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Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent

neurodevelopmental disorder that significantly a�ects children and adults

worldwide, characterized by persistent inattention, hyperactivity, and impulsivity.

Current research in this field faces challenges, particularly in accurate diagnosis

and e�ective treatment strategies. The analysis of motor information, enriched

by artificial intelligence methodologies, plays a vital role in deepening our

understanding and improving the management of ADHD. The integration of

AI techniques, such as machine learning and data analysis, into the study of

ADHD-relatedmotor behaviors, allows for a more nuanced understanding of the

disorder. This approach facilitates the identification of patterns and anomalies

in motor activity that are often characteristic of ADHD, thereby contributing

to more precise diagnostics and tailored treatment strategies. Our approach

focuses on utilizing AI techniques to deeply analyze patients’ motor information

and cognitive processes, aiming to improve ADHD diagnosis and treatment

strategies. On the ADHD dataset, the model significantly improved accuracy

to 98.21% and recall to 93.86%, especially excelling in EEG data processing

with accuracy and recall rates of 96.62 and 95.21%, respectively, demonstrating

precise capturing of ADHD characteristic behaviors and physiological responses.

These results not only reveal the great potential of our model in improving ADHD

diagnostic accuracy and developing personalized treatment plans, but also

open up new research perspectives for understanding the complex neurological

logic of ADHD. In addition, our study not only suggests innovative perspectives

and approaches for ADHD treatment, but also provides a solid foundation for

future research exploring similar complex neurological disorders, providing

valuable data and insights. This is scientifically important for improving treatment

outcomes and patients’ quality of life, and points the way for future-oriented

medical research and clinical practice.
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1 Introduction

ADHD is a common neurodevelopmental disorder that widely affects children and

adults worldwide. Its main characteristics include persistent inattention, hyperactivity and

impulsive behaviors, which often have a significant impact on an individual’s ability to

learn, socialize, and work (Tang et al., 2020). The diagnosis of ADHD is complex and varied

and often requires a combination of medical, psychological and behavioral evaluations

(Loh et al., 2023). Currently, the exact cause of ADHD is not fully understood, and it is
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widely believed that a combination of genetics, environmental

factors, and variations in brain development play a role (Tan et al.,

2023). This complexity makes accurate diagnosis and effective

treatment of ADHD a challenge (Amado-Caballero et al., 2020).

Traditional diagnosis of ADHD relies on behavioral observations

and psychological assessments, but these methods carry the

potential for subjective judgments that can lead to diagnostic

inconsistencies and accuracy issues (Shoeibi et al., 2023). In

addition, due to the diversity of ADHD symptoms and their

similarity to other disorders, it is often difficult for a single

diagnostic approach to fully capture the full picture of the disease

(Berrezueta-Guzman et al., 2021a). Therefore, researchers have

been seeking more objective and accurate diagnostic tools.

The analysis of motor information plays a pivotal role

in ADHD research and treatment, as hyperactive behavior

significantly influences a patient’s daily functioning and learning

capabilities (Enriquez-Geppert et al., 2019). Motor control issues

and hyperactivity, essential for diagnosis and treatment planning,

offer insights into behavioral and neurophysiological changes

in individuals with ADHD (Chen et al., 2020; Slobodin et al.,

2020; Berrezueta-Guzman et al., 2021b). Movement tracking

technologies and comprehensive analysis of motor behaviors can

elucidate ADHD’s neurobiological foundations (Amado-Caballero

et al., 2023), enhancing diagnostic accuracy and aiding the

development of more effective treatments (Berrezueta-Guzman

et al., 2022). Additionally, advancements in Artificial Intelligence

(AI) have transformed ADHD diagnosis and treatment strategies,

with machine learning techniques uncovering complex patterns

in data, facilitating preliminary feature selection and analysis

(Moghaddari et al., 2020; Zhang et al., 2021a; Tang et al., 2022). This

evolving AI landscape necessitates sophisticated, integrativemodels

for a more nuanced understanding of ADHD (Leontyev et al., 2019;

Yeh et al., 2020).

However, challenges remain in harnessing AI for ADHD

research, notably in data acquisition, processing, and model

comprehensiveness and interpretability. High-quality data

collection and processing are critical for reliable research

outcomes, but standardized, comprehensive datasets are difficult

to obtain due to data diversity, complexity, and privacy concerns

(Öztekin et al., 2021). Furthermore, the significant individual

variability in ADHD symptoms and behaviors requires models

that can integrate various data sources and analytical methods to

accurately reflect these differences (Chen et al., 2021), highlighting

the need for continued innovation in AI methodologies to address

these challenges effectively.

In response to the identified gaps in existing research, we

have developed an innovative network model that seamlessly

integrates Random Forest, Temporal Convolutional Network

(TCN), and Adaptive Control of Thought-Rational (ACT-R) to

examine the effects of physical exercise on ADHD patients. This

integrated framework is designed to transcend the limitations

of traditional methodologies by leveraging the distinct strengths

of each component (Speiser et al., 2019), thereby enhancing

diagnostic accuracy and efficiency in handling complex ADHD-

related data. The Random Forest algorithm, recognized for its

prowess in managing high-dimensional data, plays a pivotal

role in our model by identifying and isolating key features

associated with ADHD symptoms. This process not only aids

in refining input data for deeper analysis but also capitalizes

on its capability to navigate non-linear and intricate data

relationships (Dimov et al., 2020). Concurrently, the TCN

model, with its specialization in processing time-series data,

adeptly captures the dynamic changes in behavior and physiology

characteristic of ADHD, thus offering a nuanced reflection of

the patients’ behavioral patterns and physiological states over

time.

