike-driven Transformer (Yao et al.,
2023a)

S-Transformer-2-512 10.28 4 CIFAR100 78.4

SGLFormer (Zhang et al., 2024) SGLFormer-4-384 8.88 4 CIFAR100 82.26

SEW-ResNet (Hu et al., 2021b) SEW-ResNet – 16 DVS128-Gesture 97.9

tdBN (Zheng et al., 2021) ResNet – 40 DVS128-Gesture 96.9

Spikformer (Zhou Z. et al., 2023) Spikformer-2-256 2.57 16 DVS128-Gesture 98.3

Spikingformer (Zhou et al., 2023a) Spikingformer-2-256 2.57 16 DVS128-Gesture 98.3

CML (Zhou et al., 2023b) Spikformer-2-256 2.57 16 DVS128-Gesture 98.6

Spike-driven Transformer (Yao et al.,
2023a)

S-Transformer-2-256 2.57 16 DVS128-Gesture 99.3

STSA (Wang Y. et al., 2023) STSFormer-2-256 1.99 16 DVS128-Gesture 98.72

(Continued)
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TABLE 2 (Continued)

Method Architecture Param (M) Time steps Dataset Top-1
Acc (%)

SGLFormer (Zhang et al., 2024) SGLFormer-3-256 2.17 16 DVS128-Gesture 98.6

SEW-ResNet (Hu et al., 2021b) SEW-ResNet – 16 CIFAR10-DVS 74.4

Spikformer (Zhou Z. et al., 2023) Spikformer-2-256 2.57 16 CIFAR10-DVS 80.9

Spikingformer (Zhou et al., 2023a) Spikingformer-2-256 2.57 16 CIFAR10-DVS 81.3

CML (Zhou et al., 2023b) Spikformer-2-256 2.57 16 CIFAR10-DVS 80.9

Spike-driven Transformer (Yao et al.,
2023a)

S-Transformer-2-256 2.57 16 CIFAR10-DVS 80.0

STSA (Wang Y. et al., 2023) STSFormer-2-256 1.99 16 CIFAR10-DVS 79.93

SGLFormer (Zhang et al., 2024) SGLFormer-3-256 2.58 10 CIFAR10-DVS 82.9

proposed the Surrogate Gradient (SG) algorithm. In SG, the
Heaviside step function is adopted to generate spikes during
forward propagation, and differentiable functions are adopted
for gradient calculation during backpropagation. Notably, SG
functions could vary according to the networks. For instance,
the SG function used in SEW ResNet (Fang et al., 2021a) is the
derivative of the arctan function as follows:

σ (x) = 1

π
arctan(

π

2
αx)+ 1

2
, (12)

σ ′(x) = α

2(1+ (π
2 αx)2)

. (13)

Equation (13) is the derivative of Equation (12). In addition, SG
could be the derivative of Sigmoid (Figure 1B) (Zhou et al., 2023a,b;
Zhou Z. et al., 2023), tanh (Guo et al., 2022a), or rectangular
(Wu et al., 2018, 2019) functions, etc. To address the problem
of gradient vanishing caused by a surrogate gradient function
with fixed parameters, Lian et al. (2023) proposed the Learnable
Surrogate Gradient (LSG), in which a learnable parameter is used
to adjust the gradient-available interval.

Li et al. (2021) proposed Differentiable Spike (Dspike) as
another approach to overcome the non-differentiable problem of
the Heaviside function. Based on the hyperbolic tangent function,
Dspike can be described as Equation (14):

Dspike(x, b) = tanh(b(x− 0.5))+ tanh(b/2)

2(tanh(b/2))
, if 0 ≤ x ≤ 1 (14)

By adjusting the parameter b, different backpropagation
gradients can be obtained. Differentiation on Spike
Representation (DSR) proposed by Meng et al. (2022)
encodes spike trains and represents them as sub-differentiable
mapping, which also avoids the non-differentiable problem
during backpropagation.

3.2.2 Loss function and backpropagation
Loss function is the key to neural network training, and

different loss functions have been proposed to enhance the
performance of SNNs. IM-Loss (Guo et al., 2022a), for example,
aims to maximize the information flow in the network. The total

loss function consists of two parts, cross-entropy loss, and IM-Loss,
as Equations (15, 16):

LTotal = LCE + λLIM , (15)

LIM =
L

∑

l=0

(Ūl − Vth)
2/L, (16)

where Ūl is the averaged membrane potential at all time steps of
the l-th layer, and L is the total number of layers. To alleviate
the information loss in SNNs and reduce the quantization error,
RMP-Loss (Guo et al., 2023a) is proposed to adjust the distribution
of membrane potential. RecDis-SNN (Guo et al., 2022b) adopts
MDP-Loss that also adjusts the membrane potential distribution
to overcome the distribution shift during network training. In
addition, to improve the generalization ability of SNNs, Deng
et al. proposed temporal efficient training (TET) (Deng et al.,
2022) loss function to make the network output closer to the
target distribution.

Distinct from ANNs, there’s an additional dimension in
SNNs, the temporal domain. For spiking neurons, the membrane
potential in the current step depends on the membrane potential
in the previous time step, that is, there is a time dependence.
Thus, backpropagation in ANNs does not apply to SNNs.
Backpropagation Through Time (BPTT) (Werbos, 1990; Bird and
Polivoda, 2021), originally developed for recurrent neural networks
(RNNs), is applied to SNNs due to their similar characteristics to
those of RNNs. The combination of BPTT and surrogate gradient
is the basic approach in SNNs. Spatio-temporal backpropagation
(STBP) (Wu et al., 2018), proposed by Wu et al., takes the gradient
update in both the spatial domain and temporal domain into
account to train SNNs. However, the additional time dimension
exposes BPTT and STBP to the problem of requiring a large amount
of training memory and training time. Therefore, Xiao et al. (2022)
proposed an online training through time (OTTT) algorithm
derived from BPTT, which only requires constant training memory
consumption agnostic to time steps, and reduces the significant
memory costs compared to BPTT. The backward of BPTT and
OTTT are shown in Figure 2. Another efficient backpropagation
method, Spatial Learning Through Time (SLTT) (Meng et al.,
2023), ignores the unimportant routes in the computational graph
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A B

FIGURE 2

The backward of (A) BPTT and (B) OTTT.

during backpropagation, to reduce training memory consumption
and training time. However, although OTTT and SLTT show better
training memory consumption than BPTT, direct training high-
performance SNNs are still dominated by the combination of
BPTT and surrogate gradient, such as SGLFormer (Zhang et al.,
2024), Spikformer (Zhou Z. et al., 2023), etc. Thus, it’s essential to
investigate direct training methods offering both high effectiveness
and efficiency.

