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Introduction: Brain computer interfaces (BCI), which establish a direct

interaction between the brain and the external device bypassing peripheral

nerves, is one of the hot research areas. How to e�ectively convert brain

intentions into instructions for controlling external devices in real-time remains

a key issue that needs to be addressed in brain computer interfaces. The

Riemannian geometry-based methods have achieved competitive results in

decoding EEG signals. However, current Riemannian classifiers tend to overlook

changes in data distribution, resulting in degenerated classification performance

in cross-session and/or cross subject scenarios.

Methods: This paper proposes a brain signal decoding method based on

Riemannian transfer learning, fully considering the drift of the data distribution.

Two Riemannian transfer learning methods based log-Euclidean metric are

developed, such that historical data (source domain) can be used to aid the

training of the Riemannian decoder for the current task, or data from other

subjects can be used to boost the training of the decoder for the target subject.

Results: The proposed methods were verified on BCI competition III, IIIa,

and IV 2a datasets. Compared with the baseline that without transfer learning,

the proposed algorithm demonstrates superior classification performance. In

contrast to the Riemann transfer learning method based on the a�ne invariant

Riemannian metric, the proposed method obtained comparable classification

performance, but is much more computationally e�cient.

Discussion: With the help of proposed transfer learningmethod, the Riemannian

classifier obtained competitive performance to existingmethods in the literature.

More importantly, the transfer learning process is unsupervised and time-

e�cient, possessing potential for online learning scenarios.

KEYWORDS

brain-computer interfaces, transfer learning, Riemannian spaces, EEG, motor imagery

1 Introduction

Brain-computer interface (BCI) establishes a direct communication between the brain

and external devices, providing a new way for the brain to interact with the external

world. It allows humans to interact with their surroundings without the intervention

of any peripheral nerve or muscle. BCI extracts brain signals and decodes them into

control commands tomanipulate external devices (such as wheelchairs) while also provides

feedback inputs to the brain, such as visual and electrical stimuli. Consequently, in BCI

research, brain signals decoding is indispensable.

There are various ways to collect brain signals, such as electroencephalography (EEG),

magnetoencephalography (MEG), and magnetic resonance imaging (MRI). Among these

methods, EEG is most easily accepted by both users and practitioners as it has manymerits.
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First, it is non-invasive. EEG signals are obtained by placing

multiple electrodes over the scalp of the brain, which reflect its

electrophysiological activities. Second, the equipment of EEG is

relatively small and thus transportable. Third, the EEG device is

relatively cheap and is affordable even for small research groups.

Therefore, EEG-based BCI systems hold significant potential for

widespread application.

However, EEG signals are non-stationary, non-linear, and

characterized by weak amplitudes, low spatiotemporal resolution,

low signal-to-noise ratio, and inter-individual diversity, making

the decoding of EEG signals very challenging (Lotte et al.,

2018). Existing methods for decoding EEG signals can be broadly

categorized into three groups, including classical signal processing-

based methods, deep learning-based methods, and Riemannian

geometry or tensor-based methods (Lotte et al., 2018).

Riemannian geometry-based methods represent EEG signals

as covariance matrices, transforming them into the Riemannian

space of symmetric positive definite (SPD) matrices. Riemannian

classifiers are then established to recognize them. Riemannian

geometry-based methods have many advantages over other

methods. First, they are robust to noise. Moreover, they are

applicable to all commonly used EEG paradigms, including P300,

steady state visually evoked potential (SSVEP), and motor imagery

(Abiri et al., 2019). Finally, they only require small training

samples. Consequently, Riemannian geometry-basedmethods are a

promising group of approaches for brain signal decoding (Congedo

et al., 2013).

However, current Riemannian geometry-based methods tend

to overlook issues related to changes in data distribution and

inter-individual variability. Though these methods exhibit good

robustness, taking the factors of data distribution differences into

consideration might lead to even better recognition performance.

Data distribution changes often occur in cross-session and

cross-subject learning within BCI systems. For instance, the

same subject may display distribution disparities resulting

from variations in electrode positions or changes in the

subject’s physiological state between two experimental sessions.

Additionally, experiments involving different subjects may be

impacted by individual biological distinctions, potentially leading

to a decline in performance. To conquer this problem, the

standard approach in BCIs involves recalibrating classifiers at the

beginning of each experiment through a series of calibration trials.

Unfortunately, this approach is a time-consuming process that

may make subject fatigue and obtain suboptimal performance

since it fails to utilize information from past experiments.

To address above issues, transfer learning is commonly adopted

in BCIs (Lotte et al., 2018), which can circumvent the recalibration

process. Transfer learning targets to help boost the learning of

the task in the target domain using the knowledge in the source

domain and the source task (Pan and Yang, 2010). In BCIs, the

learning setting of domain adaptation is often encountered, where

the feature space between the source domain and the target domain

is the same, but the marginal probability distributions of the input

data are different.

Multiple domain adaptation methods have been proposed to

reduce the distribution divergence (Du et al., 2023; Luo, 2023).

Existing domain adaptation methods can be generally divided into

three categories, including the sample alignment-based methods,

the feature adaptation-based methods, and the deep learning

model-based methods (Luo, 2023). The first type of methods try

to align the averaged covariance matrix of samples from both

the target domain and source domain to the identity matrix and

thus brings the marginal probability distributions of input data

in two domains closer. The second type of methods leverage

mathematical transformations to map the input data from the

source domain and target domain into a common feature space,

where a classifier trained on transformed source data will generalize

well to target data. The deep learning model-based methods use

conversational neural networks (CNN) for feature extraction from

samples and include feature alignment or adversarial techniques

in the training process to encourage the learning of domain-

invariant features. However, the feature adaptation-based methods

are usually constrained by the feature representations, while deep

learning-basedmethod demands high computational resources and

imposes stringent requirements on domain discrepancy. Therefore,

this study focuses on the sample alignment-based methods.

In the Riemannian framework of sample alignment-based

methods, data distribution changes manifest as geometric

transformations of covariance matrices, which are referred

to as “covariance shift" by He and Wu (2018). To eliminate

the shift problem, Zanini et al. (2018) propose to utilize the

affine transformation to map the covariance matrices to a

reference covariance matrix. Li and Zhang (2019) design a

covariance matching approach for semi-supervised domain

adaptation. Zheng and Lu (2016) build a personalized EEG-

based affective model for transfer learning in an unsupervised

manner. Rodrigues et al. (2019) employ procrustes analysis on the

SPD Riemannian space, further addressing the covariance shift

problem.

In the light of the acknowledged work of sample alignment-

based methods, we propose a new transfer learning approach

based on procrustes analysis (PA) (Maybank, 2005). PA is a

common approach of distribution matching for aligning two

data distributions in Euclidean space. It has been extended to

Riemannian space for the application of EEG classification, which

is termed as Riemannian Procrustes Analysis (RPA) (Rodrigues

et al., 2019). However, RPA utilizes affine invariant Riemannian

metrics (AIRM), which is computationally intensive. To alleviate

the computational burden, this study proposes to use more

computationally efficient Log-Euclidean Metric (LEM).

The main contributions in this study are summarized as

follows:

• We generalize the Euclidean PA to the Riemannian manifold

of SPD matrices equipped with log-Euclidean metric, which

is termed as PA-LEM. Due to the nice properties of log-

Euclidean metric, the resulted method is equivalent to map

the SPD matrices into their logarithm domain and then apply

Euclidean PA in the mapped space.