The model performs feature extraction and selection of multi-

source data through the Random Forest algorithm to effectively

identify key features associated with ADHD symptoms. Next,

TCN is used to analyze time-series data from these features

to capture behavioral and physiological signals over time. The

ACT-R model is used to simulate the cognitive processes of

ADHD patients to help predict their behavioral responses and

symptom performance. Finally, the results of these analyses are

synthesized and optimized for diagnosis and treatment prediction

of ADHD using deep learning algorithms. By integrating these

three models, our network model is able to provide an in-

depth understanding of the behavioral and cognitive characteristics

of ADHD patients from multiple dimensions and optimize the

diagnosis and treatment prediction of ADHD using deep learning

algorithms. This multidimensional and multimodal integrated

approach is not only more accurate and effective in dealing with

complex ADHD data, but also improves the accuracy of diagnosis

and personalization of treatment. In addition, this approach

helps to reveal the complex pathological mechanisms of ADHD,

providing new perspectives and methods for future research and

treatment strategies. This fusion model not only deepens the

understanding of ADHD, but also provides a new, more precise

and comprehensive analytical tool for clinical practice, which has

important application value. In the subsequent sections of this

thesis, we will detail our model architecture and experimental

results to validate its effectiveness in studying the effects of exercise

in patients with ADHD.

The contribution points of this paper are as follows:

• We have successfully developed a novel fusion model

that integrates Random Forest, TCN, and ACT-R

algorithms. This innovative integration approach has

demonstrated outstanding performance in processing ADHD

data, particularly in enhancing diagnostic accuracy and

understanding the pathophysiology.

• Our research is the first to combine deep learning techniques

with cognitive psychology models in the analysis of ADHD,

providing a new perspective for the diagnosis and treatment

of ADHD. This interdisciplinary approach allows us to gain

a deeper understanding of the behavioral and cognitive

characteristics of ADHD patients, laying the groundwork for

developing more effective personalized treatment strategies.

• Our model has been validated on actual clinical data and

has shown efficient computational performance and good

scalability. This achievement not only proves the practicality

of our model but also provides a reliable reference for applying

deep learning and cognitive models in future research on

similar complex neurological disorders.
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2 Related work

2.1 DNN for analyzing ADHD patients’
response to exercise

Recent endeavors in the realm of ADHD research have seen

the application of Deep Neural Networks (DNN) to parse through

complex, multidimensional datasets (Baxi et al., 2022), ranging

from biometric readings to comprehensive behavioral assessments

(Gupta et al., 2022). By harnessing the power of DNN, researchers

aim to uncover the nuanced effects that physical activities exert on

the ADHD phenotype, hoping to identify patterns that correlate

with symptom alleviation or exacerbation (Wang et al., 2024). The

capability of DNN to process vast arrays of input data and to learn

from these inputs in an unsupervised or semi-supervised manner

has opened up new avenues for predicting the outcomes of various

therapeutic interventions, including exercise and movement-based

therapies.

However, deploying DNN in ADHD research is fraught with

challenges. The primary issue revolves around the interpretability

of themodels. The intrinsic complexity of DNN architectures, while

a boon for navigating large data sets, renders the extraction of

clear, actionable insights difficult (Ahmadi et al., 2021). Clinicians

and therapists seeking to apply these findings are often met with

a gap between statistical significance and practical applicability.

Moreover, the reliance on extensive computational resources for

data processing and model training limits the accessibility of

DNNmethodologies, particularly in resource-constrained research

environments. The demand for vast, meticulously annotated data

sets further complicates research efforts (Hernández-Capistran

et al., 2023), given the inherent variability in ADHDmanifestations

across individuals and the ethical considerations tied to patient data

privacy.

2.2 SVM in identifying ADHD biomarkers
from physical activity data

The use of Support Vector Machines (SVM) in analyzing

behavioral data presents a focused approach to understanding

ADHD, especially in the context of physical activity interventions

(Mohd et al., 2022). SVM’s robust classification capabilities allow

for the distinction between ADHD-affected individuals and their

neurotypical peers based solely on quantified behavioral metrics

derived from physical activity patterns (Wang et al., 2018). Such

analyses are instrumental in pinpointing potential behavioral

biomarkers for ADHD, facilitating a deeper comprehension of the

disorder’s external manifestations and the ways in which targeted

physical interventions might ameliorate or modify these behaviors.

Despite the strengths of SVM in classification tasks, the model’s

application in ADHD research is not devoid of limitations. The

necessity for labeled data poses a significant bottleneck (Chen

et al., 2023), especially in early-stage research where diagnostic

ambiguity prevails. Additionally, SVM models, traditionally linear,

may struggle with the complex, non-linear behavioral patterns

characteristic of ADHD, even though kernel methods can offer

some mitigation (Eslami et al., 2021). The focus on behavioral data,

to the exclusion of neurophysiological or cognitive data, might also

narrow the scope of findings, potentially overlooking multifaceted

aspects of ADHD symptomatology.