3.2.3 Batch normalization
In SNNs, batch normalization is an indispensable component,

especially in the context that deep SNNs are difficult to train
and converge, compared to ANNs. To mitigate the degradation
problems of SNNs, Zheng et al. (2021) proposed threshold-
dependent batch normalization (tdBN), which is described as
Equation (17):

X̂k = γk
αVth(Xk − µ)√

σ 2 + ǫ
+ βk, (17)

where α is a hyperparameter, Vth is the firing threshold of the
neuron, Xk is the feature of the k-th channel, γk and βk are trainable
parameters,µ and σ 2 aremean and variance, respectively, ǫ is a tiny
constant. Temporal effective batch normalization (TEBN) (Duan
et al., 2022) regularizes the temporal distribution, by adopting batch
normalization with different parameters at different time steps.
Batch normalization through time (BNTT) proposed by Kim and
Panda (2021) is similar to TEBN, which also adopts different batch
normalization parameters for feature maps at different time steps.
Moreover, Guo et al. (2023b) applied batch normalization inside the
LIF neuron to normalize the distribution of membrane potentials
before firing spikes.

4 SNN architecture developments

This review focuses on the most recent SNN models. Recently,
the evolution of residual blocks enhances both the size and
performance of deep SNNs significantly. In addition, combining
SNNs with transformer architecture has broken the bottleneck
of SNNs’ performance. Therefore, this review focuses on the
application of two kinds of architectures in direct training deep
SNNs: transformer structures (Section 4.1) and the residual
connections (Section 4.2). Table 2 summarizes their performance
on mainstream datasets (ImageNet-1K, CIFAR10, CIFAR100,
DVS128 Gesture, CIFAR10-DVS).

4.1 Transformer-based spiking neural
networks

Transformer, originally designed for natural language
processing (Vaswani et al., 2017), has achieved great success
in many computer vision tasks, including image classification
(Dosovitskiy et al., 2021; Yuan et al., 2021), object detection
(Carion et al., 2020; Liu et al., 2021; Zhu X. et al., 2021), and
semantic segmentation (Wang et al., 2021; Yuan et al., 2022).
While convolution-based models mainly rely on inductive bias and
focus on adjacent pixels, transformer structures use self-attention
to capture the relation among spiking features globally, which
enhances the performance effectively.

To adopt transformer structure in SNNs, Zhou Z. et al. (2023)
designed a novel spike-form self-attention named Spiking Self
Attention (SSA), using sparse spike-form Query, Key and Value
without softmax operation. The calculation process of SSA is

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2024.1383844
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhou et al. 10.3389/fnins.2024.1383844

formulated as Equations (18–20):

Q = SNQ

(

BN
(

XWQ

))

,K = SNK (BN (XWK)) ,

V = SNV (BN (XWV )) , (18)

SSA′(Q,K,V) = SN
(

QKTV ∗ s
)

, (19)

SSA(Q,K,V) = SN
(

BN
(

Linear
(

SSA′(Q,K,V)
)))

, (20)

where Q,K,V ∈ R
T×N×D. The spike-form Query (Q), Key (K),

and Value (V) are computed by learnable layers. s is a scaling
factor, which can be fused into the next spiking neuron in practice.
Therefore, the calculation of SSA avoids multiplication, meeting
the property of SNNs. Based on the SSA, Zhou Z. et al. (2023)
developed a spiking transformer named Spikformer, which is
shown in Figure 3. As the first transformer-based SNN model,
Spikformer achieves 74% accuracy on ImageNet-1k, showing great
performance potential.

Zhou et al. (2023a) discussed the non-spike computation
problem (integer-float multiplications) of Spikformer (Zhou Z.
et al., 2023) and SEW-ResNet (Fang et al., 2021a), which is
caused by Activation-after-addition shortcut. Spikingformer (Zhou
et al., 2023a) was proposed with the Pre-activation shortcut to
avoid the non-spike computation problem in synaptic computing.
Experimental Analysis has shown that Spikingformer has only
about 43% energy consumption compared with Spikformer in
synaptic computing, with only accumulation operations and lower
fire rates. CML (Zhou et al., 2023b) designed a downsampling
structure specifically for SNNs to solve the imprecise gradient
backpropagation problem of most state-of-the-art deep SNNs
(including Spikformer). CML achieved 77.34% on ImageNet,
significantly enhancing the performance of transformer-based
SNNs. All the architectures above are based on SSA with
computational complexity of O(N2d) or O(Nd2), while Yao et al.
(2023a) designed a novel Spike-Driven Self-Attention (SDSA)
with linear complexity regarding both the number of tokens
and channels. SDSA uses only mask and addition operations
without any multiplication, thus having up to 87.2× lower
computation energy than the vanilla SSA. In addition, the Spike-
driven Transformer based on SDSA has achieved 77.1% accuracy
on ImageNet-1k. Wang Y. et al. (2023) proposed an SNN-
based spatial-temporal self-attention (STSA) mechanism, which
could calculate the feature dependence across the time and
space domains. Shi et al. (2024) proposed Dual Spike Self-
Attention (DSSA) with a reasonable scaling method, achieving
79.40% top-1 accuracy on ImageNet-1K. Yao et al. (2024) proposed
Spike-driven Transformer v2 which explored the impact of
structure, spike-driven self-attention, and skip connection on its
performance to inspire the next-generation transformer-based
neuromorphic chip designs. Zhou Z. et al. (2024) developed
a Spiking Convolutional Stem (SCS) with supplementary layers
to enhance the architecture of Spikformer, achieving 80.38%
accuracy on ImageNet-1k. Zhang et al. (2024) proposed a
Spiking Global-Local-Fusion Transformer (SGLFormer), which
enables efficient information processing on both global and local
scales, by integrating transformer and convolution structures in
SNNs. SGLFormer achieved a groundbreaking top-1 accuracy

of 83.73% on ImageNet-1k with 64M parameters. Zhou C.
et al. (2024) proposed QKFormer, a novel hierarchical spiking
transformer using Q-K attention, which can easily model
the importance of token or channel dimensions with binary
values and has linear complexity to #tokens (or #channels).
QKFormer achieved a significant milestone, surpassing 85%
top-1 accuracy on ImageNet with 4 time steps using the direct
training approach.