• We augment the RPA with AIRM by LEM to boost the

computation of the distribution matching. With LEM, the

mean and dispersion of samples are more efficiently obtained.

Thus, the proposed RPA with LEM (RPA-LEM) becomes

much more computationally efficient.
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• We combine the proposed transfer learning approaches with

the Riemannian classifier termed as probabilistic learning

vector quantization with log-Euclidean metric learning

(PLVQ-LEML) (Zhang and Tang, 2022) and validate the

performance on two motor imagery EEG datasets. The

proposed transfer learning approaches significantly improve

the performance of PLVQ-LEML. Compared with RPA, the

proposed approach improves the performance of the classifier

greater with less computational time.

The remainder of this article is organized as follows. Section

2 briefly introduces the concepts of LEM, PLVQ-LEM, and

Procrustes analysis. In Section 3, we derive the proposed methods.

Section 4 describes the experiment setup and the results. Section 5

concludes the main contributions of this study.

2 Related Work

In this section, we briefly introduce the related concepts of log-

Euclidean metric, the Riemannian classifier–probabilistic learning

vector quantization with log-Euclidean metric learning (PLVQ-

LEML), and the Procrustes analysis that targets for aligning data

in Euclidean space.

2.1 Log-Euclidean Metric

Riemannian approaches transform the original EEG signal

matrices to SPD matrices by calculating the covariance matrices.

These SPD matrices live on a curved manifold instead of the flat

Euclidean space (Tang et al., 2021a). SPD manifold is a differential

manifold equipped with Riemannian metric, defining smoothly

varying inner products on tangent spaces. Riemannian metric

enables the measurement of angles and lengths of tangent vectors

and is crucial for quantifying distances and curves on the manifold.

In the context of EEG classification, two notable metrics

are the log-Euclidean metric (LEM) and the affine-invariant

Riemannian Metric (AIRM). LEM exhibits many useful properties.

For example, it maintains distances invariant under operations

such as the matrix inversion, logarithmic multiplication, or

orthogonal transformation and scaling (Tang et al., 2023). The basic

notations and mathmetical principles of LEM are introduced as

follows:

Let S+(n) represents the space of all real-valued n×n symmetric

positive definite matrices. S+(n) makes a Riemannian manifold if

endowed with a Riemannian metric. Log-Euclidean metric (LEM)

is a commonly used Riemannian metric on the SPD manifold

S
+(n). It is derived by exploiting the Lie group structure under

group operation:

X1 ⊙ X2 = exp(logX1 + logX2), for X1,X2 ∈ S
+(n)

where exp represents the matrix exponential function, i.e.,

exp(X) =
∑∞

k=0
1
k!
X
k = I+X+ 1

2X
2+· · · , and log denotes matrix

logarithm—the inverse of the matrix exponential function.

The well-studied log-Euclidean metric on Lie group of SPD

matrices (Arsigny et al., 2006, 2007) leads to the Euclideanmetric in

the logarithm domain of SPD matrices. Let S(n) denotes the space

of all real-valued n × n symmetric matrices. For any symmetric

matrix X ∈ S(n), a one-parameter subgroup in S
+(n) is defined

as

ξ (t) = exp(tX) =

∞
∑

k=0

1

k!
(tX)k = I + tX+

1

2
t2X2 + · · ·

with derivative

ξ̇ (t) = X+ tX2 + · · · = X(I + tX+ · · · ) = X · exp(tX)

The geodesics are then determined by translated versions of

one-parameter subgroup, i.e., γ (t) = exp(V1 + tV2) for V1,V2 ∈

S(n). Therefore, the geodesic between X1 ∈ S
+(n) and X2 ∈ S

+(n)

is the linear combination in the logarithmic domain:

γ (t) = exp((1− t) logX1 + t logX2)

= exp(logX1 + t(logX2 − logX1)) (1)

By definition, the Riemannian exponential map

Exp
X
:TxS

+(n) → S
+(n) is the mapping that projects a

tangent vector V to the point on the geodesic at time 1, where

the geodesic starts at time 0 from X (i.e., γ (0) = X) with an

initial speed vector V, i.e., Exp
X
(V) = γ (1). By differentiating the

geodesic given by Equation 1 at time 0, we obtain the initial speed

vector:

γ̇ (0) = exp(logX1 + t(logX2 − logX1)) · (logX2 − logX1)|t=0

= exp(logX1) · (logX2 − logX1)

= X1 · (logX2 − logX1).

With the initial speed vector V = X1 · (logX2 − logX1), the

Riemannian exponential map Exp
X1
(V) needs to return to the point

X2 on the manifold, i.e., Exp
X1
(V) = γ (1) = X2. We can rewrite

X2 as a function of V as follows:

X2 = γ (1) = exp(logX1 + (logX2 − logX1))

= exp(logX1 + X
−1
1 X1(logX2 − logX1))

= exp(logX1 + X
−1
1 V).

Then, the exponential map induced by the log-Euclideanmetric

is given as follows:

Exp
X1
(V) = exp(logX1 + X

−1
1 V). (2)

The Riemannian logarithmicmap Log
X1
(X2) is the inverse map

of the Riemannian exponential map. It gives the initial speed of

the geodesic γ (t) starting from points X1 to X2, i.e., LogX1
(X2) =

γ̇ (0). Therefore, the logarithmic map induced by the log-Euclidean

metric is as follows:

Log
X1
(X2) = X1(logX2 − logX1).
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The metric at a point on the manifold can be obtained by

translating the scalar product on the tangent space at the identity

(Arsigny et al., 2007). Let LX : S
+(n) → S

+(n) be the logarithmic

multiplication by X, that is, for any A ∈ S
+(n), LX(A) =

exp(logX+ logA) = exp(logX) · exp(logA) = X⊙A. The identity

matrix I ∈ S
+(n) can be transported to a matrix X ∈ S

+(n) by

LX and any tangent vector 1 at the identity I can be transported

to a tangent vector V at the point X ∈ S
+(n) by the differential of

LX, given by dLX(1) = X1. At the identity, the metric is defined as

the usual scalar product 〈11,12〉I = Tr(1112). The log-Euclidean

metric is required to be invariant by left- multiplication (Arsigny

et al., 2007), i.e., 〈X11,X12〉X = 〈11,12〉I, which can only be

satisfied with definition:

〈V1,V2〉X = 〈X
−1

V1,X
−1

V2〉I = Tr (X−1V1X
−1

V2)

where Tr represents the trace operator. With log-Euclidean metric,

the squared geodesic distance between two SPDmatrices is given as

follows:

δLE(X1,X2) = 〈LogX1
(X2), LogX1

(X2)〉X1

= Tr
[

(logX2 − logX1)
2
]

.

which corresponds to a Euclidean distance in the logarithmic

domain.

Based on Equations (1, 2), the geodesic emitted at the point X

in the direction of V ∈ TXS
+(n), i.e., γLE(0) = X, γ̇LE(0) = V, can

be expressed as follows:

γLE(t) = exp(logX+ tX−1V).