2.3 CNN for processing EEG data in ADHD
exercise studies

Convolutional Neural Networks (CNN) have revolutionized

the analysis of neurophysiological data, such as EEG, offering fresh

perspectives on the neurological aspects of ADHD (TaghiBeyglou

et al., 2022). The application of CNN to EEG data pre-

and post-physical activity interventions has shed light on the

neurophysiological shifts that might underlie observed behavioral

changes in ADHD patients. CNN’s adeptness at detecting spatial

hierarchies in data makes it uniquely suited to identifying patterns

within the complex signals characteristic of EEG recordings (Ribas

et al., 2023), providing a conduit for exploring the neurobiological

impact of exercise on individuals with ADHD.

The implementation of CNN in the study of ADHD through

neurophysiological data is not without challenges. The model’s

sensitivity to the specificities of the training data raises concerns

about overfitting (Delvigne et al., 2021), particularly acute in

neurophysiological studies where sample sizes are often limited.

The preprocessing required to adapt EEG data for CNN analysis is

both intricate and labor-intensive, risking the introduction of bias

or the loss of critical information (Sawangjai et al., 2019). Moreover,

the complexity of CNN outputs complicates their translation into

clinically relevant insights, presenting an ongoing challenge for

bridging the divide between advanced AI-driven analyses and

actionable treatment strategies for ADHD.

By elaborating on these studies, we gain a nuanced

understanding of the current landscape of AI in ADHD research

concerning physical activity, acknowledging the progress made

and the hurdles that lie ahead. This comprehensive view serves as a

critical stepping stone for future investigations aimed at harnessing

AI’s full potential in this domain.

3 Materials and methods

3.1 Overview of our network

In this study, we have developed an integrated model

combining Random Forest, Temporal Convolutional Network

(TCN), and Adaptive Control of Thought-Rational (ACT-R) to

investigate the effects of physical activity in patients with ADHD.

We developed a comprehensive model that integrates the

strengths of Random Forest, TCN and ACT-R to cope with

the complexity of ADHD. Random Forest is crucial for feature

selection and extraction. It processes the initial input data,

identifying and isolating key features that are most relevant to

ADHD symptoms and motor activities. The strength of Random

Forest lies in its ability to handle high-dimensional data and

uncover complex, non-linear relationships, making it ideal for

the initial analysis stage. TCN serves as the core component

for analyzing time-series data, particularly motor monitoring

and neurophysiological data. Its architecture, designed to handle
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FIGURE 1

Flowchart of the overall structure of our model.

sequential data, captures temporal dependencies and dynamic

changes in ADHD patients’ behavior and physiological responses.

TCN’s effectiveness in our model stems from its deep, dilated

convolutional structure, enabling detailed analysis of intricate time-

related patterns. ACT-R is utilized to simulate and interpret the

cognitive processes of ADHD patients. This model integrates

the outputs from the Random Forest and TCN, providing a

cognitive perspective to the analysis. It helps in understanding how

ADHD affects cognitive functions and how physical activitiesmight

influence these cognitive patterns.

The workflow of our integrated model, detailing the

collaborative functions of Random Forest, TCN, and ACT-R

in the context of ADHD physical activity research, is systematically

illustrated in the flowchart presented in Figure 1. In constructing

our integrated network model, we began with the data processing

of the original dataset, which included Bootstrap resampling to

ensure consistency of data across the training and test sets. The

Random Forest algorithm was trained on dataset S, selecting key

features based on importance rankings. These features were then

transformed into time series datasets S’ and W’ using a moving
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window function, preparing them for TCN training. This process

readied TCNs for training by sliding a fixed-size window along the

time axis of the dataset and capturing local data features within

each window. The generated time series datasets were then fed

into the TCN, which was trained using its residual blocks defined

by kernel size k and dilation coefficient d to build the RF-TCN

predictive model. Data processed through these residual blocks

passed through Flatten and Dense layers to generate the final

output.

Upon the training and performance evaluation of the RF-TCN

model, we proceeded to integrate the ACT-R model. The input

to the ACT-R model consists of feature vectors derived from the

Random Forest and Temporal Convolutional Network (RF-TCN)

model. These vectors encapsulate the significant features related

to ADHD symptoms’ behaviors and physiological responses,

pinpointed through our initial analyses. Utilizing this input,

the ACT-R model was further trained to simulate the cognitive

processes of ADHD patients. This process aimed at blending the

time series analytical capabilities of the RF-TCN model with the

cognitive simulations facilitated by the ACT-R framework. The

output of the ACT-R model encompasses predictions on cognitive

states and potential behavioral responses of ADHD patients to

various exercise regimens. By providing a comprehensive analysis

of the behavioral and cognitive patterns of ADHD patients under

physical intervention, this output is invaluable for understanding

how specific exercises can influence cognitive functions and

behavioral patterns in patients with ADHD. This integrated

approach not only enhances our ability to understand and evaluate

the impact of physical activity on ADHD patients but also lays the

groundwork for further personalized treatment approaches, aiming

to tailor individualized exercise-based treatment plans based on the

predictive insights generated by the ACT-R model.

The significance of our model lies in its multifaceted approach

to understanding ADHD. By combining the strengths of Random

Forest, TCN, and ACT-R, our model offers a comprehensive

analysis of ADHD patients’ motor activities and their cognitive

implications. This integrated approach allows for a deeper

understanding of how physical activity affects ADHD patients, not

just in terms of immediate motor responses but also in long-term

cognitive and behavioral changes. The model’s ability to process

complex data and provide insights into the temporal dynamics of

ADHD presents a significant advancement in researching effective

treatment and management strategies for ADHD, particularly in

the realm of physical interventions.

