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Introduction: Functional magnetic resonance imaging (fMRI) has become a

fundamental tool for studying brain function. However, the presence of serial

correlations in fMRI data complicates data analysis, violates the statistical

assumptions of analyses methods, and can lead to incorrect conclusions in fMRI

studies.

Methods: In this paper, we show that conventional whitening procedures

designed for data with longer repetition times (TRs) (>2 s) are inadequate for

the increasing use of short-TR fMRI data. Furthermore, we comprehensively

investigate the shortcomings of existing whitening methods and introduce

an iterative whitening approach named “IDAR” (Iterative Data-adaptive

Autoregressive model) to address these shortcomings. IDAR employs high-order

autoregressive (AR) models with flexible and data-driven orders, o�ering the

capability to model complex serial correlation structures in both short-TR and

long-TR fMRI datasets.

Results: Conventional whiteningmethods, such as AR(1), ARMA(1,1), and higher-

order AR, were e�ective in reducing serial correlation in long-TR data but

were largely ine�ective in even reducing serial correlation in short-TR data. In

contrast, IDAR significantly outperformed conventional methods in addressing

serial correlation, power, and Type-I error for both long-TR and especially short-

TR data. However, IDAR could not simultaneously address residual correlations

and inflated Type-I error e�ectively.

Discussion: This study highlights the urgent need to address the problem of

serial correlation in short-TR (<1 s) fMRI data, which are increasingly used in

the field. Although IDAR can address this issue for a wide range of applications

and datasets, the complexity of short-TR data necessitates continued exploration

and innovative approaches. These e�orts are essential to simultaneously reduce

serial correlations and control Type-I error rateswithout compromising analytical

power.

KEYWORDS

serial correlation, pre-whitening, autoregressive model, short-TR fMRI, resting-state

fMRI, task fMRI, type-I error, temporal resolution

1 Introduction

Most fMRI studies utilize the blood-oxygenation-level-dependent (BOLD) signal,

which reflects the convolution of neuronal activity and cerebral hemodynamic response

function (HRF) that persists for several seconds. This gives rise to temporally correlated

data points within the obtained time-series data. In addition, physiological noise such as

respiration and heart rate may also contribute to the serial correlations in observed fMRI
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signals. The existence of serial correlation among consecutive time

points poses inherent challenges in the analysis of fMRI data.

For example, the usual standard error of the sample correlation

coefficient between two time series is biased, which could lead

to incorrect conclusions in linear regression analysis (Woolrich

et al., 2001; Afyouni et al., 2019). These challenges are particularly

pertinent when using a generalized linear regression model, the

most common method for analyzing fMRI data, to explore the

relationship between fMRI observations and task regressors in

task-fMRI studies. Eklund et al. (2016) have substantiated the

considerable role of poorly modeled temporal autocorrelation

in the surge of type-I errors. Additionally, existing models that

describe brain functional connectivity networks (second-order

structure), such as graphical models (Belilovsky et al., 2016;

Monti et al., 2017) and generalized autoregressive conditional

heteroscedastic (GARCH) time series models (Lindquist et al.,

2014; Riccelli et al., 2017; Lee and Kim, 2021), are built upon

the assumption of independence among time points, implying

the absence of any serial correlations within the observations. In

addition, serial correlations can lead to biased estimations and

distort the computation of variances (Arbabshirani et al., 2014).

To address this issue, whitening procedures are often employed

to remove serial correlations in fMRI data. Whitening often

involves estimating the serial correlations from the data and using

the inverse correlation matrix to de-correlate the observations.

There have been extensive discussions regarding the appropriate

approaches for whitening (Woolrich et al., 2001; Lenoski et al.,

2008; Bright et al., 2017; Corbin et al., 2018; Olszowy et al.,

2019; Luo et al., 2020). Among model-based approaches, the

autoregressive model (AR) and autoregressive moving average

(ARMA) model with fixed order has been a standard practice

for whitening time series observations in popular fMRI software

packages. Examples include Analysis of Functional NeuroImaging

(AFNI) (Cox, 1996) using a voxel-specific ARMA(1,1)model (Chen

et al., 2012), and Statistical Parametric Mapping (SPM) (Penny

et al., 2011) as well as FMRIB Software Library (FSL) (Jenkinson

et al., 2012) using a global AR(1) model (Friston et al., 2002).