2.2 PLVQ-LEML

Probabilistic learning vector quantization with log-Euclidean

metric learning (PLVQ-LEML) (Zhang and Tang, 2022) is a

Riemannian classifier that is designed to classify the data points

represented by symmetric positive definite (SPD) matrices. It is

an extension of Euclidean robust soft learning vector quantization

(Seo and Obermayer, 2003) to deal with such data points taking

their non-linear Riemannian geometry into consideration. We will

briefly introduce this method here. For more detailed information,

please refer to Zhang and Tang (2022).

Consider a data set {(Xi, yi)}
m
i=1, where Xi ∈ S

+(n) represents

the input data and yi ∈ 1, ...,C denotes the corresponding class

label. Here, C represents the number of classes. PLVQ-LEML is

to learn M-labeled prototypes Wj, j = 1, ...,M that locate in the

same space as the inputs Xi does, i.e., Wj ∈ S
+(n) . The label

of the prototype Wj is denoted as cj. Let W = {(Wi, ci)}
M
i=1, the

marginal probability density function p(X) that generate the data

in the Riemannian space S+(n) can be approximated by a Gaussian

mixture model:

p(X |W) =

C
∑

y=1

∑

{j : cj=y}

p(X | j)P(j)

where P(j) represents the probability that data points are generated

by a particular component j of the mixture and p(X | j)

denotes the conditional probability that the component j generates

a particular data point X. Here, the conditional probability

p(X | j) is a Gaussian-like probability density function

constructed using the Riemannian distance derived from the log-

Euclidean metric learning (LEML) framework (Huang et al., 2015),

as follows:

p(X | j) ∝ exp
(

f
(

X,Wj,Q
))

Here,

f
(

X,Wj,Q
)

= −
δ
(

X,Wj,Q
)

2σ 2

where σ 2 is a user-defined constant represent the variance, while

δ
(

X,Wj,Q
)

is the Remainnian distance between X and Wj

parametrized by a learnable metric tensor Q derived from LEML,

computed as follows:

δ
(

X,Wj,Q
)

= Tr
[

Q
(

logX− logWj

) (

logX− logWj

)]

The metric tensor Q is a symmetric semi-definite matrix of

size n × n. Then, the probability density that a data point X is

generated by the mixture model for the correct class can be given

as follows:

p(X, y |W) =
∑

{j : cj=y}

p(X | j)P(j)

With Bayes’ theorem, the conditional probability of assigning

label y to data X can be obtained as follows:

p(y|X;W) =
p(X, y|W)

p(X|W)
=

∑

{j : cj=y} P(j) exp(f
(

X,Wj,Q
)

)
∑M

i=1 P(i) exp(f (X,Wi,Q))

Then, for the dataset {(Xi, yi)}
m
i=1, the likelihood function is as

follows:

L =

m
∏

i=1

p
(

yi | Xi;W
)

The prototypes Wj, j = 1, ...,M and the metric tensor Q can

be learned by minimizing the negative log-likelihood function as

follows:

E = − log L =

m
∑

i=1

{

− log
∑

{j : cj=y} P(j) exp f
(

Xi,Wj,Q
)

+ log
∑M

j=1 P(j) exp f
(

Xi,Wj,Q
)

}

The updating rule of prototypes can be obtained by

minimizing above loss function via Riemannian gradient

descent algorithm on the Riemannian manifold of SPD

matrices equipped with log-Euclidean metric, which is calculated

as follows:

logWl ← logWl −

α

σ 2
·

{

(

P(l|X)− Py(l|X)
)

Q(logX− logWl), if cl = y

P(l|X)Q(logX− logWl), if cl 6= y

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2024.1381572
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhuo et al. 10.3389/fnins.2024.1381572

where Py
(

l|X
)

and P
(

l|X
)

are assignment probabilities:

Py
(

l|X
)

=
p
(

l
)

exp(f (X,Wl,Q))
∑

{j : cj=y} p(j) exp(f (X,Wj,Q))
,

P
(

l|X
)

=
p
(

l
)

exp(f (X,Wl,Q))
∑M

j=1 p
(

j
)

exp(f
(

X,Wj,Q
)

)

and 0 < α < 1 is the learning rate for prototypes updates.

Similar to the method proposed by Biehl et al. (2015), the

updating rule of the metric tensor Q obtained by minimizing the

cost function via stochastic Riemannian gradient descent algorithm

using the quotient geometry with the flat metric in the total space is

given as follows:

Q← ��T

�← �−
η

σ 2

∑

{j : cj=y}
Py
(

j|X
) (

logX− logWj

)2
�+

η

σ 2

∑M
j=1 P

(

j|X
) (

logX− logWj

)2
�

where 0 < η < 1 is the learning rate for metric updates.

2.3 Procrustes analysis

Procrustes analysis (PA) (Gower and Dijksterhuis, 2004) is a

widely used approach to align two data domains in the Euclidean

space. Suppose we have two sets of data points that are from the

same feature space but drawn from two different distributions,

denoted as X = {xi ∈ Rn}mi=1 and X̃ = {x̃i ∈ Rn}mi=1, respectively,

there exists a linear relationship between each pair of data points

xi ∈ X and x̃i ∈ X̃ as follows:

x̃i − m̃ = dU (xi −m)

where m̃ ∈ Rn and m ∈ Rn represent the centers of the two

data sets, respectively, U is an orthogonal matrix, representing

the rotation between the two data sets, and d is a scalar

denoting the dispersion difference between the two data sets.

The objective of the PA process is to determine the values

of {d,m, m̃,U} in order to obtain new data set X̃
(PA)

, where

x̃
(PA)
i ∈ X̃

(PA)
perfectly matches xi. Here, x̃

(PA)
i can be obtained as

follows:

x̃
(PA)
i =

1

d
UT (x̃i − m̃)+m (3)

Through the process of the transformation 3, x̃i is first to be

centralized to zero mean ( subtracted m̃), stretched or compressed

to unit variance (divided by d), then rotated (multiplied by

UT), and finally recentralized to mean m (added by m). The

last step that recentralizes x̃
(PA)
i to mean m is often replaced by

centralizing xi to zero mean, which is to align two data sets of zero

mean.

3 Riemannian transfer learning
methods based on logarithmic
euclidean metric

This section introduces our proposed transfer learning

methods that are generalizations of Procrustes analysis to the

Riemannian space of SPD matrices using log-Euclidean metric

(LEM).

3.1 Problem formulation and notation

In this study, the EEG signals are represented in the SPD

Riemannian manifold by covariance matrix. The i-th trial of EEG

signals is presented as follows (Tang et al., 2021b):

Ei =
[

e (ti) , . . . , e
(

ti + l− 1
)]

∈ R
n×l

where n and l denote the number of channels and sampled points,

respectively. Usually after being bandpass filtered, the signals will

become zero mean. Each trial of EEG signals is represented by the

sample covariance matrix that can be computed as follows:

Xi =
1

l− 1
EiE

T
i (4)

Then, EEG signals are represented by SPD matrices. The SPD

matrice manifests the spatial power distribution of the EEG signals

over the brain.

In the case of transfer learning, the source data set S =
{(

Xi, yi
)}NS

i=1
and the target set T =

{(

X̃i, ỹi
)}NT

i=1
, where Xi ∈

S
+(n) and X̃i ∈ S

+(n) represent the input SPD matrices of the two

data sets, respectively, while yi ∈ {1, ...,C} and ỹi ∈ {1, ...,C} denote

their corresponding class labels, respectively. Here,C represents the

number of classes.