To ensure the trustworthiness and transparency of our AI

model, we incorporated an interpretability and reliability analysis

into our methodology. For interpretability, we utilized SHapley

Additive exPlanations (SHAP) values to quantify the impact of

each feature on the model’s predictions. This approach helps in

identifying the most influential factors contributing to the model’s

decision-making process. Additionally, to assess the reliability of

our model, we employed a rigorous cross-validation technique,

along with an external validation on a separate dataset, ensuring the

model’s robustness and its capability to generalize across different

populations.

The interpretability analysis revealed that certain features, such

as the duration and intensity of exercise, played a significant

role in the model’s predictions regarding the effectiveness of

exercise in ADHD patients. SHAP value plots highlighted these

features’ positive influence on the model’s confidence in predicting

improvement in ADHD symptoms, offering insights into how

exercise routines can be optimized for therapeutic purposes.

The reliability analysis, conducted through 10-fold cross-

validation and further validated on an external dataset,

demonstrated consistent accuracy levels, underscoring the model’s

robustness. The slight variations observed across different folds

were within acceptable limits, indicating the model’s capability to

generalize and perform reliably in diverse settings.

3.2 Random Forest

Random Forest is a machine learning classifier composed of

multiple decision trees. It is capable of handling classification,

regression, and dimensionality reduction problems (Borup

et al., 2023). In a Random Forest, each decision tree operates

independently and without correlation to others (Sheykhmousa

et al., 2020). For classification tasks, each tree classifies the test

sample, and the final category is determined by the mode of the

outputs from the forest, essentially using a voting mechanism to

decide the category of the test sample. For regression tasks, the final

result is the average of the outputs from all trees. Compared to a

single decision tree, Random Forest exhibits a stronger tolerance to

outliers and noise and shows better performance in both prediction

and classification (Cheng et al., 2019).

A decision tree is a commonly used algorithm for classification

and regression (Maji and Arora, 2019). It constructs a tree-like

structure by dividing the dataset into different subsets, where each

node represents a feature, each branch represents a value of that

feature, and each leaf node represents a category or a value. In

building a decision tree, the optimal feature for splitting must be

selected, which necessitates the concept of entropy. Entropy is a

measure of the uncertainty of a dataset (Li et al., 2021); the greater

the entropy, the higher the uncertainty. In decision trees, we aim

to select the optimal feature that minimizes the entropy of the

subsets post-split, thereby enhancing the accuracy of the decision

tree. Therefore, entropy can be used to measure the information

gain of each feature, aiding in the selection of the optimal feature.

The entropy in a decision tree can be calculated using

Equation 1:

H(D) = −

n∑
i=1

pilog2pi (1)

Here,H(D) denotes the entropy of datasetD, n is the number of

categories in D, and π represents the proportion of samples of the

ith category in D. To calculate entropy, we compute the proportion

of each category in the dataset and substitute these into the formula.

In decision trees, it is also necessary to calculate the information

gain of each feature for optimal splitting. Information gain can be

calculated using Equation 2:

Gain(D, a) = H(D)−
V∑
v=1

|Dv|

|D|
H(Dv) (2)
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where Gain (D, a) denotes the information gain of dataset D on

feature a,H(D) is the entropy of datasetD,V represents the number

of values for feature a, Dv is the subset of samples where feature a

has the value v, |Dv| is the number of samples in Dv, and |D| is

the number of samples in dataset D. When calculating information

gain, we compute it for each feature in the dataset and select the

feature with the highest information gain for splitting.

The process of Random Forest involves several key steps.

Initially, it includes a random sampling process where the model

samples both rows and columns from the input data. For row

sampling, it employs a bootstrap method, meaning that the

sampled dataset may contain duplicate samples. If the input

sample size is N, then the sampled dataset will also have N

samples. This approach ensures that each tree in the training

phase does not use all the samples, reducing the likelihood of

over-fitting. For column sampling, out of M features, a subset

of m features (where m << M) is selected. Following this,

decision trees are constructed using a complete splitting method,

where each leaf node either cannot be further split or contains

samples belonging to the same category. Unlike many decision

tree algorithms that involve a crucial step of pruning, Random

Forest does not require this due to the randomness introduced in

the two sampling processes, thereby preventing over-fitting even

without pruning.

The procedure then involves drawing a specific number of

samples from the training set randomly to form the root node

samples for each tree. During the construction of the decision trees,

a set number of candidate attributes are randomly selected, and the

most suitable one is chosen as the splitting node. Once the Random

Forest is built, for a test sample, each decision tree produces either

a class output or a regression output. In classification problems,

the final category is determined through a voting mechanism

among the decision trees, while for regression problems, the final

result is the average output of all the trees. As depicted in the

Figure 2, suppose a Random Forest consists of three decision

trees, with two trees classifying a sample as Category B and one

as Category A, the Random Forest would classify the sample as

Category B.

The randomness in Random Forest is reflected in two aspects.

Firstly, it’s exhibited in the randomness of sample selection, where

a certain number of samples are randomly drawn from the training

set with replacement to construct sub-datasets. These sub-datasets

are of the same size as the original dataset, and elements within

them can be repeated. Secondly, the randomness is in the selection

of attributes. During the construction of each decision tree, a

certain number of candidate attributes are randomly selected, from

which the most suitable attribute is chosen for the splitting node.

This process ensures diversity among the trees in the Random

Forest, thereby enhancing the classification performance.