Biological realistic models tend to model neural networks
with high biological plausibility to simulate the complex biological
mechanism of the brain. It often lacks the consideration
of computational efficiency and performance optimization on
general application tasks. Traditional ANNs often prioritize task
performance over biological realism and computational energy
consumption. SNNs have great potential to own the characteristics
of biological plausibility, low computational energy consumption,
and high task performance simultaneously. Especially, several
direct training Transformer-based SNNs have broken through 80%
top-1 accuracy on ImageNet-1K, which instills great optimism in
the application of SNNs.

4.2 Residual architectures in spiking neural
networks

Residual block is the fundamental block in both deep
ANNs and SNNs. As shown in Figure 4, there are mainly
three residual shortcut types in SNNs: Activation-after-addition,
Activation-before-addition, and Pre-activation. Both advantages
and disadvantages of these three types are concluded in
Table 3. Activation-after-addition shortcut simply replaces ReLU
activation layers in the standard residual block with spiking
neurons, such as Spiking ResNet (Hu et al., 2021a) and MPBN
(Guo et al., 2023b). SNNs with this simple design suffer from
performance degradation and gradient vanishing/exploding. For
example, the deeper 34-layer Spiking ResNet has lower test
accuracy than the shallower 18-layer Spiking ResNet. As the layer
increases, the test accuracy of Spiking ResNet decreases (Fang
et al., 2021a). To solve the degradation problem in the Activation-
after-addition shortcut, Activation-before-addition shortcut is
proposed in SEW-ResNet (Fang et al., 2021a), which extended
directly trained SNNs to 100 layers for the first time. This structure
has been widely used, such as in Spikformer (Zhou Z. et al., 2023),
PLIF (Fang et al., 2021b), PSN (Fang et al., 2023b). This design
mitigates the vanishing/exploding gradient problem and could
train deeper SNN. However, the blocks in this shortcut will result in
positive integers, which leads to non-spike computations (integer-
float multiplications) in synaptic computing (like convolutional
layer, linear layer) (Zhou et al., 2023a). Pre-activation shortcut

could be traced back to the Activation-Conv-Bn paradigm, which is
a fundamental building block in Binary Neural Networks (BNNs)
(Liu et al., 2018, 2020; Guo N. et al., 2021; Zhang Y. et al., 2022).
Some representative SNNs that use the Pre-activation shortcut
include MS-ResNet (Hu et al., 2021b), Spikingformer (Zhou et al.,
2023a), Spike-driven transformer (Yao et al., 2023a). MS-ResNet
directly trained convolution-based SNNs to successfully extend
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FIGURE 3

The overview of spiking transformer (Spikformer).

TABLE 3 Features of various residual learning architectures.

Features Activation-after-addition Activation-before-addition Pre-activation

Element addition Spike added to floats Integer added to spike Floats added to floats

Gradient vanishing/exploding Yes No No

Synaptic computing type Spike computing Multiplication between sparse integer and floats Spike computing

Data transmission in residual branch Spike Sparse integer Floats

the depth up to 482 layers on CIFAR10 without experiencing
degradation problems, effectively verifying the feasibility of this
way. Spikingformer (Zhou et al., 2023a) showed that the Pre-
activation shortcut can effectively avoid non-spike computations,
and thus has lower energy consumption than the previous
shortcut in synaptic computing, through avoiding integer-float
multiplication problems and with a lower firing rate. However, the
Pre-activation shortcut requires dense transmission of floats in the
residual branch.

Overall, the residual learning suitable for the properties of
SNNs needs further exploration. In our opinion, the Activation-
after-addition shortcut with gradient problem is not suitable for
directly training deep SNNs, but is feasible in the field of ANN-
to-SNN conversion. Activation-before-addition shortcut has some
alternatives to ensure the properties of SNNs by slightly sacrificing
the performance, such as using AND or IAND to replace ADD
in the aggregation operation. Pre-activation shortcut needs further
analyses of the effects of float transmission, and more efforts to
exploit its advantages through collaborative hardware optimization
and design.

4.3 Others

Besides the above-mentioned architectures, some other
interesting research topics are also worthy of attention, such as
Spiking RNN/LSTM, LSM, etc. Deep Liquid State Machine (LSM)
(Wang and Li, 2016) explored the power of recurrent spiking
networks and deep architectures. Soures and Kudithipudi (2019)
proposed a novel deep LSM to capture dynamic information
over multiple time-scales with a combination of randomly
connected layers and unsupervised layers. Hamilton et al. (2019)
demonstrated the nonlinear dynamics of spiking neurons can be
used to implement low-level graph operations. Zhu Z. et al. (2022)
proposed end-to-end Spiking Graph Convolutional Networks
(GCNs) that integrate the embedding of GCNs with the biofidelity
characteristics of SNNs. Bellec et al. (2020) and Bohnstingl et al.
(2022) explored the architectures and online-training methods of
recurrent spiking neural networks. Ren H. et al. (2023) proposed
a novel end-to-end point-based SNN architecture, which excels
at processing sparse event cloud data, effectively extracting both
global and local features through a singular-stage structure.
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FIGURE 4

The overview of residual learning architectures.