However, most of these traditional approaches were developed

for fMRI data acquired with longer repetition times (TRs) of ∼2
s. Recent advancements in imaging technology, however, have

enabled the acquisition of fMRI measurements with much shorter

TRs (≤ 0.5 s), resulting in higher levels of serial correlations

with slower decay rates per time-point. Traditional whitening

procedures often misrepresent serial correlation for short-TR

observations, primarily due to the utilization of low model order,

such as AR(1) or AR(1,1), as well as the assumption of uniform

AR coefficients across the brain (Sahib et al., 2016; Bollmann et al.,

2018; Luo et al., 2020). As a result, there is a pressing need for

better modeling approaches that account for temporal correlations

in fMRI time series, especially given the increasing adoption of

short-TR fMRI data as the standard in the field. Recent studies

suggest that using higher-order AR models with spatially-varying

coefficients can effectively whiten the time series, evenwhen dealing

with sub-second TRs (Sahib et al., 2016; Bollmann et al., 2018;

Luo et al., 2020). Sahib et al. (2016) explored the effect of high-

order AR models (up to an order of 20) on increasing the T-values

in task-fMRI studies using FMRISTAT (Worsley et al., 2002). Luo

et al. (2020) proposed data-adaptive high-order AR(p) model with

order p selected based on Akaike information criterion (AICc).

However, as we will demonstrate in this study, these methods may

still remain insufficient to remove the serial correlations in short-

TR datasets. Specifically, over 88% of the nodes have significant

remaining serial correlations after whitening with a high-order

AR model (Section 3). This poses big challenges for subsequent

analysis employing models like graphical models and GARCH

models, which rely on the assumption of independent observations.

Furthermore, as will be illustrated in Section 3, different whitening

approaches can yield significant variations in resulting signals,

subsequently influencing downstream analyses and conclusions.

This underscores the pressing concern of replicability within fMRI

research. Therefore, it is crucial to develop universally adaptable

whitening approaches that are capable of accommodating diverse

fMRI dataset characteristics.

To address the limitations of current whitening procedures,

we improve the currently available high-order AR model-based

whitening models, and propose an iterative whitening procedure,

named IDAR (for Iterative Data-adaptive AR). IDAR is built on

high-order AR models, and is featured with its iterative nature and

a more flexible and data-adaptive order. While the single iteration

version of IDAR (referred to as IDAR-iter1 in the rest of the paper,

where we set max.iteration to 1) essentially covers the high-order

AR models proposed in Luo et al. (2020) and Sahib et al. (2016),

the iterative nature of IDAR enables it to more effectively model

the complicated serial correlation structure in short-TR fMRI,

which is often not adequately captured by a single AR model.

Specifically, in the empirical studies, while IDAR-iter1 leaves 88%

of the nodes with remaining serial correlations, IDAR successfully

reduces the percentage to <1% (Section 3). The proposed IDAR

approach is applicable to both short-TR and long-TR fMRI

datasets. In addition to assessing the residual serial correlations

post-whitening, we also explore the impact of whitening on type-

I errors in simulated task-based fMRI using obtained resting-

state fMRI data. We conduct a comparison of IDAR against

the most widely-used prewhitening methods currently available,

including the AR(1) model (as implemented in FSL and SPM),

the AR(1,1) model (utilized by AFNI), and high-order AR models

(represented by IDAR-iter1), using short-TR and long-TR datasets.

Remarkably, prior studies have not simultaneously addressed both

key facets of whitening procedure performance: the removal of

serial correlation in resting-state fMRI analyses and the control

of type-I errors in task-based fMRI experiments, making our

investigation comprehensive in nature.

Our proposed IDAR offers users the flexibility to focus either on

eliminating serial correlations or reducing type-I errors, tailored to

the temporal resolution of their data and specific analytical needs.

This adaptability empowers users to tailor their preprocessing to

align with their particular objectives, effectively addressing the

challenges associated with short-TR fMRI data.

2 Method

Figure 1 provides a summary of the sequential analysis steps

employed in this study. Initially, the collected resting-state fMRI

data undergoes standard preprocessing. To manage the processing

load of our analyses more efficiently, we focus on the default
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FIGURE 1

Flowchart of the structure for this study.

mode network (DMN), which is distributed throughout the brain

and offers a representative view of the spatial variations of

serial correlation across the brain. We use group independent

component analysis (ICA) to obtain brain masks for the eight

nodes in DMN, based on which we obtain time series observations

for each of the DMN brain nodes. Subsequently, we apply the

proposed IDAR model to the node-wise time series observations

for whitening. To assess the efficacy of the whitening algorithm,

we evaluate it from two perspectives: (1) the extent of residual

serial correlations after whitening, which is crucial for enabling

subsequent analysis assuming independent observations, and (2)

the impact of whitening on power and type-I error within the

context of simulated task-fMRI using resting-state fMRI data.