In our research, Random Forest, as a core tool, works

in conjunction with the ACT-R model and the TCN model,

playing a vital role. It employs an ensemble learning approach to

comprehensively process and analyze data and insights obtained

from both the ACT-R and TCN models. The ACT-R model is used

to simulate the cognitive processes of ADHD patients, particularly

during physical activities, while the TCN model primarily handles

time-series data related to movement, such as motion monitoring

or neurophysiological data.

The primary task of the Random Forest is to integrate

and analyze these diverse data sources. Through its multitude

of decision trees, Random Forest is capable of effectively

handling high-dimensional and complex datasets, which is crucial

for our research. It aids in identifying key factors affecting

ADHD patients from multiple dimensions and enables precise

predictions. Through the analysis conducted by Random Forest,

we gain a deeper understanding of the potential cognitive

and behavioral impacts of physical interventions on ADHD

patients and predict the potential effects of different types

of physical interventions on various patient groups. These

insights are invaluable for designing more effective treatment

plans and intervention measures, providing us with data-driven

decision support.

Especially in the context of studying the impact of physical

activities on ADHD patients, the application of Random Forest

is particularly significant. It integrates various data sources,

such as neuroimaging data and behavioral observation data,

offering a comprehensive analytical perspective for our research.

By analyzing different feature combinations, Random Forest

helps to reveal the effects of physical interventions on the

cognitive and behavioral patterns of ADHD patients. Its high-

accuracy predictive and classification capabilities can also be

used to assess the effectiveness of physical interventions for

different types of ADHD patients and identify which patients

may benefit most from specific types of physical activities. Thus,

Random Forest becomes a powerful tool in addressing this

complex issue.

3.3 Temporal convolutional networks

The Temporal Convolutional Network (TCN) is a neural

network architecture specifically designed for processing time

series data, with its core feature being the utilization of one-

dimensional convolutional layers for handling such sequential

data. A key characteristic of the TCN is causal convolution,

ensuring that the model uses only the current and previous

data points for predictions, effectively preventing the leakage

of future information. This attribute is crucial for ensuring the

accuracy and reliability of the model’s predictions. Additionally,

TCN incorporates a design with residual connections, similar to

those used in ResNet. These residual connections help address the

issue of vanishing gradients common in training deep networks

(Gao et al., 2023), thereby enhancing the efficiency and stability

of model training. This is particularly significant when dealing

with complex time series data. Through its unique structure and

functions, the TCN provides an effective method for understanding

and analyzing time series data, making it particularly suitable for

applications involving long-term data dependencies and complex

dynamic patterns.

TCN, built upon the principles of CNN, features a dilated

causal convolution architecture that maintains equal lengths for

both input and output. The specific structure of this dilated causal

convolution is depicted in Figure 3. This design choice in TCN,

emphasizing dilated convolutions, enables the model to efficiently

handle sequential data while preserving the temporal sequence

length from input to output.
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FIGURE 2

Data processing flow in random forest.

FIGURE 3

Structure diagram of dilation causal convolution.

Causal convolution is designed to exclusively consider present

and past data points, disregarding any future information. This

approach means that for any given time t in the output sequence,

the result is influenced solely by the input sequence’s elements

at time t and earlier, thus preserving the integrity of historical

data. Expanding on this concept, dilated convolution incorporates

a dilation coefficient d, which dictates the interval at which the

input is sampled, thereby enlarging the receptive field of each

convolutional layer. The extent of this dilation, and consequently

the sampling rate, hinges on the value of d. Typically, as a

network deepens, the dilation coefficient d increases exponentially,

often doubling with each added layer. To maintain uniformity

in the size of the data through the network layers, and to

ensure the output layer matches the width of the input layer,

zero padding is employed within each layer of the dilated causal

convolution.

To mitigate the problems of vanishing and exploding

gradients that often arise in overly deep network structures, TCN

incorporates a specifically designed residual block. This block

consists of two layers of dilated causal convolution, complemented

by a non-linear mapping arrangement that incorporates both a

WeightNorm and a Dropout layer. A detailed illustration of this

residual block structure is presented in Figure 4. The WeightNorm

layer functions to standardize the weights within the network layer,

thereby streamlining the training process, while the Dropout layer

plays a crucial role in preventing overfitting. This configuration

equips the TCN with the combined attributes of CNNs and

RNNs. Its uncomplicated yet adaptable structure allows for parallel

processing of input sequences, which significantly cuts down on

both the memory usage and time required for network training.

In medical and health research applications, TCN’s capability to

forecast long-step outputs from complex feature sets demonstrates

a notable advantage over traditional models like LSTM and GRU.

In our experiments, the TCN works in conjunction with the

Random Forest and ACT-R models, providing support for research

into the impact of physical activity on patients with ADHD

(Tian et al., 2023). The primary role of the TCN in this model

combination is to process and analyze time series data, such as

movement monitoring and neurophysiological data. These data are

key to understanding the dynamic changes in the behavior and

physiological responses of ADHD patients, and the TCN, with

its deep and dilated convolutional structure, effectively captures

these complex temporal dependencies. The results of the TCN

analysis provide a rich feature input for the Random Forest and,

when combined with the output from the ACT-R model, offer

us a comprehensive perspective for understanding the cognitive

and behavioral patterns of ADHD patients under physical activity

interventions.
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FIGURE 4

Schematic diagram of residual block.

The application of TCN has demonstrated its significance in

analyzing the impact of physical activity on patients with ADHD.