Suppose the data points are drawn from statistical distributions

that can be parameterized solely by their geometric mean and

the dispersion around neighboring points. To be more precisely,

assume that the underlying statistical distribution generating the

data set samples is a mixture of Riemannian Gaussian distributions

on the SPD manifold with one mixture for each class (Said et al.,

2017).

Under this condition, the statistical information of the source

and target data sets can be parameterized by a set consisting ofC+2

elements, respectively, as follows:

2S =
{

M,M1, . . . ,MC , d
}

2T =
{

M̃, M̃1, . . . , M̃C , d̃
}

Here, M denotes the geometric mean of the source data set S , and

M̃ represents the geometric mean of the target data set T, which are

defined as follows:

M = G
({

Xi | Xi ∈ S
})

M̃ = G
({

X̃i | X̃i ∈ T
})
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where G represents the computation of the geodesic mean. d

represents the dispersion of the data pointsXi around the geometric

meanM for the source data set S , while d̃ denotes the dispersion of

the data points X̃i around the geometric mean M̃ for the target data

set T . They are computed as follows:

d =
∑

Xi∈S

δ2R
(

M,Xi

)

d̃ =
∑

Xi∈T

δ2R
(

M̃,Xi

)

where δ2R (·, ·) represents the squared Riemannian geometric

distance function.Mk represents the geometric mean of the data

points for a particular class k in the source data set S , while M̃k

represents the geometric mean of the data points for a particular

class k in the target data set T . They are computed as follows:

Mk = G
({

Xi | Xi ∈ S and yi = k
})

M̃k = G
({

X̃i | X̃i ∈ T and ỹi = k
})

3.2 PA-LEM

The log-Euclidean metric constitutes a valid Riemannian

metric in the original space of SPD matrices and also provides an

equivalence Euclidean metric in the logarithm domain of the SPD

matrices. Due to this nice property, a straight forward extension of

PA to the Riemannian space of SPDmatrices is to perform PA in its

logarithm domain.

The mean of the data sets in the logarithm domain can be

expressed as follows:

logM =
1

NS

NS
∑

i=1

log (Xi)

log M̃ =
1

NT

NT

∑

i=1

log
(

X̃i

)

(5)

Similarly, the dispersion d or d̃ in the original space

corresponds to the variance denoted as d′ or d̃′ in the logarithm

domain, which can be computed as follows:

d′ =
1

NS

∑

Xi∈S

(

logXi − logM
)2

d̃′ =
1

NT

∑

X̃i∈T

(

log X̃i − log M̃
)2

(6)

Thus, the PA method based on the log-Euclidean metric (PA-

LEM) can be formulated as follows:

(

logXi

)(PA−LEM)
=

1

d

(

logXi − logM
)

(

log X̃i

)(PA−LEM)
=

1

d̃′

(

log X̃i − log M̃
)

(7)

Rotation is not utilized here as it is found barely improves the

performance on the target data set in EEG signal classification in

the reference Rodrigues et al. (2019). The algorithm of PA-LEM is

summarized in Algorithm 1. It is equivalent to normalize both the

source data set and target data set to zero mean and unit variance.

After the alignment performed by Algorithm 1, the Riemannian

classifier PLVQ-LEML learned in the source data set can be directly

applied to the target data set, reducing the learning effort on the

target data set.

Input: Source data set S =
{(

Xi, yi
)}

, i = 1, . . . ,NS

and target data set T =
{(

X̃i, ỹi
)}

, i = 1, . . . ,NT .

Output: Source data set S(PA-LEM), target dataset

T (PA-LEM).

1: Project the original data in the logarithmic

domain via Xi → log(Xi), X̃i → log(X̃i);

2: Calculate the geodesic centroids log(M) and log(M̃)

of both target dataset and source dataset using

Equation 5);

3: Calculate dispersions d and d̃ using Equation

(6);

4: Obtain the transformed source data points
(

logXi
)(PA−LEM)

and target data points
(

log X̃i
)(PA−LEM)

via Equation (7).

Algorithm 1. PA-LEM.

3.3 PRA-LEM

Riemannian Procrustes analysis (RPA) Rodrigues et al. (2019)

is an extension of the Euclidean PA to the Riemannian manifold

of SPD matrices equipped with affine-invariance Riemannian

metric (AIRM) Zanini et al. (2018). The RPA method involves re-

centering, stretching, and rotation based on the intrinsic geometric

structure of the SPD manifold. Similar to PA, RPA also needs the

computation of Riemannian distance and Riemannian geometric

mean induced by AIRM, which involves the inverse of matrices that

is very computational demanding. Thus, in this study, to boost the

computation, the more computationally efficient LEM is utilized.

Under AIRM, the squared Riemannian distance between two

points Xi and Xj in the space S+(n) is computed as follows:

δ2R
(

Xi,Xj

)

=

n
∑

k=1

log2 (λk)

where λk represents the eigenvalues of matrix X
−1
i Xj. Note that,

here, the compuation of the Riemannian distance induced by

AIRM requires matrix inverse which is very time-consuming. The

geometric mean of N data points {X1, . . . ,XN} is obtained by

minimizing their sum of squared Riemannian distance:

G
(

{Xi}
N
i=1

)

= argmin
M∈S+(n)

N
∑

i=1

δ2R (M,Xi)

via stochastic Riemannian gradient descent algorithm Moakher

(2008). Instead, the Riemannian geometric mean under LEM has

closed solution, which is much more computationally efficient.
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Here, we present how to adapt the Riemannian Procrustes

analysis (RPA) under AIRM to RPA with LEM (RPA-LEM). Since

the rotation operation performs poorly in motor imagery EEG

signal recognition Rodrigues et al. (2019), we only employ the

recentering and stretching operations.

3.3.1 Recenter
The purpose of this step is to recenter the dataset to the

identity matrix, which serves as the spatial origin in the SPD

manifold. Therefore, the first step of RPA-LEM involves calculating

the Riemannian centroid of the original dataset:

M = exp

(

1

NS

NS
∑

i=1

log (Xi)

)

M̃ = exp

(

1

NT

NT
∑

i=1

log
(

X̃i

)

)

(8)

Then, we transform the matrices in S and T so that they are

both centered at the identity matrix:

X
(rct)
i = M

−1/2
XiM

−1/2

X̃
(rcr)
i = M̃

−1/2
X̃iM̃

−1/2
(9)

After re-center, two new datasets become:

S
(rct) =

{(

X
(rct)
i , yi

)

for i = 1, . . . ,NS

}

T
(rct) =

{(

X̃
(rct)
i , yi

)

for i = 1, . . . ,NT

}

Note that the law of large numbers from statistics also applies

to SPD matrices. If the elements of the dataset are drawn from a

statistical distribution with a geometric mean of M, as the number

of instances N increases, the centroid of these N matrices will

converge toM. This implies that in experimental paradigms where

experiments are conducted sequentially, it is reasonable to expect

that with an increasing number of trials, increasingly accurate

estimates of the geometric mean will be obtained.