2.1 Data

We employed two data sets, one with long TR at 2.5 s and

the other with short TR at 0.49 s. This study was approved by

the Internal Review Board (IRB) of Stanford University (short-

TR data) and the University of Washington (long-TR data) and

was Health Insurance Portability and Accountability Act (HIPAA)

compliant. This study adhered to the highest ethical standards

and was conducted in compliance with the principles outlined

in the Declaration of Helsinki. Informed consent was obtained

from all participants after a comprehensive explanation of the

study’s purpose, procedures, potential risks, and benefits. The

confidentiality and privacy of participants are strictly maintained

throughout the research process. Internal review boards approved

the consent procedure.

2.1.1 Long TR dataset
The long TR dataset consisted of n = 87 subjects. We

conducted all MRI data acquisitions on a research-dedicated 3T

Philips Achieva scanner equipped with a 32-channel receiver coil.

During the scanning session, participants were instructed to lie in

the scanner with their eyes open while wearing a Pearl-Tec R© Crania

to minimize head motion.

For registration and volumetric measurements, 3D T1 data

were acquired from all participants using a conventional MPRAGE

sequence with the following parameters: spatial resolution = 1 ×
1 × 1mm3, 150 slices, flip angle = 8◦, TR/TE = 8.8/4.6 ms, SENSE

acceleration factor = 2, and matrix size = 256× 256× 176.

Resting-state functional data were collected using axial whole-

brain multi-echo T2-weighted acquisition with a scan duration of

10 min, using 3.5 mm isotropic voxels and TR/TEs = 2,500/9.5,

27.5, 45.5 ms. To ensure data quality, we performed motion

correction using FSL’s MCFLIRT and removed non-brain matter

with the FSL Brain Extraction Tool (Jenkinson et al., 2012).

Subsequently, we processed the multi-echo BOLD data using

AFNI’s specialized module TEDANA, designed for multi-echo

planar imaging and analysis with independent component analysis

(ME-ICA). TEDANA allows for the differentiation between BOLD

(neuronal) and non-BOLD (artifact) components by leveraging

the characteristic linear echo-time dependence of BOLD T2

signals (Kundu et al., 2012). This approach produced recombined

images optimally weighted across the three echo times, along

with ME-ICA-denoised time series. Following this, the data were

co-registered to T1 images and normalized to the Montreal

Neurological Institute template (MNI152 standard space) using

FSL. We applied high-pass temporal filtering and regressed out

the global signal and movement parameters estimated using FSL

across six dimensions (lateral, vertical, and horizontal translation,

and yaw, pitch, and roll rotation) to further enhance data quality.

2.1.2 Short TR dataset
Data were collected from a cohort of 99 subjects using a 3T GE

Discovery MR750 scanner equipped with a 32-channel head coil
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(NOVA Medical). Resting-state fMRI data were acquired utilizing

a Simultaneous Multi Slice (SMS) EPI with blipped controlled

aliasing in parallel imaging (CAIPI) sequence (Setsompop et al.,

2012). The imaging parameters were set as follows: TR/TE =

490/30 ms, multiband acceleration factor of 5, CAIPI shift of

FOV/3, field of view (FOV) = 24 × 24 cm2, voxel size = 3.14

× 3.14 × 4mm, and scan duration of 10 min (Jahanian et al.,

2019). Prior to the functional scans, a high-order shimming

procedure was implemented to reduce B0 inhomogeneity (Kim

et al., 2002). The SMS EPI images were reconstructed using the

SENSE/GRAPPA combination method (Blaimer et al., 2006). K-

space calibration data were designed to correspond to a one-

dimensional undersampling along the phase encoding direction,

with an empirically set interpolation kernel of 7 × 4 (readout ×
phase encoding) acquired points for each missing point.

A high-resolution 3D T1-weighted image was acquired before

the resting-state fMRI scans for spatial normalization and

anatomical reference, utilizing an IR-SPGR sequence with the

following parameters: TR/TE/TI = 8.18/3.2/900 ms, matrix = 256×
256, in-plane resolution = 0.94× 0.94 mm, and slice thickness/slice

spacing = 1/0 mm, covering 176 sagittal slices.