5 Software frameworks and
neuromorphic hardware for spiking
neural networks

5.1 Software frameworks for training
spiking neural networks

Software frameworks play a crucial role in propelling the

advancement of deep learning. Deep learning frameworks
such as PyTorch (Paszke et al., 2019) and TensorFlow (Abadi
et al., 2016) leverage low-level languages like C++ libraries for
high-performance acceleration on the backend, while offering

user-friendly front-end application programming interfaces
(APIs) implemented in high-level languages like Python. These
frameworks significantly ease the workload of constructing and

training ANNs, making substantial contributions to the growth of
deep learning research. However, these deep learning frameworks
are primarily designed for ANNs. With the development of large-
scale brain-inspired neural networks, many related frameworks

have emerged, facilitating the modeling and efficient computation
of large-scale SNNs.

One category of frameworks includes brain simulators such

as NEURON (Hines and Carnevale, 1997) and Brian (Goodman
and Brette, 2009), which not only enhance the scalability and
computational efficiency of models but also encompass cognitive
functions such as perception, decision-making, and reasoning.
The SNNs constructed by these frameworks exhibit a high degree
of biological plausibility, making them suitable for studying the
functionalities of real neural systems. They support biologically
interpretable learning rules such as Spike-Timing-Dependent
Plasticity (STDP) (Bi and Poo, 1998), playing a significant role in
advancing the field of neuroscience. However, these frameworks
lack core computational functionalities required for deep learning,

such as automatic differentiation, rendering them incapable of
performing machine learning tasks.

Another category of brain-inspired computing frameworks
comprises deep spiking computation frameworks. Deep SNNs
involve a substantial amount of matrix operations across spatial
and temporal dimensions, a variety of neurons, neuromorphic
datasets, and deployments on neuromorphic chips. The modeling
and application processes are complex, and achieving high-
performance acceleration is challenging. To address these
issues, spiking deep learning frameworks need to support the
construction, training, and deployment of deep SNNs, and be
capable of acceleration based on spike operations. Frameworks
such as BindsNET (Hazan et al., 2018), NengoDL (Rasmussen,
2019), SpykeTorch (Mozafari et al., 2019), Norse, SpyTorch,
SNNTorch (Eshraghian et al., 2023), and SpikingJelly (Fang et al.,
2023a) have been developed. They utilize simple spiking neurons
to reduce computational complexity, making them suitable for
machine learning research. Among them, BindsNet (Hazan et al.,
2018) primarily focuses on machine learning and reinforcement
learning; NengoDL (Rasmussen, 2019) converts ANNs to
obtain deep SNNs but does not support direct training of SNNs
using surrogate gradient methods; SpyTorch is a demonstrative
framework that only provides basic surrogate gradient examples;
SpyTorch (Mozafari et al., 2019) introduces a new type of surrogate
gradient method named SuperSpike. These frameworks can
implement some simple machine learning and reinforcement
learning models, but they still lack deep learning capabilities for
SNNs. Norse is attempting to introduce the sparse and event-
driven characteristics of SNNs and supports many typical spiking
neuron models. It is in the development stage and has not been
officially released yet. SNNTorch supports some variants of online
backpropagation algorithms that are more biologically plausible
and support large-scale SNN computation. SpikingJelly (Fang
et al., 2023a) is a full-stack toolkit for preprocessing neuromorphic
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datasets, building deep SNNs, optimizing their parameters,
and deploying SNNs on neuromorphic chips, which shows
remarkable extensibility and flexibility, enabling users to accelerate
custom models at low costs through multilevel inheritance and
semiautomatic code generation. In summary, the development of
existing software frameworks is essentially in its early stages, and
there is still a long way to go in terms of functionality enhancement
and performance optimization.

5.2 Neuromorphic hardware for spiking
neural networks

Neuromorphic hardware provides computational power for
neural network models, playing a crucial role in large-scale brain-
like neural networks. Efficient hardware can significantly accelerate
the training, evaluation, iteration, and real-world applications of
large-scale brain-like models. In comparison to general-purpose
processors, deep learning chips and brain-like chips are specialized
chips that focus on the computational efficiency of deep learning
tasks and brain-like computing tasks, aiming to achieve better
power/performance/area ratios. Current deep learning chips, like
general CPUs, are based on the Von Neumann architecture,
with separate computing and storage units. Brain-like chips
enhance computational efficiency by designing efficient storage
and computation hierarchy, enabling parallel data flow and
efficient reuse, thus improving computational efficiency. From an
architectural perspective, current brain-like chips can be mainly
divided into two categories: analog-digital hybrid circuits and fully
digital circuits (Table 4).

Inspired by the simultaneous computation and storage
capabilities of the brain’s neural system, brain-inspired chips often
adopt near-memory (NMA) or compute-in-memory architectures
(CIM), incorporating closely coupled computational and storage
resources within each computing core (Akopyan et al., 2015; Pei
et al., 2019). Efficient intra-chip and inter-chip interconnects enable
large-scale computational parallelism and high local memory,
reducing computational power consumption.

The near-memory computing architecture refers to the
separation of memory storage and computation in each processing
unit, but with proximity. Key chips in this category include IBM’s
TrueNorth (Akopyan et al., 2015), Intel’s Loihi (Davies et al., 2018;
Davies, 2021), the University of Manchester’s SpiNNaker (Painkras
et al., 2013), Stanford University’s Neurogrid (Benjamin et al.,
2014), Heidelberg University’s BrainScaleS (Schemmel et al., 2010;
Pehle et al., 2022), Tsinghua University’s Tianji Chip (Pei et al.,
2019), and Zhejiang University’s Darwin Chip (Shen et al., 2016;Ma
et al., 2017, 2024). They utilize characteristics of brain-like spiking
computation such as sparsity, spike summation, and asynchronous
event-driven processing to achieve ultra-low power consumption,
currently mainly supporting model inference and local online
learning based on STDP, Hebb, etc. For instance, ROLLS (Qiao
et al., 2015), ODIN (Frenkel et al., 2018), and MorphIC (Frenkel
et al., 2019) support spike-driven synaptic plasticity (SDSP) rules,
and Loihi adds a learning module for STDP rules. In SpiNNaker
(Painkras et al., 2013) and BrainScaleS (Schemmel et al., 2010),
STDP learning is exhibited through timestamp recording and
learning circuits. In their next generations (Pehle et al., 2022), more

flexible learning rules are possible due to the presence of embedded
programmable units. Tsinghua University’s Tianji Chip, as the
first chip to support the fusion of SNN and ANN computation,
improves accuracy based on ANN, and achieves rich dynamics,
high efficiency, and robustness based on SNN. This mode is also
adopted by BrainScaleS-2 (Pehle et al., 2022), SpiNNaker-2, and
Loihi-2 (Davies, 2021). Recently, BPTT has been applied to SNNs,
achieving higher accuracy compared to local learning rules (Wu
et al., 2018, 2019). Some works, like H2Learn (Liang et al., 2021)
and SATA (Yin et al., 2022), have designed specific architectures for
BPTT learning in SNNs. In the future, the integration of learning
rules will become increasingly important for exploring large and
complex neuromorphic models in brain-inspired computing (BIC)
chips.