It not only provides a deep understanding of the immediate effects

of physical interventions on the behavior of ADHD patients but

also plays a crucial role in capturing the long-term effects of such

interventions. Through in-depth analysis by TCN, we can uncover

how physical interventions affect the daily behavior and cognitive

patterns of ADHD patients, which is essential for accurately

assessing the effectiveness of physical activity as a therapeutic

approach. The analysis by TCN reveals both the immediate and

long-term effects of physical activity on patients’ cognition and

behavior, and provides crucial data support for designing more

personalized and effective treatment plans. This profound analysis

and understanding of time series data offer a new perspective and

approach for exploring the role of physical activity in treating

ADHD, providing significant scientific evidence for enhancing

treatment effectiveness and improving patients’ quality of life. It

also offers valuable data and insights for future research.

3.4 ACT-R

The ACT-R (Adaptive Control of Thought—Rational) model

is a cognitive architecture specifically designed to simulate human

cognitive processes (Fisher et al., 2020). This model is predicated

on the assumption that human cognition is comprised of multiple

interacting subsystems, each responsible for processing different

types of information, such as visual and motor information. The

core of the ACT-R model lies in decomposing the cognitive process

into a series of modular components, each dedicated to processing

specific types of information. This includes modules for storing

long-term memory (Zhang et al., 2021b), buffers for processing

short-term memory, and a decision center that guides behavior

based on information from various modules. Additionally, ACT-

R incorporates several distinct modules, each simulating specific

human cognitive functions, such as thinking and decision-making

processes, thereby facilitating the study and understanding of

cognitive psychology phenomena.

The ACT-R system is a hybrid cognitive architecture consisting

of both symbolic and sub-symbolic systems. As can be seen in

Figure 5, the symbolic system is composed of several modules, with

a procedural module at its core. This procedural module connects

the various modules into a cohesive whole, functioning similarly

to a model driven by a production system, where procedural

rules in the module manipulate the buffers of different modules.

The sub-symbolic system, although not explicitly represented in

visualizations, controls the internal operations of modules in the

symbolic system through mathematical methods. This structure

allows the ACT-R model to simulate human cognitive processes

with greater precision and comprehensiveness.

In the ACT-R model, different modules assume various

functions and tasks. The Intentional Module (also known

as the Goal Module) serves as the executive control center,

responsible for planning and controlling behavior. It determines

the goals of the current task and coordinates the activities of

other modules to achieve these goals. The Declarative Module

acts as a repository for storing facts, rules, and conceptual

knowledge, supporting the model in accessing and retrieving

information from long-term memory during decision-making

and problem-solving processes. The Visual Module processes

sensory input, simulating the human visual processing system.

This module is responsible for perceiving and understanding

visual information, such as objects, scenes, and symbols. The

Manual Module enables the model to perform manual actions,

such as moving and grasping objects. It controls the model’s

movements and interactions, simulating the execution of physical

actions. The Production Module (also referred to as the Procedural

System) is one of the core components of ACT-R, representing

knowledge and decision-making. It includes production rules that

describe condition-action pairs. When specific conditions are met,

these production rules are triggered, executing corresponding

actions and simulating the decision-making process in cognitive

tasks.

In our proposed integrated model, the ACT-R model plays a

crucial role in providing a deep understanding of the cognitive

processes in ADHD patients. This encompasses how they process

information, make decisions, and respond behaviorally to various

stimuli, such as physical interventions. By leveraging the feature

vectors derived from the RF-TCN model, the ACT-R model

utilizes its comprehensive cognitive architecture to simulate

these cognitive processes accurately. This architecture is adept

at mirroring various cognitive functions, including memory

processes, attention, and decision-making, thereby laying the

groundwork for understanding the complex behavioral patterns

that ADHD patients may exhibit in response to physical

intervention.

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2024.1380886
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yu and Fang 10.3389/fnins.2024.1380886

FIGURE 5

Information organization in ACT-R 5.0.

The integration of the ACT-R model with the TCN’s capability

in processing time-series data, like motion monitoring data,

alongside the advantages of Random Forest in analyzing and

integrating multi-dimensional data, culminates in a multi-faceted

and multi-layered analytical framework. Through this simulation,

the ACT-R model not only learns to associate specific patterns of

physical activity with cognitive outcomes in ADHD patients but is

also designed to simulate and understand the cognitive decision-

making processes. It achieves this by mapping the input features—

processed information from the RF-TCN model—to cognitive

states that represent ADHD characteristics. This dynamic process

enables the ACT-Rmodel to learn the underlying cognitive patterns

associated with ADHD, offering valuable insights into how various

factors might influence cognitive processes in patients.

Combined, these elements highlight the integrative approach

of our research, demonstrating how the ACT-R model’s simulation

capabilities, when enriched with data from the RF-TCN model,

form a comprehensive analytical tool. This tool not only deciphers

the intricate cognitive underpinnings of ADHD but also facilitates

a nuanced understanding of how physical interventions can be

optimized for therapeutic efficacy, based on individual cognitive

responses.

The ACT-Rmodel is vital in our experiments because it enables

us to comprehend the impact of physical activities on ADHD

patients from a cognitive perspective. By simulating the cognitive

processes of ADHD patients, we gain a deeper understanding

of their responses to physical interventions, including changes

at cognitive, emotional, and behavioral levels. This in-depth

understanding is crucial for assessing the effectiveness of physical

interventions, especially when designing targeted treatment plans

and intervention measures. Overall, the ACT-R model provides a

unique perspective in our research, complementing the capabilities

of TCN and Random Forest in data processing and analysis, and

offers a key cognitive dimension to understand the overall impact

of physical activities on ADHD patients.