The acquired resting-state fMRI images underwent

preprocessing and analysis using various tools from FSL,

AFNI, and custom MATLAB code. After discarding the first

six volumes to ensure magnetic stabilization, the images were

motion-corrected using least square minimization and normalized

to the MNI152 standard space using the subject’s high-resolution

T1-weighted image with an affine linear registration technique

involving 12 degrees of freedom (Jenkinson et al., 2002). To remove

low-frequency signal drifts (<0.01 Hz) from the data, a high-pass

filter was applied. Additionally, two band-stop temporal filters

targeting respiratory ([0.25–0.35] Hz) and cardiac ([0.8–1.02] Hz)

frequency bands were applied using 5th order Butterworth IIR

filters (Jahanian et al., 2019). Various sources of variance including

movement (Lund et al., 2005), cerebrospinal fluid, white matter

(Dagli et al., 1999; Weissenbacher et al., 2009), and global signal

(Desjardins et al., 2001; Greicius et al., 2003) were removed using

multiple linear regression. Variance associated with movement

parameters was estimated using FSL across six dimensions (lateral,

vertical, and horizontal translation, and yaw, pitch, and roll

rotation). Cerebrospinal fluid and white matter confounds were

calculated from a 3 mm spherical ROI placed in the ventricles and

the white matter, respectively.

2.2 Whitening algorithm

The proposed IDAR for whitening fMRI observations is an

iterative and data-driven whitening model based on high-order AR

models. The basic concept involves estimating serial correlations

through AR models, with the selection of AR orders guided by

the corrected Akaike Information Criterion (AICc) (Hurvich and

Tsai, 1989). The iterative procedure is motivated by the fact that

persistent residual serial correlations are frequently observed when

attempting to de-correlate the data using a single AR model,

even when a high-order AR model is used. This phenomenon is

particularly evident when processing datasets with short TRs. This

Set Y(0) = Y(t), i = 0;

while i < max.iteration do

Step 1: Fit the following models to the time

series Y(i):

(1.1) Standard AR(p) models, with lag

p = 0, . . . , pmax.

(1.2) Consider regularized AR(p) models:

For l = 1, . . . , pmax, we compute ρ
(i)
l
, which is the

l-th lag serial correlation of Y(i). If for all

l = 1, . . . , pmax, we have
∣

∣

∣
ρ
(i)
l

∣

∣

∣
≤ z0.975

√
1/T, where z0.975

is the 97.5% quantile of the standard normal

distribution, then we do not fit additional

regularized AR models. Otherwise, suppose

for l ∈ S(i) we have
∣

∣

∣
ρ
(i)
l

∣

∣

∣
≤ z0.975

√
1/T, we fit the

following two models:

(1.2.1) Regularized AR(pmax) with the l-th lag AR

coefficient set to zero, for l ∈ S(i).

(1.2.2) Regularized AR(pmax) with the l-th lag

AR coefficient set to zero, for l ∈ {w ∈ S(i) :w ≤
0.75pmax}.
Step 2: Compute the AICc of all the models

fitted in Step 1, including standard AR models

and regularized AR models, if applicable.

Select the model with the smallest AICc value.

Step 3: Based on the selected model, compute

the theoretical autocorrelation function γ (i)(h),

h = 0, . . . ,T − 1. The estimated correlation matrix

at the i-th iteration is 6̂(i): 6̂
(i)
j,k
= γ (i)

(

|j− k|
)

.

Step 4: De-correlate at the i-th iteration:

Y(i+1) = (6̂(i))−1/2Y(i).

if The selected model is AR(0): then

BREAK

else

i ← i +1
end if

end while

Algorithm 1. Algorithm for whitening based on IDAR.

observation suggests that the serial correlation structure may not

be adequately explained by a single AR model. We thus adopt an

iterative approach that estimates any remaining serial correlations

of the whitened observations from the preceding iteration. The

whitening procedure is described in Algorithm 1 for a univariate

time series Y(t) with T total observations.

When the algorithm stops at iteration K, the resulting whitened

time series, Y(K), has the corresponding estimated serial correlation

matrix
∏K

i=1(6̂
(K−i+1))−1/2

(

∏K
i=1(6̂

(K−i+1))−1/2
)⊤

. We find that

setting the maximum number of iterations to 5 is typically

sufficient, even for data sets with short TRs. In selecting the best

model in each iteration, information criteria such as AIC and

Bayesian Information Criterion (BIC) can be employed. For this

study, we use AICc due to its relatively superior capability in

detecting the appropriate AR orders (Sen et al., 2002). Through
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our investigation, we determine that setting the maximum lag