Another important type of BIC architecture is the compute-in-
memory architecture, where in-core processing units and on-chip
storage are physically integrated, performing synaptic integration
matrix operations in synaptic memory. Compute-in-memory chips
can be divided into two categories based on the materials:
traditional or emerging memories. Traditional memories (such
as SRAM, DRAM, and Flash) can be redesigned to support
specific logical operations (Wu et al., 2020). Their advantages
include a mature ecosystem, easy simulation, and manufacturing.
Emerging memories mainly refer to storage devices based on
memristors. Synaptic weight storage, multiplication calculations,
and presynaptic inputs are performed at the same crosspoint in
the memristor, integrating computation and storage. Zhang et al.
(2021) designed a hybrid spiking neuron combining a memristor
with simple digital circuits to enhance neuron functions. Further,
they demonstrated a full hardware spiking neural network with
the hybrid neurons and memristive synapses for the first time,
and achieved in-situ Hebbian learning. Brain-inspired computing
hardware based on memristors involves multiple levels of material
and architectural designs, which is currently still in a small-scale
phase due to manufacturing process limitations.

Multiple types of brain-like chips have shown remarkable
developments, demonstrating significant advantages in terms of
biological simulation and low-power inference. However, they
still face numerous challenges in practical applications. When it
comes to handling high-level intelligence tasks, the superiority of
brain-like chips compared to GPUs and ANN accelerators has not
been fully established. Currently, to optimize their performance,
some designs draw inspiration from ANN accelerators for
improvements. It’s worth noting that current brain-like chips do
not yet support the training of large-scale SNNs and require
special architectural designs to accommodate the training process
for SNNs. To further support large-scale SNNs, it is necessary to
enhance brain-like systems from both a software and hardware
perspective in a more collaborative manner.

5.3 Software and hardware interplay

The deployment of algorithms for SNNs onto neuromorphic
chips typically requires certain software frameworks. The
computational software frameworks mentioned in Section 5.1
usually support simulations on mainstream CPUs and GPUs,
without clear mention of deployment on neuromorphic chips.
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TABLE 4 Overview of typical neuromorphic hardware.

Chip Developer Network Function Arch Scale

Hybrid digital-analog

BrainScaleS (Schemmel et al., 2010) Heidelberg Uni SNNs Training NMA Large

Neurogrid (Benjamin et al., 2014) Stanford SNNs Inference NMA Large

ROLLS (Qiao et al., 2015) UZH SNNs Training NMA Small

DYNAPs (Moradi et al., 2017) UZH SNNs Inference NMA Small

Memristor-based (Zhang et al., 2021) – ANNs/SNNs Inference CIM Small

BrainScaleS-2 (Pehle et al., 2022) Heidelberg Uni ANNs/SNNs Training NMA Large

Digital

SpiNNaker (Painkras et al., 2013) UoM SNNs Training NMA Large

SpiNNaker 2 UoM ANNs/SNNs Training NMA Large

TrueNorth (Akopyan et al., 2015) IBM SNNs Inference NMA Large

Darwin (Shen et al., 2016) ZJU SNNs Inference NMA Small

Darwin II (Ma et al., 2017) ZJU SNNs Training NMA Large

Darwin III (Ma et al., 2024) ZJU SNNs Training NMA Large

DeepSouth (Wang et al., 2017) Westwell SNNs Inference NMA Large

Intel SNN chip (Chen et al., 2018) Intel SNNs Training NMA Large

ODIN (Frenkel et al., 2018) K.U.Leuven SNNs Training NMA Small

Loihi (Davies et al., 2018) Intel SNNs Training NMA Large

Tianjic (Pei et al., 2019) Tsinghua ANNs/SNNs Training NMA Large

MorphIC (Frenkel et al., 2019) UZH SNNs Training NMA Small

Flash-based (Wu et al., 2020) – ANNs/SNNs Inference CIM Small

Loihi II (Davies, 2021) Intel SNNs Training NMA Large

Y. Kuang et al. (Kuang et al., 2021) PKU ANNs/SNNs Inference NMA Large

H2Learn (Liang et al., 2021) UCSB SNNs Training SNN TA Large

SATA (Yin et al., 2022) Yale SNNs Training SNN TA Small

SNN TA, SNN training accelerator; Arch, architecture.

Meanwhile, among the previously mentioned neuromorphic
chips in Section 5.2, only about 27% of them are connected to
application software packages (Schuman et al., 2022). Typically,
these application software packages contain model construction
tools, simulators, and optimization tools. Model construction tools
are used to define the structure and parameters of neural networks,
including neuron types, connection patterns. Simulators are
applied to simulate and debug neural network models on the chip.
Optimization tools are adopted to train the network parameters
and optimize its performance. Here are some typical examples.
The Neurogrid chip is paired with the Neurogrid Software
Framework (Benjamin et al., 2014), allowing users to specify
neuronal models in the Python programming environment. The
software framework for the BrainScaleS chip is the BrainScaleS-
Software-Stack (Pehle et al., 2022), which supports training neural
networks on the chip using the PyTorch framework. The IBM
TrueNorth chip typically utilizes a software framework called
the TrueNorth Ecosystem, which is developed by the TrueNorth
native Corelet language (Akopyan et al., 2015). IBM NorthPole
(Modha et al., 2023) is a brain-inspired memory-near-compute

chip with a software development kit, but this chip does not
emulate spiking communication. Tianjic’s software toolchain
supports both ANN-to-SNN conversion and direct training for
SNNs, and supports automatically transforming a pretrained
model into an equivalent network that meets the Tianjic hardware
constraints for non-spiking ANNs (Pei et al., 2019). The latest
Darwin3 builds a specialized instruction set architecture (ISA) (Ma
et al., 2024), which is close to machine code tailored for efficient
neuromorphic computing. These software frameworks enable
users to conveniently construct, simulate, and optimize neural
network models on neuromorphic chips, facilitating efficient
research and application development.