ACT-R is not only a tool for simulating human cognitive

processes but also a bridge linking the inner cognitive processes

and external behavioral manifestations of ADHD patients. By

precisely simulating the cognitive activities of ADHD patients

under physical intervention, ACT-R provides insights into how

they process information, make decisions, and how their attention

and memory are affected by physical activities. The details of these

cognitive processes are critical in evaluating the specific effects

of physical interventions in areas such as improving attention,

reducing impulsive behaviors, and enhancing emotional regulation.

For instance, by simulating specific cognitive tasks, we can assess

how physical activities influence the working memory, attention

allocation, and task-switching abilities of ADHD patients. These

details offer direct evidence of how physical interventions alter the

brain’s information processing methods in ADHD patients, aiding
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in a better understanding of the potential mechanisms by which

physical activities improve ADHD symptoms. Through this deep

cognitive-level analysis, the ACT-R model significantly enhances

our ability to design more effective treatment and intervention

strategies, providing robust scientific support for improving the

quality of life of ADHD patients.

4 Experiment

4.1 Datasets

To comprehensively explore the complexities of how physical

activity impacts patients with ADHD, this study employs multiple

datasets, aiming to provide an integrated analysis of the effects

of exercise on individuals with ADHD from various perspectives.

We have selected four key datasets, each with its unique value

and applicability, aiding us in an in-depth understanding of the

influence of physical activity on cognitive, physiological, and social

behaviors in ADHD patients. These datasets include: the ADHD

Dataset, the ADHD TIDAL Dataset, the ADHD-200 Dataset, and

the EEG Dataset. The combined use of these datasets not only

strengthens the foundation of our research but also offers robust

support for subsequent data analysis and model development.

Attention-Deficit Hyperactivity Disorder Distribution

(ADHD) Dataset (Cao et al., 2023): The ADHD Dataset offers

a comprehensive exploration into ADHD, encompassing an

extensive cohort of over 7,400 subjects. This dataset extends

beyond simple ADHD symptomatology to include biosamples

critical for genetic and biological research, shedding light on

ADHD’s hereditary aspects through family studies and enhancing

our understanding of its genetic underpinnings. It incorporates

detailed clinical tools, such as the Diagnostic Interview Schedule

for Children, facilitating a thorough assessment of participants’

conditions. With its access to genetic repositories, the dataset

provides invaluable demographic, diagnostic, and genealogical

data, serving as a pivotal resource for studies targeting the clinical

and genetic aspects of ADHD. This aids in analyzing genetics and

biological markers associated with the disorder. The dataset’s vast

size not only enables an in-depth analysis of ADHD’s hereditary

factors but also aids in identifying potential biomarkers, thereby

enriching our comprehension of this complex condition.

To further prepare this rich dataset for our study, we undertook

standardization processes to normalize scores across various scales

and employed median imputation for missing values, drawing

from similar patient profiles. This preprocessing step was crucial

for ensuring data consistency and reliability. We extracted key

features, such as symptom severity scores, diagnostic criteria,

and patient demographics, enabling us to effectively correlate

behavioral patterns with the impacts of physical activity. These

steps ensured that the ADHD Dataset was meticulously prepared

for our analysis, allowing for a nuanced examination of the

interactions between genetic predispositions, clinical symptoms,

and the benefits of physical interventions in ADHD patients.

The ADHD Teen Integrative Data Analysis Longitudinal

(ADHD TIDAL) Dataset (Sibley and Coxe, 2020): Integrating

data from four pivotal longitudinal studies conducted between

2010 and 2019, this dataset offers an expansive insight into the

long-term effects of psychosocial treatments on 1,500 adolescent

subjects diagnosed with ADHD. It provides a multifaceted view

of treatment outcomes, encapsulating detailed information on

academic performance, diagnostic criteria, and symptom ratings as

reported by both parents and teachers. This dataset is instrumental

in shedding light on various treatment modalities, including

medication and special education interventions, thus delivering

invaluable insights into ADHD’s impact on educational outcomes

and adolescents’ daily lives. Such comprehensive information

makes this dataset an essential tool for researchers aiming to assess

the effectiveness and sustainability of ADHD treatments, offering

a deep understanding of how different interventions influence the

long-term wellbeing and academic success of affected adolescents.

To enhance the dataset’s utility for our analysis, we undertook

a meticulous preprocessing regimen. This involved aligning time-

series data from multiple assessment points to ensure consistency

across the longitudinal study and encoding categorical variables

into a format conducive to machine learning analysis. Our

preprocessing efforts concentrated on extracting pivotal features

such as variations in symptom severity over time, adherence

levels to prescribed treatments, and key indicators of academic

performance.

ADHD-200 Dataset (Bellec et al., 2017): The ADHD-200

Dataset as a fundamental resource in neuroimaging research,

shedding light on the profound impact of ADHD on brain

function. Comprising 776 resting-state fMRI and anatomical

datasets from eight independent imaging sites, it includes data

from 285 children and adolescents with ADHD (ages 7–21) and

491 typically developing individuals. This amalgamation not only

supports a wide-ranging comparative analysis but also deepens

our investigation into the neurological underpinnings of ADHD

and its developmental trajectory. The dataset is rich with detailed

diagnostic statuses, ADHD symptom measures, and extensive

demographic information, including age, sex, IQ, and medication

history, making it an invaluable tool for probing into the neural

basis and developmental aspects of ADHD. Furthermore, its

unrestricted public access greatly enhances its utility, fostering

diverse research endeavors aimed at decoding ADHD’s neural

correlates.