order as pmax = 10/TR achieves satisfactory performance. This

choice assumes that the correlations significantly diminish beyond

10 s, which reasonably aligns with the time duration of typical

hemodynamic response functions (Friston et al., 2000; Buxton

et al., 2004; Handwerker et al., 2004; Arichi et al., 2012). When

dealing with a short TR and a large number of observations

per time series, fitting all pmax models in Step (1.1) would be

time-consuming. As a practical solution, we employ the step-

wise selection approach (auto.arima) implemented in the R

package forecast (Hyndman et al., 2023). In this approach, we

initialize the lag values at pmax, pmax/2, and pmax/4. The inclusion

of regularized models in Step (1.2) is motivated by observations

made while processing datasets with short TRs. When the TR is

small, fitting a full AR(pmax) model can be both time-consuming

and at risk of overfitting. The utilization of regularized models

addresses these concerns while still effectively targeting high serial

correlations. Specifically, the regularized model employed in Step

(1.2.2) incorporates additional higher-order AR lags to ensure the

accurate capture of high-order serial correlations.

We have observed that the estimated correlation matrices, 6̂(i),

can occasionally have extremely large condition numbers, leading

to unstable numerical performance. This is likely due to fitting

high-order AR models to a limited number of observations and the

resulting autocorrelation matrices are rank deficient. To address

this issue, we regularize the estimated correlation matrix using

a banding approach (Bickel and Levina, 2008). Specifically, we

progressively set the last 10 non-zero autocorrelations in 6̂(i) to

zero until the condition number falls below 1 × 108: we will first

set 6̂
(i)
j,k
= 0 for |j−k| ≥ T−10, and if the condition number is still

above the threshold, continue to set 6̂
(i)
j,k
= 0 for |j − k| ≥ T − 20.

Exploring other covariance regularization approaches falls outside

the scope of this study; however, it would be an interesting direction

for future research.

Our approach is distinctive in its iterative whitening of

the data, stacking multiple AR models to estimate the serial

correlation structure. While this necessitates the fitting of

additional parameters, we have observed that a singular AR model

is often inadequate for whitening, especially for short-TR data.

Conversely, our algorithm automatically accounts for low-order

AR models and single-iteration AR models, rendering it suitable

for both short-TR and long-TR data analyses.

2.3 Evaluation approaches

We assess the efficacy of the IDAR-based whitening algorithm

from two perspectives: (1) the degree of residual serial correlations

after the whitening process, which is especially relevant to

subsequent analysis of resting-state fMRI that assumes independent

observations, and (2) the impact of whitening on power, type-I

error and accuracy in the context of task-fMRI, simulated using

resting-state fMRI data.

To evaluate the residual serial correlations, we adopt the

evaluation procedure outlined in Corbin et al. (2018). After

applying the whitening algorithm to a single time series, we utilize

the Ljung-Box test (Ljung and Box, 1978) at lags ranging from

1 to 20/TR (Corbin et al., 2018). We control family-wise type-I

error using Holm’s (1979) method. We consider the time series

not adequately whitened if the smallest adjusted p-value among

the lags is <0.05. We calculate the percentage of such inadequately

whitened time series, where a successful whitening procedure

should yield <5% of inadequately whitened time series.

Additionally, we examine the applicability of the whitening

procedure to task-fMRI that analyzes the association between fMRI

signals and event paradigms. In such analyses, the presence of serial

correlation in the observations diminishes the effective sample size,

which potentially leads to inflated type-I error rates in association

tests based on the generalized linear regression model (GLM)