3.3.2 Stretching
The purpose of this step is to adjust the distributions of the

two datasets by stretching them so that their dispersion around

the geometric mean becomes equal. According to the Riemannian

distance formula based on the affine-invariant metric, this can be

achieved as follows:

δ2R

((

X̃
(rct)
i

)s
, In

)

= s2δ2R

(

X̃
(rct)
i , In

)

This means that we can adjust the dispersion of T (rct) by simply

moving each matrix along a geodesic path connected to the identity

matrix, with the parameter s as a scaling factor. We achieve the

matching of dispersion between the source and target datasets by

stretching the target dataset as follows:

X̃
(str)
i =

(

X̃
(rct)
i

)s
, s2 = d/d̃ (10)

where d and d̃ are the dispersions of two datasets around their

geometric centroids, respectively. Under log-Euclidean metric

(LEM), the dispersions can be calculated as follows:

d =
∑

Xi∈S

(

logXi − logM
)2

d̃ =
∑

Xi∈T

(

log X̃i − log M̃
)2

(11)

PRA-LEM introduces LEM into the Riemannian Procrustes

analysis such that the Riemannian geometric mean and the data

dispersions around the Riemannian geometric mean can be more

efficiently computed. The computation process of RPA-LEM is

summarized in Algorithm 2.

Input: Source data set S =
{(

Xi, yi
)}

, i = 1, . . . ,NS and

target data set T =
{(

X̃i, ỹi
)}

, i = 1, . . . ,NS

Output: Source data set S(RPA−LEM), target dataset

T (RPA−LEM),

%????? Output

1: Calculate the geodesic centroids Mk and M̃k of both

data sets using Equation (8);

2: Calculate dispersions d and d̃ using Equation (11).

3: Re-center the data sets S and T via Equation (9)

to obtain the datasets S(rct) and T (rct) ;

4: Stretch the re-centered target data set T (rct) via

Equation 10) to obtain the aligned target data set

T (RPA−LEM), while the corresponding output source

data set S(RPA−LEM) is the re-centered S(rct).

Algorithm 2. RPA-LEM.

Figure 1 illustrates the schematic steps of the Riemannian

transfer learning method. Note that even though RPA-LEM and

PA-LEM use the same way to compute the geometric mean and

dispersion, they are inherently not the same. PA-LEM integrates

Procrustes analysis (PA) with LEM by transforming the SPD

(Symmetric Positive Definite) matrices into the logarithm space.

This transformation allows for the application of classical Euclidean

computations on the logarithmic domain of the dataset, leveraging

the advantages of LEM in handling SPD matrices. However, as

the original Euclidean PA did not take account the intrinsic

geometry of the SPD manifold, neglecting its geometry-aware

nature. Their differences arise from the distinction between LEM

and AIRM. LEM emphasizes differences in eigenvalues between

matrices, while AIRM emphasizes differences in the overall shape

and orientation betweenmatrices. Therefore, RPA-LEMwill induce

more significant transformations on the original matrix data as

compared with PA-LEM. In theory, RPA-LEM should result in

better performance. Subsequent experimental results also confirm

this.

Additionally, the advantage of computational efficiency

brought by log-Euclidean metric mainly comes from the

calculation of Riemannian mean and Riemannian distance. In

the case of Riemannian mean, the time cost for affine invariant

metric is O(K × N × M2) (assume the average iteration times of
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FIGURE 1

The diagram of Riemannian transfer learning method. Both source dataset and target dataset are processed using re-centering and stretching. Then,

the proceeded datasets are utilized for training and testing, respectively.

Riemannian mean is K), while the calculation cost of riemannian

mean in log-Euclidean scenario is O(N ×M2), as the riemmannian

mean for LEM is a closed solution. As for the Riemannian distance,

the LEM require no inverse operation and matrix multiplication

like the AIM does. The time cost for LEM is O(N ×M2), while the

cost for AIM is O(N×M3). It is worth noting that these theoretical

advantages have also been validated in experiments.

4 Experimental result

Two popular motor imagery EEG data sets were used to

evaluate our proposed approach, namely, BCI competition III data

set IIIa (BCI III IIIa) (Davoudi et al., 2017; Gaur et al., 2018) and

BCI competition IV data set 2a (BCI IV 2a) (Tangermann et al.,

2012). The two data sets (BCI III IIIa and BCI IV 2a) contain EEG

signals extracted using n = 60 and n = 22 electrodes, respectively,

which will be briefly described as follows.

BCI III IIIa data set comprises EEG data from three subjects

who performed four different motor imagery tasks (left-hand,

right-hand, foot, and tongue motor imagery) based on prompts.

EEG signals were recorded using a Neuroscan 64-channel EEG

signal amplifier with reference electrodes placed on the left and

right mastoids, recording from 60 channels, and sampled at 250

Hz. The experiments were repeated across multiple runs (at least

6 runs), with each run containing 10 random presentations of each

of the fourmotor imagery tasks, in total 40 trials per run. Thus, each

subject had 240 trials, all conducted on the same date.

BCI IV 2a data set comprises EEG data from nine subjects

who performed motor imagery tasks involving four types of motor

imagery movement tasks including left-hand, right-hand, foot, and

tongue motor imagery. Each subject participated in 576 trials, with

each trial corresponding to a motor imagery task (144 trials per

class). Half of the trials (4 × 72 trials) were conducted in the first

session, and the other half (4 × 72 trials) in the second session

conducted on different dates. EEG signals from 22 electrodes placed

over the sensorimotor cortex of the subjects were recorded at a

sampling rate of 250 Hz. During each trial, an arrow cue appeared,

pointing left, right, down, or up, corresponding to one of the four

classes, to instruct the subject to perform the respective motor

imagery task. Motor imagery lasted for 4 s from the appearance of

the cue.

For both data sets, recordings of each trial from 0.5 to 2.5 s

starting from the presence of the cue were extracted for further

analysis. The extracted signals were first bandpass-filtered between

10 and 30 Hz using a 5th-order Butterworth filter. Then, each trial

of EEG signals is transformed into an SPD matrice using Equation

(4). The inputs of the two datasets become elements of which live

in S
+(22) and S

+(60), respectively.

In this study, Kappa coefficient, one of the most commonly

used metric to measure the performance of motor imagery EEG

classification, was used. It effectively penalizes model bias and

serves well for both consistency checks, evaluating classification

effectiveness. For data of balanced classes involved in this study,

Kappa is calculated asKappa = (D−C)/(1−1/C) , whereD denotes

classification accuracy, and C signifies the number of classes.

4.1 The choice of classifier and transfer
strategies

To evaluate our proposed Riemannian transfer learning

methods, a Riemannian classifier is needed. In this study, we

chose our previously developed PLVQ-LEML method introduced

in Section 2.2 as the Riemannian classifier. This classifier is selected

mainly due to the following three considerations:

• The PLVQ-LEML classifier is developed based on Riemannian

geometry, targeting to deal with data living on the manifold

of SPD matrices. The proposed Riemannian transfer

learning methods are also developed based on Riemannian

geometry, in particular, geometric transformations that align

distributions for data represented by points living on the

manifold of SPD matrices. Thus, the combination of PLVQ-

LEML with our proposed Riemannian transfer learning
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TABLE 1 Selected hyperparameters of PLVQ-LEML on BCI III IIIa data set.

Parameters Subjects

k3b k6b l1b

N 1 2 1

σ 2 5 4.5 4.5

N represents the numbers of prototypes for each class in PLVQ-LEML.

methods ensures compatibility and a natural extension of

interpretability.