6 Applications of deep spiking neural
networks

SNNs offer powerful computation capability due to their event-
driven nature and temporal processing property. Theoretically,
SNNs could be applied to any field where conventional deep
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neural networks (DNNs) are applied. As the training methods
and programming frameworks of deep SNNs become more
powerful, deep SNNs are increasingly drawing more attention and
being applied to more fields, mainly including computer vision,
reinforcement learning and autonomous robotics, biological visual
system modeling, biological signal processing, natural language
processing, equipment safety monitoring, and so on. It should be
noted that this paper only lists some typical examples in recent
years for some common application fields, not aiming to fully
review all related studies.

6.1 Applications in computer vision

As traditional DNNs, the most common applications of SNNs
lay in computer vision tasks. There are mainly two types of visual
inputs for SNNs, i.e., RGB frames from traditional cameras or
events from neuromorphic vision sensors. Neuromorphic vision
sensors display great potential for computer vision tasks under
high-speed and low-light conditions (Li and Tian, 2021). SNNs are
excellent candidates for processing neuromorphic signals due to
their event-driven nature and energy-efficient computing.

Recognition task plays an important role in the rapid progress
of deep SNNs. SNNs are usually tested on both static datasets such
as CIFAR10, CIFAR100, ImageNet, and neuromorphic datasets
such as CIFAR10-DVS and DVS128-Gesture. Table 2 lists the
performances of some recently proposed architectures. Besides
common recognition tasks, deep SNNs are increasingly applied to
more computer vision tasks, including object detection/tracking,
image denoising/generation, image/video reconstruction, video
action recognition, image segmentation, and so on.

6.1.1 Object detection and object tracking
The first spike-based object detection model Spiking-YOLO

was obtained through the ANN-to-SNN conversion method,
achieving comparable performances to tiny-YOLO on PASCAL
VOC and MS-COCO dataset with 3,500 time steps (Kim et al.,
2020). Later, a spike calibration (SpiCalib) method was proposed
to reduce the time steps to hundreds (Li et al., 2022). Kugele
et al. (2021) and Cordone et al. (2022) combined some spiking
backbones with an SSD detection head for event cameras. Su et al.
(2023) proposed EMS-YOLO, the first directly trained deep SNNs
for object detection, achieving comparable performance to the
ANN counterpart while consuming less energy on both the frame-
based MS-COCO dataset and the event-based Gen1 dataset in only
four time steps.

Considering that the Siamese networks have achieved
remarkable performances in object tracking, SiamSNN was
constructed by conversion to achieve short latency and low
precision degradation on several benchmarks (Luo et al., 2022).
Similarly, the directly trained Spiking SiamFC++ showed a small
precision loss compared to the original SiamFC++ (Xiang et al.,
2022). A spiking transformer network called STNet was developed
for event-based single-object tracking, demonstrating competitive
tracking accuracy and speed on three event-based datasets (Zhang
et al., 2022a). To process frames and events simultaneously,

Yang et al. (2019) proposed DashNet, achieving good tracking
performance with a surprising tracking speed of 2,083 FPS on
neuromorphic chips.

6.1.2 Image generation/denoising and
image/video reconstruction

Generation tasks are increasingly explored in SNNs. Comşa
et al. (2021) introduced a directly trained spiking autoencoder
to reconstruct images with high fidelity on MNIST and FMNIST
datasets. Kamata et al. (2022) constructed a fully spiking variational
autoencoder (FSVAE), generating images with competitive quality
compared to conventional ANNs. Liu et al. (2023) proposed a
Spiking-Diffusion model, outperforming the existing SNN-based
generation models on several datasets. Castagnetti et al. (2023)
developed an image denoising solution based on a directly trained
spiking autoencoder, achieving a competitive signal-to-noise ratio
on the Set12 dataset with significantly lower energy.

Visual information reconstruction is important for
neuromorphic vision sensors, because humans cannot directly
perceive visual scenes from events. Zhu and Tian (2023) provided
a comprehensive review of visual reconstruction methods for
events. Duwek et al. (2021) proposed a hybrid ANN-SNN model,
accomplishing image reconstruction for simple scenes from N-
MNIST and N-Caltech101 datasets. Zhu L. et al. (2021) proposed
an image reconstruction algorithm that combines DVS and Vidar
signals, leveraging the high dynamic range of DVS to improve
reconstruction effectiveness. Subsequently, they developed a
deep SNN with an encoder-decoder structure for event-based
video reconstruction, achieving performance comparable to ANN
counterparts with only 0.05x energy consumption (Zhu L. et al.,
2022).

6.1.3 Others
Besides the above-mentioned tasks, deep SNNs are also applied

in some other computer vision tasks, including video action
recognition (Panda and Srinivasa, 2018; Wang et al., 2019; Zhang
et al., 2022c; Chakraborty and Mukhopadhyay, 2023; Yu et al.,
2024), image segmentation (Parameshwara et al., 2021; Kim et al.,
2022; Liang et al., 2022; Zhang H. et al., 2023), optical flow
estimation (Lee et al., 2020a; Cuadrado et al., 2023; Kosta and Roy,
2023), depth prediction (Rançon et al., 2022; Wu et al., 2022; Zhang
et al., 2022b), point clouds processing (Zhou et al., 2020; Ren D.
et al., 2023), human pose tracking (Zou et al., 2023), lip-reading
(Bulzomi et al., 2023), emotion/expression recognition (Wang B.
et al., 2022; Barchid et al., 2023), medical image classification (Shan
et al., 2022; Qasim Gilani et al., 2023), and so on.