(Penny et al., 2011; Luo et al., 2020). Therefore, we investigate

whether the proposed whitening algorithm effectively controls the

type-I error rate. Moreover, we assess whether whitening has any

adverse effect on the statistical power and accuracy. Since assessing

type-I error and power requires the knowledge of true signal, we use

simple simulation studies based on the available resting-state fMRI

data. For each subject, we simulate a single task regressor, denoted

as X, based on a “boxcar” task paradigm: the time course is divided

into blocks of 30 s, consisting of a 15-s task epoch followed by a

15-s resting epoch. Each task epoch is randomly assigned as either

task A or task B with equal probability, with task A having twice the

intensity level of task B.We convolve the boxcar task paradigmwith

the canonical hemodynamic response function (HRF) to obtain

the unscaled task regressor, using the R function hrfConvolve

from R package FIAR (v0.6, Roelstraete and Rosseel, 2011) with

default double gamma function parameters. Although each brain

region may exhibit slightly different HRFs in reality, our separate

experiments revealed that small variations in HRF had minimal

impact on the results. Thus, for the sake of simplicity, we adopt

a static default HRF across all brain nodes. Figure 2A illustrates

the canonical HRF used in the simulation. Considering a signal-

to-noise (SNR) ratio of 0.1, we scale the task regressor such that its

mean value equals one-tenth of the standard deviation of the raw

resting-state fMRI data (Welvaert and Rosseel, 2013), which yields

a contrast-to-noise ratio from 0.33 to 0.55 among all subjects. Note

that here we choose SNR = 0.1 for clarity. Our separate analyses

confirmed that varying SNR levels did not alter the conclusions

drawn in this study. Consequently, the simulated task-fMRI data,

denoted as Yts, are obtained by adding the scaled task regressor X

to the raw resting-state fMRI data Yrs (Figure 2B). Next, we use the

following simple linear model to analyze the association between

the fMRI signal Y and the simulated task regressor X:

Y = β0 + β1X + ǫ,

where β0, β1 ∈ R are the regression coefficients, and ǫ is

the error term. In our analysis, we use the simulated task-fMRI

data Y = Yts as the outcome variable to examine the power of

detecting the association between task-fMRI and the task regressor.

The power is quantified as the proportion of brain nodes exhibiting

a significant association between the simulated task-fMRI and the

task regressor across all subjects. Additionally, for the same set of

brain nodes, we employ their resting-state fMRI data Y = Yrs as

the null outcome to investigate the type-I error. Here, type-I error

is defined as the proportion of brain nodes displaying a significant

association between the resting-state fMRI data and the simulated
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task regressor across all subjects. Furthermore, we compute an

accuracy metric that integrates findings from both type-I error

and power analyses. We use a Wald statistic to test the hypothesis

H0 :β1 = 0, where β1 represents the association between the task

regressor X and the outcome Y . The outcome Y will be whitened

before fitting the linear regression model, and the regressors will be

multiplied with the de-correlation matrix accordingly. Specifically,

suppose the whitening procedure estimates a data correlation

matrix 6̂, we essentially fit the following model to estimate the

association between 6̂−1/2Y and 6̂−1/2X:

6̂−1/2Y = β06̂
−1/2 + β16̂

−1/2X + 6̂−1/2ǫ.

In addition to evaluating the proposed IDAR-based whitening

procedure, we include standard whitening procedures based

on AR(1) model and the ARMA(1,1) models for comparison.

Moreover, we investigate the performance of IDAR-iter1, which

essentially encompasses the high-order ARmodels proposed in Luo

et al. (2020) and Sahib et al. (2016). This comparison provides

valuable insights into the performance of existing whitening

approaches in the context of both long-TR and short-TR datasets.

We also include results obtained from the non-whitened outcome

for comparison.

3 Results

We begin by illustrating the raw and whitened resting-

state fMRI signals of an example subject (Figure 3). For

clarity, we only showcase data from three nodes within the

DMN. The application of various whitening techniques did not

significantly alter the resting-state fMRI profiles, with the resulting

signals demonstrating visual consistency across the different

whitening methods (Figure 3A). For a simple and non-rigorous

visualization of the correlation profiles, we show the sliding-

window-based correlations based on the raw signals and whitened

signals (Figure 3B). We notice changes in the sliding-window-

based correlation profile after applying whitening procedures to

the raw signal. Nevertheless, these differences remain visually

inconspicuous across the various whitening methods, as depicted

in Figure 3B. The serial correlations unveil distinct patterns.

Specifically, the raw signals were highly serially correlated, while

the application of standard whitening methods such as AR(1) and

ARMA(1,1) resulted in the persistence of relatively large serial

correlations at lag 4 and lag 6 for node 1 (Figure 3C). Meanwhile,

the IDAR-based whitening approaches successfully removed serial

correlations in the selected signals.

Figure 4 provides a comprehensive comparison of the

performance of various whitening algorithms. The proposed

IDAR approach effectively removes serial correlations in nearly

all analyzed time series, irrespective of whether short-TR or

long-TR datasets were analyzed, or whether resting-state fMRI

or simulated task-fMRI signals were considered. In instances

of long-TR datasets, where serial correlations diminish rapidly,

the IDAR-iter1 strategy proficiently removes serial correlations.