• The PLVQ-LEML classifier is developed using log-Euclidean

metric, whose learning rule of prototypes is equivalent to

perform the Euclidean updating rule in the logarithm domain.

This enables an effective integration with the PA-LEMmethod.

• Due to the efficiency of log-Euclideanmetric, the computation

of PLVQ-LEML is very efficient compared with other

Riemannian classifiers. The high computational efficiency

provides the method higher potential to be used in BCI

systems.

We performed a preliminary experiment to compare the

classification performance of the PLVQ-LEML with minimum

distance to Riemannian mean (MDRM), another computationally

efficient Riemannian classifier.

All hyper-parameters were set following the same schedule as

mentioned in the study by Zhang and Tang (2022). During training

process, the learning rates are set to be decreased over iterations.

The learning rate of the prototypes follows the annealing schedule

α(t) = nξ
1000.01

t/T , where n is the rank of the input matrix, ξ

represents the number of prototypes per class, and T represents the

training epochs. The learning rate for the distance matrix tensor Q

follows the annealing schedule η(t) = nξ
10,0000.01

t−t0/T−t0 , where

t0 is the start iteration index for updating the distance matrix Q.

In order to stabilize the training process, η(t) is set to be smaller

than α(t) and the distance matrix tensor was started to learn when

the learning of the prototypes was table. t0 = 1 was used in this

study.

The hyper-parametersN and σ 2 were selected from {1, 2, 3, 4, 5,

6, 7, 8} and {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}, respectively, using five-fold

cross validation on the training fold. The selected optimal hyper-

parameters are shown in Tables 1, 2. The detailed information can

be found in our previous published study of PLVQ-LEML Zhang

and Tang (2022). Table 3 presents the averaged kappa values over all

subjects within the dataset BCI IV 2a and BCI III IIIa. FromTable 3,

we can observe that the performance of PLVQ-LEML is much

better than MDRM. Taking both classification performance and

computationally efficiency into consideration, we choose PLVQ-

LEML as the classifier in this study.

We also performed a preliminary experiment to compare the

transfer strategies. As we mentioned in Section 3, our transfer

strategies involve two operations, namely, re-center (rct) and

stretching (str). We compared the performance of the transfer

learning approaches under different conditions, including using

only re-center and combination of re-center and stretching

in cross-session transfer setting. Tables 4, 5 demonstrate the

performance comparison between the proposed method and RPA

TABLE 2 Selected hyperparameters of PLVQ-LEML on BCI IV IIa data set.

Para-
meters

Subjects

S1 S2 S3 S4 S5 S6 S7 S8 S9

N 1 2 1 1 1 2 2 1 1

σ 2 1.5 2 2 2.5 2 1.5 6 1.5 3

N represents the numbers of prototypes for each class in PLVQ-LEML.

TABLE 3 Averaged kappa of PLVQ-LEML compared with that of MDRM.

Method BCI IV 2a BCI III IIIa

PLVQ-LEML 0.5885 0.7025

MDRM 0.5200 0.6222

The best performance is marked in boldface.

under different conditions on both BCI IV 2a and BCI III IIIa data

sets. From Tables 4, 5, we can observe that the performance of re-

center only performs slightly better than combining re-center with

stretching operation. This also confirm the findings in the study

by Rodrigues et al. (2019). Thus, in our following experiments, our

proposed PA-LEM and RPA-LEM, together with the original RAP,

only use re-center operation.

4.2 Visualization

To better understand the issue in classification using cross-

session or cross-subject EEG data, we visualized the data using the

t-distributed stochastic neighbor embedding (t-SNE) technique. t-

SNE maps data points in a high-dimensional space to a lower

dimensional space while preserving the pairwise distances of

the data points as much as possible. Thus, the utilization of

t-SNE techniques can well preserve the Riemannian distances

between data points that live on the Riemannian manifold of SPD

matrices. Here, we project the data points on the Riemannian

manifold of SPD matrices into a two-dimensional space for visual

inspection.

The distribution improvement effects across all subjects are

relatively similar. In this study, we have only displayed the

comparison for one subject. Figure 2 displays the distribution of

the two different sessions for subject 9 in the BCI IV 2a data

set. From Figure 2, we can observe that the distribution of the

two sessions are clearly different in the original feature space

before RPA-LEM being applied. Even for the same subject, EEG

signals collected on different dates exhibit significant distribution

variations, making EEG signal recognition challenging. Classifiers

trained on one session will not perform well in another session.

However, after transfer via RPA-LEM, the distribution differences

between sessions were noticeably reduced, which may significantly

improve the performance of the classifier trained on one session but

used on the other session.

Figure 3 visualizes the data from all subjects within the

BCI IV 2a dataset, showing significant distribution differences

among different subjects. These differences will make the classifier

trained on one subject fail to obtain reasonable performance
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TABLE 4 Performance comparison between the proposed method and RPA under di�erent conditions on the data set BCI IV 2a.

RPA PA-LEM RPA-LEM

Subject Rct Rct + str Rct Rct + str Rct Rct + str

S1 0.8244 (0.004) 0.8222 (0.005) 0.8009 (0.012) 0.6759 (0.009) 0.8250 (0.008) 0.8269 (0.006)

S2 0.3306 (0.007) 0.3312 (0.014) 0.3240 (0.032) 0.1620 (0.004) 0.3293 (0.006) 0.3278 (0.005)

S3 0.8537 (0.004) 0.8528 (0.003) 0.8565 (0.009) 0.736 (0.008)1 0.8503 (0.003) 0.8515 (0.004)

S4 0.5373 (0.006) 0.5367 (0.007) 0.5046 (0.005) 0.3519 (0.004) 0.5417 (0.009) 0.5395 (0.006)

S5 0.3565 (0.011) 0.3586 (0.008) 0.3564 (0.012) 0.2407 (0.007) 0.3596 (0.008) 0.3583 (0.009)

S6 0.3802 (0.008) 0.3765 (0.008) 0.3055 (0.010) 0.2731 (0.012) 0.3799 (0.009) 0.3790 (0.004)

S7 0.8105 (0.006) 0.8099 (0.007) 0.8009 (0.011) 0.6898 (0.09) 0.8105 (0.008) 0.8096 (0.004)

S8 0.7728 (0.005) 0.7756 (0.005) 0.7453 (0.003) 0.6481 (0.005) 0.7799 (0.008) 0.7769 (0.007)

S9 0.7596 (0.007) 0.7611 (0.006) 0.7222 (0.007) 0.7037 (0.009) 0.7707 (0.006) 0.7691 (0.008)

mean 0.6251 0.6250 0.6018 0.4979 0.6274 0.6265

The better performed condition for each method is marked in boldface.

TABLE 5 Performance comparison between the proposed method and RPA under di�erent conditions on the data set BCI III IIIa.

RPA PA-LEM RPA-LEM

Subject Rct Rct+str Rct Rct+str Rct Rct+str

k3b 0.9200 (0.016) 0.9188 (0.012) 0.9192 (0.022) 0.9179 (0.027) 0.9259 (0.019) 0.9241 (0.021)

k6b 0.4736 (0.015) 0.4689 (0.013) 0.4593 (0.014) 0.4559 (0.014) 0.4778 (0.034) 0.4712 (0.025)

l1b 0.7411 (0.027) 0.7439 (0.032) 0.7333 (0.023) 0.7348 (0.029) 0.7444 (0.019) 0.7416 (0.031)

mean 0.7116 0.7105 0.7039 0.7029 0.7160 0.7123

The better performed condition for each method is marked in boldface.