6.2 Applications in other fields

Besides computer vision tasks, SNNs are showing gradually
expanding application prospects in many fields, including
reinforcement learning and autonomous robotics, biological visual
system modeling, biological signal processing, natural language
processing, equipment safety monitoring, and so on.
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6.2.1 Reinforcement learning and autonomous
robotics

As reinforcement learning (RL) is critical for the survival of
humans and animals, there is increasing interest in applying brain-
inspired SNNs to reinforcement learning. Asgari et al. (2020)
implemented an SNN with RL capability on hardware to learn
stimulus-response associations, performing well in controlling a
robot through a closed sensory-motor loop. Chen et al. (2022)
constructed the deep spiking Q-network (DSQN) to directly learn
robust policies fromhigh-dimensional sensory inputs using end-to-
end deep RL, which was tested on 17 Atari games, outperforming
the ANN-based deep Q-network (DQN) in most games. To reduce
the latency of spiking RL, Qin et al. (2023) applied learnable matrix
multiplication to encode and decode spikes.

Due to the good biological plausibility and high energy
efficiency, SNNs have been applied to autonomous robotics for a
long time, which is still a flourishing research direction, mainly
including pattern generation (walk, trot, or run), motor control,
and navigation (simultaneous localization and mapping, SLAM).
Yamazaki et al. (2022) have already provided a good review of
relevant studies, we do not go into more detail about this topic in
this review which mainly focuses on deep SNNs.

6.2.2 Biological visual system modeling and
biological signal processing

ANNs play important roles in modeling biological visual
pathways. However, SNNs are more biologically plausible models
due to the use of temporal spike sequences. Therefore, several
studies adopted SNNs to model the biological visual cortex. Huang
et al. (2023a) applied deep SNNs to model the visual cortex for the
first time, of which the similarity scores are higher than their ANN
counterparts, showing SNNs’ effectiveness. Further, they added a
brain-inspired recurrent module into deep SNNs, outperforming
the forward deep SNNs under natural movie stimuli (Huang
et al., 2023b). Zhang J. et al. (2023) compared performances of
deep SNNs and CNNs in the prediction of visual responses to
naturalistic stimuli in three brain areas. Ma et al. (2023) presented
a temporal conditioning spiking latent variable model to produce
more realistic spike activities.

Due to the intrinsic dynamics, SNNs are also applied to process
biological signals. Xiong et al. (2021) proposed a convolutional
SNN for odor recognition of electronic noses. Feng Y. et al. (2022)
applied the conversion method to obtain a 14-layer SNNmodel for
ECG (electrocardiogram) classification. Li X. et al. (2023) reviewed
recent studies applying SNNs on signal classification and disease
diagnosis based on biological signals including EEG, ECG, EMG,
and so on.

6.2.3 Others
SNNs were also applied to natural language processing,

equipment safety monitoring, semantic communication, multi-
modal information processing, and so on. To ease the heavy energy
cost of ANN-based large language models, some studies applied
SNN-based architectures, including SpikBERT (Lv et al., 2023),
SpikingBERT (Bal and Sengupta, 2024), SpikeGPT (Zhu et al.,
2023), and SpikeLM (Xing et al., 2024). Applications regarding

equipment safety monitoring mainly include battery health
monitoring (Wang et al., 2023a,b), autonomous vehicle sensors
fault diagnosis (Wang and Li, 2023), and bearing fault diagnosis
(Xu et al., 2022). Applications in semantic communication
mainly tried to mitigate the limitation of transmission bandwidth
(Wang M. et al., 2023). Applications in multi-modal information
processing currently show up in audio-visual zero-shot learning
tasks (Li et al., 2023a,b).

6.3 Discussion on SNN applications

Deep SNNs have achieved great success in many fields in
recent years, but there still exist some limits that need to be
addressed. Firstly, although many studies demonstrated that deep
SNNs achieved comparable accuracy to their ANN counterparts
on many tasks, they still lag behind conventional ANN SOTA,
especially for large datasets like ImageNet, which asks for more
endeavors. Secondly, many studies claimed that the proposed
SNNs consumedmuch less energy compared to ANN counterparts,
through calculating the number of addition operations, without
considering the cost of other operations like data movement.
Therefore, it is meaningful to deploy well-performed SNNs on
neuromorphic chips or corresponding simulators to fully exploit
the event-driven nature and measure the actual energy cost.
Thirdly, as for applications requiring high processing speed and
low power consumption, like robotics, it is promising to adopt
neuromorphic vision/audio sensors and neuromorphic processing
chips due to their event-driven nature, besides network pruning
and weight quantization. Meanwhile, to fully exploit the advantages
of events, it deserves more efforts to explore how to directly process
neuromorphic sensing events using SNNs, without converting
events into frames as current studies usually do. Fourthly, as for
transformer-based SNNs used in language or video processing,
how to choose the input clip for one simulation step, to
reconcile the temporal resolution of the input sequence and
the simulation step of SNNs, is worth studying. Last but not
least, as SNNs have an additional temporal dimension, how to
achieve the speed-accuracy trade-off as humans is a problem worth
of study. In other words, how to assign a suitable simulation
duration or how to decide when to make a choice, are important
questions to realize the balance between computation cost and
prediction accuracy.

7 Future trends and conclusions

This article provides an overview of the current developments
in various theories and methods of deep SNNs, including relevant
fundamentals, various spiking neuron models, advanced models,
and architectures, booming software tools and hardware platforms,
as well as applications in various fields. However, there are still
many limitations and challenges.

(1) Currently, only a few aspects of the intelligent brains
have been applied to instruct the construction and training
of SNNs, lacking enough biological plausibility. Therefore, to
improve SNNs’ capability, it is necessary to introduce more types

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2024.1383844
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhou et al. 10.3389/fnins.2024.1383844

of spiking neurons, rich connection structures, multiscale local-
global-cooperative learning rules, system homeostasis, etc., into
SNNs to more accurately mimic the cognitive and intelligent
characteristics emerging in the brains. For example, it deserves
more efforts to train SNNs with self-supervised or unsupervised
learning (Zhou Z. et al., 2024), as children mainly receive unlabeled
data during growth. Besides, the brain is actually a complex
network, thus it is worthy of more effort to study graph SNNs,
although some attempts already exist (Li et al., 2024; Yin et al.,
2024).