However, this method falls short in addressing the short-TR

datasets, as a considerable 88% of the provided time series

still display significant residual serial correlations. In contrast,

conventional procedures based on AR(1) or ARMA(1,1) models

proved ineffective in achieving optimal whitening, particularly in

the context of short-TR datasets. Specifically, with the long-TR

dataset, at least 16.09% of time series did not attain adequate

whitening, while with the short-TR dataset, none of the time series

achieved satisfactory whitening (Figures 4A,B).

We subsequently investigated the power, type-I error and

accuracy concerning simulated task-fMRI data analysis. We

observed a decrease in the statistical power of testing the

associations between the task paradigm and the fMRI signal

following the application of the whitening procedures (Figure 4C).

Figure 4D presents the corresponding type-I error rates. In the

absence of any whitening procedure, the type-I error could reach

as high as 0.56. Whitening procedures lead to a substantial

decrease in type-I error. Notably, the IDAR-iter1method effectively

maintained the type-I error at the nominal level for both long-TR

and short-TR datasets, whereas the IDAR approach demonstrated

an inflated type-I error of 0.11 within the short-TR dataset. The

conventional AR(1) and ARMA(1,1) approaches exhibit inflated

type-I error rates across both datasets. In terms of accuracy, IDAR

demonstrated the highest performance for the short-TR dataset,

while the accuracies across different whitening approaches were

comparable for the long-TR dataset.

4 Discussion

Whitening plays a pivotal role in addressing serial correlations

in fMRI data and stands as a critical pre-processing step.

Conventional whitening techniques prove to be inadequate for

fMRI data collected with short TR. Furthermore, as highlighted

in Section 3, the utilization of various whitening methods

can introduce substantial disparities in the resulting signals,

consequently impacting subsequent analyses and conclusions.

This underscores the issue of replicability in the field of fMRI

research and the need for one unified whitening approach

that accommodates the diverse characteristics inherent in

fMRI datasets.

In response to the challenge of whitening fMRI signals, we

introduced a novel iterative data-driven whitening procedure,

termed IDAR. This approach offers versatility by effectively

managing serial correlations for subsequent analysis necessitating

independent observations in resting-state fMRI studies, while also

controlling the type-I error rate in task-based fMRI analyses.

IDAR is grounded in high-order AR models, with IDAR-iter1

encompassing existing high-order AR model-based whitening

techniques. What sets IDAR apart is its iterative nature, surpassing

conventional high-order AR models in its capacity to capture the

complex serial correlation structures in fMRI datasets. Initially

developed for ROI-level analysis, IDAR is directly applicable

to voxel-level signals. We have conducted separate voxel-level

analyses and confirmed that our conclusions remain consistent

when applied to voxel-level signals (see Appendix A for details).

Our focus is primarily on whitening approaches that utilize

time series models to estimate serial correlations. Notably,

no existing method satisfactorily addresses both residual serial

correlations and type-I error in task analysis simultaneously. For
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FIGURE 2

Illustration of generating task-fMRI signals from resting-state fMRI observations. (A) The canonical HRF used to convolve with the task paradigm. (B)

Two example subjects’ simulated task regressor and the corresponding simulated task-fMRI for node PCC.

datasets with longer TR, standard approaches employing low-

order AR models have been extensively studied. However, these

models, such as AR(1) and ARMA(1,1), often lack the requisite

order to adequately capture serial correlation structures, leading to

incomplete removal of serial correlations. These standard models,

widely used in popular fMRI analysis softwares such as AFNI, FSL

and SPM, encounter further challenges in the context of short-TR

datasets due to the presence of slow-decaying serial correlations,

as our results in Section 3 confirm. Although prior literature has

suggested high-order AR models as effective for sub-second TR

datasets (Sahib et al., 2016; Bollmann et al., 2018; Luo et al., 2020),

our findings in Section 3 reveal that even the flexible high-order

AR model (represented by IDAR-iter1) struggles with short-TR

datasets. Such unaddressed serial correlations can introduce biases

in estimation, distort variance computations, and pose challenges

in justifying subsequent analyses involving models that assume

independent observations, such as graphical models and GARCH

models.

We also investigated the performance of the whitening

procedures in the context of task-fMRI analysis using simulated

task-fMRI data. The standard low-order models showed inflated

type-I error rates that lead to false discovery, potentially impacting

clinical applications like brain tumor surgery or epilepsy treatment

(Orringer et al., 2012). Interestingly, while the high-order AR

model (IDAR-iter1) could not fully mitigate serial correlations, it

demonstrated a capacity to control type-I error at the nominal

level for both short-TR and long-TR datasets, at the expense

of statistical power. Although the IDAR approach with multiple

iterations fell short of fully controlling type-I error for short-TR

datasets, it provided substantially higher statistical power compared

with other methods. Thus, complexities arise when comparing the

performance of whitening procedures across different evaluation

metrics. Notably, the evaluation of whitening procedures lacks

a consensus on proper metrics, and our chosen criteria are not

exhaustive. Our analysis reveals instances where methods excel

in one metric but fall short in another. The relationship between

these metrics remains unclear, underscoring the need for exploring

appropriate evaluation measures for whitening techniques. Such

endeavors could significantly contribute to advancing the field.