FIGURE 2

Distribution of the two sessions for subject 9 in the data set BCI IV 2a. Stars represent data points from session 1, while filled circles represent data

points from session 2. Four di�erent colors show four di�erent classes. (A) Illustrates the distribution before transfer. (B) demonstrates the

distribution after transfer by RPA-LEM.

on another subject. However, after alignment via RAP-LEM, the

distribution of data from subject 1 overlaps with that from subject

3, suggesting that RAP-LEM successfully matches the data from the

two subjects. Thus, after alignment via RAP-LEM , the classifier

trained on subject 1 will also give nice classification performance

on subject 3.

With respect to the data set BCI III IIIa, as the EEG signals of

each subject were collected within the same day, no distribution
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FIGURE 3

Distribution of data points for all subjects in the data set BCI IV 2a. (A) illustrates the distribution before transfer. Di�erent color represents data

comes from di�erent subjects. (B) demonstrates the distribution of subject 1 and subject 3 after alignment by RPA-LEM.

differences were expected. However, to give a clear illustration, we

visualized the data treating the predefined training split and test

split as two different sessions. As shown in Figure 4, no apparent

distribution difference between two “sessions” was observed.

Consequently, RPA-LEM will not provide significant improvement

on classification results. However, as shown in Figure 5, the

distribution disparities between subjects are significant. After

applying RPA-LEM, the distribution disparities between subjects

(e.g., k3b and l1b) can be significantly reduced.

4.3 Model performance analysis

The performance of the proposed transfer learning approaches

was evaluated on the BCI IV 2a and BCI III IIIa data sets using

PLVQ-LEML as classifier. Then, we compared the performance

of PLVQ-LEML with and without the proposed transfer learning

approaches (PA-LEM and RPA-LEM) and the original RPA. We

also compared the final performance with existing results in the

literature.

4.3.1 BCI IV 2a
We first evaluated our proposed transfer learning approaches

in the cross-session transfer setting, which matches the data

distribution of the given testing session with that of the given

training session for each subject in the data set BCI IV 2a.

The experiments were repeated for 10 runs. The averaged test

kappa values over 10 runs is shown in Table 6. The Riemannian

classifier PLVQ-LEML was employed. The term “no-transfer"

means classification using PLVQ-LEML without any transfer

operations applied. The results in the table are organized in two

parts, with high-quality subjects at the top and low-quality subjects

at the bottom. From Table 6, we can observe that the inclusion

of the transfer learning approaches generally outperformed the no

transfer approach. Our proposed RPA-LEM approach performed

slightly better than RPA on average, while our proposed PA-LEM

performed worse than RPA. In general, for high-quality subjects,

our approach RPA-LEM can improve the performance by a rate

as high as 11.14%, on average, compared with no transfer, while

for low-quality subjects, our approach RPA-LEM can only improve

that by a rate of 2.5%. The overall performance of our proposed

RPA-LEM is comparable to that of RPA. The PLVQ-LEMLwith our

proposed RPA-LEM (PLVQ-LEML + RPA-LEM) obtained much

better results compared with existing results, as shown in Table 7,

suggesting the effectiveness of the proposed method.

We then evaluated our proposed transfer learning approaches

in the cross-subject transfer setting, treating data from one subject

as training set and data from another subject as test set. To

directly compare our methods with that is reported in the study

by Zanini et al. (2018), which uses MDRM as classifier and RPA

to reduce the distribution differences between the test subject and

the training subject (MDRM+RPA), we followed their experimental

setting that only utilizes the high-quality subjects (i.e., S1, S3,

S7, S8, and S9). For each test subject, one subject among the

remaining good subjects was used as the training subject. For

each subject, the experiments were repeated until all the remaining

good subjects were used as the training subject once. The mean

kappa value together with standard deviation in bracket is shown

in Table 8. From Table 8, we can observed that the incorporation

of the Riemannian transfer learning significantly improved the

classification performance. Our proposed RPA-LEM performed on

par to the original RPA on this challenging task.

We finally compared the computational time (i.e., CPU time)

of our proposed RPA-LEM with RPA. In BCI systems, real-time

performance is crucial. Thus, when the classification performances

are comparable, more computationally efficient methods are

favorable. Figure 6 demonstrates the CPU time taken by our
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FIGURE 4

Distribution of the two “sessions" for the three subjects in the data set BCI IV 2a, respectively. Stars represent data points from session 1, while filled

circles represent data points from session 2. Four di�erent colors show four di�erent classes. (A) illustrates the distribution for subject k3b. (B)

demonstrates the distribution for subject k6b. (C) demonstrates the distribution for subject l1b.

FIGURE 5

Distribution of data points for all subjects in the data set BCI III IIIa. (A) illustrates the distribution before transfer. Di�erent colors represent data

comes from di�erent subjects. (B) demonstrates the distribution of subject k3b and subject l1b after alignment by RPA-LEM.

proposed RAP-LEM for the entire training and test process of

one subject on the data set BCI IV 2a under both cross-session

and cross-subject transfer settings. The reported CPU time is the

averaged one over 10 runs, removing the randomness coming from

the computing resource assignment. From Figure 6, we can observe

that our proposed RPA-LEM is much more computationally

efficient than RPA on both transfer settings.

In summary, on the BCI IV 2a data set, our proposed RPA-LEM

obtained slightly better or comparable classification performance to

RPA under both cross-session and cross-subject transfer settings,

with much higher computational efficiency.

4.3.2 BCI III IIIa
Similarly, we evaluated our proposed approaches in the cross-

session transfer setting on the data set BCI III IIIa. The IIIa dataset

is recorded in one single day. For cross-session evaluation, we

split the dataset into two sessions in a random way. Repeated

experiments of 10 times are conducted, and then, results are

averaged to represent the experimental outcome. As Figure 4

illustrated, no apparent distribution differences were observed,

since the data of each subject were recorded continuously at

a single day. Thus, the performance of the classifier is not

expected to be improved significantly by the transfer approaches.

This is corroborated by our experimental results, as shown in

Table 9. The performance of the classifier with transfer approaches

remained similar to that without transfer. Again, our proposed

RPA-LEM performed slightly better than our proposed PA-LEM

but comparable to RPA. Additionally, PLVQ-LEML integrated

with RPA-LEM obtained competitive performance to the existing

methods, only seconded to the winner of the competition, as given

in Table 10.
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TABLE 6 Performance comparison between no-transfer and three transfer learning methods in cross-session transfer setting on the data set BCI IV 2a.