(2) Recent neuroscience studies have found that astrocytes can
naturally realize Transformer operations (Kozachkov et al., 2023),
which provides a new direction for the improvement of SNNs.
In addition, astrocytes have the function of regulating neuronal
firing activity and synaptic pruning (Lee et al., 2021; Liu et al.,
2022), which provides ideas for the performance improvement and
lightweight of SNNs in the future.

(3) Information encoding methods and training algorithms for
SNNs are mostly based on average firing rates, lacking the ability
to represent temporal dynamics adequately. There should be more
exploration of time-dependent information encoding strategies
and corresponding training algorithms, to further enhance the
spatiotemporal dynamic characteristics of SNNs and strengthen
their temporal processing capability.

(4) The training of SNNs mainly employs time-dependent
methods, like BPTT, which greatly increases the training cost,
compared to conventional DNNs. Thus, there is a need to develop
brain-like SNNs that can be trained in parallel, and dedicated
software and hardware that support their computation, reducing
training time and power consumption.

(5) As there are obstacles to conversion and interaction
between different neuromorphic platforms, it is needed to establish
a common standard to improve interoperability. Further, more
brain-inspired principles or technologies should be incorporated
into the design of neuromorphic systems, to enhance the
computational performance of the chips, in terms of processing
speed and energy efficiency.

(6) Large-scale SNNs are mainly applied to classification
tasks. Their potential in handling tasks that need to process
continuous input streams, such as videos, languages, events from
neuromorphic vision sensors, etc., has not been fully explored.
Moreover, the introduction of various neuromorphic sensors and
neuromorphic chips into autonomous robotics, cooperating with
conventional sensors and processing chips, might be an efficient
and effective way to achieve embodied intelligence. Further studies
are needed to fully leverage the features and advantages of SNNs.

In summary, studies and applications of SNNs are growing
rapidly, but there is still great potential to improve the effectiveness
and efficiency of SNNs. Efforts should be made in multiple
directions, including model architectures, training algorithms,
software frameworks, and hardware platforms, to promote the
coordinated progress of models, software, and hardware.

Author contributions

CZ: Writing – original draft, Writing – review & editing.
HZha: Writing – original draft, Writing – review & editing. LY:
Writing – original draft, Writing – review & editing. YY: Writing –
original draft, Writing – review & editing. ZZ: Writing – review &
editing. LH: Writing – review & editing. ZM: Funding acquisition,
Project administration, Resources, Supervision,Writing – review &
editing. XF: Writing – review & editing, Resources. HZho: Writing
– review & editing, Resources. YT: Writing – review & editing,
Resources.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. The study
was funded by the National Natural Science Foundation of China
under contracts Nos. 62206141, 62236009, 62332002, 62027804,
and 61825101, and the major key project of the Peng Cheng
Laboratory (PCL2021A13). Computing support was provided by
Pengcheng Cloudbrain.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al.
(2016). “Tensorflow: a system for large-scale machine learning,” in Symposium
on Operating Systems Design and Implementation (OSDI) (Savannah, GA),
265–283.

Adrian, E. D., and Zotterman, Y. (1926). The impulses produced by sensory
nerve endings: Part 3. Impulses set up by touch and pressure. J. Physiol. 61:465.
doi: 10.1113/jphysiol.1926.sp002273

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P., et al.
(2015). Truenorth: design and tool flow of a 65 mW 1 million neuron programmable

neurosynaptic chip. IEEE Transact. Comp. Aided Des. Integr. Circ. Syst. 34, 1537–1557.
doi: 10.1109/TCAD.2015.2474396

Asgari, H., Maybodi, B. M.-N., Kreiser, R., and Sandamirskaya, Y. (2020). Digital
multiplier-less spiking neural network architecture of reinforcement learning in
a context-dependent task. IEEE J. Emerg. Select. Top. Circ. Syst. 10, 498–511.
doi: 10.1109/JETCAS.2020.3031040

Bal, M., and Sengupta, A. (2024). pikingbert: distilling bert to train spiking language
models using implicit differentiation. Proc. AAAI Conf. Artif. Intell. 38, 10998–11006.
doi: 10.1609/aaai.v38i10.28975

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2024.1383844
https://doi.org/10.1113/jphysiol.1926.sp002273
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/JETCAS.2020.3031040
https://doi.org/10.1609/aaai.v38i10.28975
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhou et al. 10.3389/fnins.2024.1383844

Barchid, S., Allaert, B., Aissaoui, A., Mennesson, J., and Djeraba, C. C. (2023).
“Spiking-fer: spiking neural network for facial expression recognition with event
cameras,” in International Conference on Content-based Multimedia Indexing (CBMI)
(Orleans), 1–7.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R. A., andMaass, W. (2018). “Long
short-termmemory and learning-to-learn in networks of spiking neurons,” inNIPS’18:
Proceedings of the 32nd International Conference on Neural Information Processing
Systems, Vol. 31 (Montreal, QC).

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., et al.
(2020). A solution to the learning dilemma for recurrent networks of spiking neurons.
Nat. Commun. 11:3625. doi: 10.1038/s41467-020-17236-y

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran,
A. R., Bussat, J.-M., et al. (2014). Neurogrid: a mixed-analog-digital
multichip system for large-scale neural simulations. Proc. IEEE 102, 699–716.
doi: 10.1109/JPROC.2014.2313565

Bi, G.-Q., and Poo, M.-M. (1998). Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J.
Neurosci. 18, 10464–10472. doi: 10.1523/JNEUROSCI.18-24-10464.1998

Bird, G. M., and Polivoda, M. E. (2021). Backpropagation through time for
networks with long-term dependencies. arXiv [Preprint]. doi: 10.48550/arXiv.2103.
15589

Bohnstingl, T., Šurina, A., Fabre, M., Demirağ, Y., Frenkel, C., Payvand, M., et
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