Our proposed IDAR approach has demonstrated superior

efficacy in removing the serial correlation in both long-TR and

short-TR datasets, compared with currently available methods.

In the context of long-TR data, the adaptive order-selection

mechanism inherent in IDAR encompasses low-order models

automatically. Notably, IDAR-iter1 is often sufficient for long-

TR signals, and this aligns with the prevailing understanding that

long-TR datasets typically exhibit fast-decaying serial correlations,

making moderate-order time series models usually sufficient.

Conversely, for short-TR datasets, the IDAR approach is very

efficient in removing the serial-correlation from the data where

the existing methods are not effective. This is attributed to its

incorporation of high-order AR models and its capacity to address

intricate serial correlation structures through iterative procedures.

Leveraging more comprehensive models, IDAR has shown

improved control over type-I error rates compared to traditional

whitening procedures. However, in the context of long-TR task-

fMRI analysis, IDAR and higher-order AR models (equivalent to

IDAR-iter1) tend to exhibit reduced statistical power. In contrast,

during short-TR task-fMRI analysis, IDAR outperforms both

AR(1) and ARMA(1,1) models in terms of statistical power and

control over type-I error and was significantly superior to higher-

order ARmodels in terms of statistical power. Optimizing statistical

power while ensuring strict control of type-I error rates is a

promising direction for future research in this field.
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FIGURE 3

The resting-state fMRI signal with di�erent whitening procedures for two example subjects. Top panel shows an example subject from long-TR

dataset; bottom panel shows an example subject from short-TR dataset. We select to present the signals from node 1—SFG left, node 2—SFG right,

node 3—MPFC. We show the raw resting-state fMRI, as well as the whitened signals after applying the IDAR, IDAR-iter1, AR(1) and ARMA(1,1) based

whitening procedures. (A) The raw and whitened resting-state fMRI observations. (B) The sliding-window-based correlation profile, computed from

raw and whitened observations. A window length of 100s is selected for illustration purpose. (C) The serial correlations at di�erent lags for

observations from node 1. The dashed lines represent the threshold, beyond which the serial correlation is considered significantly di�erent from

zero at 0.05 significance level.

Although IDAR provided significant improvement over

conventional methods in terms of addressing serial correlation,

power and type-I error, for both short-TR and long-TR data,

neither IDAR nor IDAR-iter1 simultaneously addresses residual

correlations and inflated type-I error. Researchers can leverage

IDAR-iter1 to address the elevated type-I error rates in task-fMRI
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FIGURE 4

Bar charts for comparing the performance of di�erent whitening approaches in long-TR and short-TR datasets. (A, B) Proportion of time series that

are not adequately whitened for resting-state fMRI and task-fMRI. (C) Power for detecting the association between signals and task paradigm in

task-fMRI analysis. (D) Type-I error for testing the association between signals and task paradigm in task-fMRI analysis. The red dashed line represents

the 0.05 nominal level. (E) Accuracy for testing the association between signals and the task paradigm in task-fMRI analysis, combining test results

from both type-I error and power analyses.

analysis of short-TR data, while IDAR may be more suitable

for various other applications and datasets. Nonetheless, the

ongoing challenge is to create methods that successfully strike

a balance between completely whitening short-TR datasets

and retaining their analytical power. The complexities of

short-TR data necessitate continued exploration and innovative

approaches to simultaneously reduce serial correlations and

control type-I error rates, without compromising analytical
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power. Whether an optimal model can be achieved by adjusting

IDAR model parameters or necessitates an entirely different

model framework remains uncertain. Moreover, the optimal

model parameters may vary from dataset to dataset due to the

complexity of fMRI datasets, presenting an interesting direction for

future research.

The IDAR algorithm may become computationally intensive

when analyzing voxel-wise signals from short-TR datasets due to

the need for fitting restricted high-order AR models to a large

number of observations. Future research aimed at enhancing the

computational efficiency of the IDAR algorithm would make it

more practical for use across different datasets and for voxel-wise

signal analysis.
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