Subject No-transfer RPA PA-LEM RPA-LEM

S1 0.7870 (0.271) 0.8244 (0.004) 0.8009 (0.006) 0.8250 (0.008)

S3 0.7963 (0.042) 0.8537 (0.004) 0.8565 (0.011) 0.8503 (0.003)

S7 0.7176 (0.067) 0.8105 (0.006) 0.8009 (0.07) 0.8105 (0.008)

S8 0.6944 (0.091) 0.7728 (0.005) 0.7453 (0.021) 0.7799 (0.008)

S9 0.7315 (0.070) 0.7596 (0.006) 0.7222 (0.009) 0.7707 (0.006)

mean 0.7454 0.8042 0.7852 0.8073

S2 0.3241 (0.037) 0.3306 (0.006) 0.3240 (0.008) 0.3293 (0.008)

S4 0.5370 (0.083) 0.5373 (0.006) 0.5046 (0.014) 0.5417 (0.009)

S5 0.3750 (0.068) 0.3565 (0.011) 0.3564 (0.009) 0.3596 (0.008)

S6 0.3333 (0.014) 0.3802 (0.008) 0.3055 (0.008) 0.3799 (0.009)

mean 0.3924 0.4012 0.3726 0.4026

The best performance is marked in boldface.

TABLE 7 Performance comparison between our method and existing methods on the data set BCI IV 2a.

Method Mean kappa S1 S2 S3 S4 S5 S6 S7 S8 S9

PLVQ-LEML + RPA-LEM 0.627 0.83 0.33 0.85 0.54 0.36 0.38 0.81 0.78 0.77

MRGF-SVM (Xie et al., 2022) 0.616 0.83 0.46 0.78 0.53 0.32 0.39 0.79 0.76 0.68

Sharbaf et al. (2017) 0.61 0.75 0.31 0.82 0.56 0.47 0.38 0.75 0.74 0.67

Davoudi et al. (2017) 0.60 0.75 0.49 0.76 0.49 0.34 0.36 0.68 0.76 0.76

Gaur et al. (2018) 0.60 0.86 0.24 0.70 0.68 0.36 0.34 0.66 0.75 0.82

Luo et al. (2020) 0.60 0.63 0.17 0.88 0.38 0.69 0.41 0.76 0.76 0.69

Tang et al. (2021a) 0.59 0.79 0.32 0.76 0.55 0.34 0.36 0.69 0.71 0.80

Tang et al. (2021b) 0.59 0.75 0.34 0.80 0.58 0.38 0.37 0.70 0.64 0.75

1st (FBCSP) 0.57 0.68 0.42 0.75 0.48 0.40 0.27 0.77 0.75 0.61

The best performance is marked in boldface.

TABLE 8 Performance comparison between no-transfer and three transfer learning methods in the cross-subject transfer setting on the data set

BCI IV 2a.

Test subject No-transfer RPA RPA-LEM MDRM + RPA

S1 0.5037 (0.16) 0.6565 (0.07) 0.6561 (0.07) 0.6040 (0.08)

S3 0.5102 (0.17) 0.7098 (0.04) 0.7050 (0.04) 0.6940 (0.04)

S7 0.4143 (0.13) 0.5713 (0.10) 0.5577 (0.10) 0.5700 (0.09)

S8 0.4214 (0.05) 0.6162 (0.06) 0.6088 (0.06) 0.6320 (0.07)

S9 0.4090 (0.09) 0.6382 (0.06) 0.6398 (0.07) 0.6880 (0.06)

mean 0.4517 0.6384 0.6335 0.6376

The best performance is marked in boldface.

Again, we evaluated our proposed approaches in the cross-

subject transfer learning setting on the data set BCI III IIIa.

Similarly, for every test subject, each of the remaining subjects

works as the training subject once. The averaged kappa values

together with the standard derivation in brackets are reported,

see Table 11. From Table 11, we can observe that the classification

performance of our proposed RPA-LEM is comparable to RPA but

significantly better than that of no-transfer. More importantly, our

proposed method is much computationally efficient than RPA in

both settings, as shown in Figure 7.

5 Conclusion

This paper introduces two Riemannian transfer learning

methods based on log-Euclidean metric termed as PA-LEM and
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FIGURE 6

CPU time of RPA-LEM compared with RPA on the BCI IV 2a data set.

TABLE 9 Performance comparison between no-transfer and two transfer

learning methods in the cross-“session” setting on the data set BCI III IIIa.

Subject No-
transfer

RPA PA-LEM RPA-LEM

k3b 0.9185

(0.080)

0.9200 (0.016) 0.9192 (0.012) 0.9259 (0.019)

k6b 0.4556

(0.180)

0.4736 (0.015) 0.4593 (0.032) 0.4778 (0.034)

l1b 0.7333

(0.075)

0.7411 (0.027) 0.7333 (0.023) 0.7444 (0.019)

mean 0.7025 0.7116 0.7039 0.7160

The best performance is marked in boldface.

TABLE 10 Performance comparison between our method and existing

methods on the data set BCI III IIIa.

Method Kappa k3b k6b l1b

1st 0.7926 0.8222 0.7556 0.8000

PLVQ-LEML + RPA-LEM 0.7160 0.9259 0.4778 0.7444

2nd 0.6872 0.9037 0.4333 0.7111

3rd 0.6272 0.9481 0.4111 0.5222

GLVQ-AIRM (Tang et al., 2021a) 0.6765 0.8519 0.4778 0.7000

MDRM 0.6222 0.8222 0.3556 0.6889

GLVQ 0.4481 0.5778 0.3444 0.4222

GMLVQ 0.3716 0.4815 0.1889 0.4444

GRLVQ 0.2654 0.1407 0.2444 0.4111

The best performance is marked in boldface.

RPA-LEM to reduce the distribution differences between the

source data and the target data, both of which are points living

on the Riemannian space of symmetric positive definite (SPD)

matrices, aiming to improve the classification performance of

the Riemannian classifier PLVQ-LEML efficiently on the target

data. PA-LEM is equivalent to perform Euclidean Procrustes

TABLE 11 Performance comparison of kappa between no-transfer and

two transfer learning methods in the cross-subject transfer learning

setting on the data set BCI III IIIa.

Subject No-transfer RPA RPA-LEM

k3b 0.2772 (0.04) 0.3230 (0.02) 0.3072 (0.04)

k6b 0.2306 (0.06) 0.3768 (0.10) 0.3793 (0.12)

l1b 0.2085 (0.15) 0.3814 (0.17) 0.3688 (0.14)

mean 0.2388 0.3604 0.3517

The best performance results among each row is marked in boldface.

FIGURE 7

CPU time of RPA-LEM compared with RPA on the BCI III IIIa data set.

analysis (PA) in the logarithm domain of the SPD matrix-valued

data. RPA-LEM adapts RPA, which computes Riemannian

mean and dispersion of samples under computationally

demanding affine-invariant Riemannian metric (AIRM), by

log-Euclidean metric, yielding slightly better classification

performance than RPA, with much higher computational

efficiency.

Our methods are unsupervised transfer learning methods that

do not require knowledge of labels of the target domain and

thus can be used for online learning setting. One of our future

work is to adapt our method for online learning setting, which

learns the Riemannian mean and dispersion can be computed

in an online fashion. In such scenario, when more experiments

are conducted, the target domain data gradually increases, the

obtained geometric mean will tend toward true value. Thus,

the improvement in the classification performance will gradually

increase over time. Even though the proposed Riemannian transfer

learning approach in this study is initially designed for EEG

data, it is actually applicable for any learning scenarios, where

the inputs can be represented by SPD matrices. One typical

example is the image set classification, where a set of images

is represented by their covariance matrix. Thus, one of our

future studies is devoted to explore the application of our

proposed method in other learning scenarios, such as image set

classification.
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