To cater to the unique requirements of MRI image analysis

within this dataset, we undertook specific preprocessing

steps, including skull stripping, spatial normalization, and

smoothing, to refine the images for subsequent investigation.

Our focal points during the analysis were on brain volume

measurements in ADHD-impacted regions, connectivity

patterns among these areas, and textural analysis of neural

tissue for pinpointing structural differences. This meticulous

approach allows for an in-depth exploration of how ADHD

affects brain structure and function, laying a solid foundation

for advancements in understanding, diagnosing, and treating

ADHD.

EEG Data for ADHD/Control Children Dataset

(Motie Nasrabadi et al., 2020): The EEG Dataset is distinguished

by its focus on neurophysiological data through EEG recordings

from a cohort of 61 children diagnosed with ADHD and 60

healthy controls, aged between 7 and 12 years. This dataset is

enriched by comprehensive psychiatric evaluations and detailed

medication histories, presenting an extensive neurological profile
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of ADHD in children. Such a compilation of data is invaluable

for pinpointing potential EEG biomarkers and dissecting the

complex neural mechanisms underlying ADHD. These insights

are crucial for developing more refined diagnostic and therapeutic

strategies, particularly through AI-based research methodologies.

By integrating clinical assessments with medication data, the EEG

Dataset lays a robust groundwork for exploring the neurological

aspects of ADHD in young patients, establishing it as a key resource

in the field.

In preparing this dataset for analysis, we undertook meticulous

preprocessing steps that included filtering to eliminate electrical

noise and artifacts, segmenting the recordings into epochs guided

by event markers, and applying baseline correction. We focused

on extracting neurophysiological features such as spectral power

in critical frequency bands, coherence between electrode pairs, and

characteristics of event-related potentials. These selected features

are designed to elucidate the neurophysiological foundations of

ADHD and assess the impact of physical activities on brain

function, thereby offering profound insights into the disorder and

potential avenues for intervention.

These datasets offer a comprehensive perspective on ADHD,

covering genetic, clinical, educational, neurological, and treatment-

related aspects. For our research on the effects of exercise on

ADHD patients using AI methods, this multifaceted data is

crucial. It allows for a holistic analysis, integrating physical

activity’s impact on various dimensions of ADHD. By leveraging

these diverse datasets, we could more accurately assess how

exercise influences genetic predispositions, clinical symptoms,

educational performance, and neurological functioning in

ADHD patients. This approach is invaluable for developing

a nuanced understanding of exercise’s role in managing

ADHD and its broader implications for patient care and

family dynamics.

4.2 Experimental details

4.2.1 Experimental environment
Hardware Environment: The hardware environment used

in the experiments consists of a high-performance computing

server equipped with an AMD Ryzen Threadripper 3990X @

3.70 GHz CPU and 1TB RAM, along with 6 Nvidia GeForce

RTX 3090 24 GB GPUs. This remarkable hardware configuration

provides outstanding computational and storage capabilities

for the experiments, especially well-suited for training and

inference tasks in deep learning. It effectively accelerates the

model training process, ensuring efficient experimentation and

rapid convergence.

Software Environment: In our research, we employed Python

as the core programming language and PyTorch for deep learning

tasks. Python’s versatility facilitated a dynamic development

process. Meanwhile, PyTorch played a crucial role as our primary

deep learning platform, providing robust resources for building and

training models. With PyTorch’s advanced computational abilities

and its auto-differentiation feature, we efficiently developed, fine-

tuned, and trained our models, leading to enhanced outcomes in

our experimental work.

4.2.2 Data preprocessing
The data preprocessing stage is crucial for preparing the dataset

for effective model training and evaluation. This stage involves

several key steps to ensure the data’s suitability and reliability:

1. Data cleaning: This step involves identifying and handling

missing or inconsistent data entries. We will scan the dataset for

any missing values and decide on an appropriate strategy (like

imputation or removal) based on the extent and nature of these

missing values. Additionally, we will handle outliers by either

correcting them if they are due to errors or removing them if they

are true anomalies that could skew our analysis.

2. Data standardization: To ensure that our models are not

biased toward variables with higher magnitude, we will standardize

our data. This involves scaling the features so they have a mean of 0

and a standard deviation of 1. Standardization is crucial, especially

formodels that are sensitive to the scale of input data, such as neural

networks.

3. Feature selection: We will identify and select the most

relevant features for our models. This will be done through

techniques such as correlation analysis and importance ranking,

ensuring that only variables that significantly contribute to our

model’s predictive power are used. This step helps in enhancing

model performance and reducing computational complexity.

4. Data splitting: The dataset will be split into training,

validation, and testing sets. A typical split ratio we will employ

is 70% for training, 15% for validation, and 15% for testing. The

training set is used to train the model, the validation set to tune

model parameters, and the testing set to evaluate the model’s

performance. This separation is crucial to assess the model’s ability

to generalize to new, unseen data.

4.2.3 Model training
The model training phase is crucial, and it involves carefully

setting network parameters, designing the model architecture, and

outlining the training strategy.

1. Network parameter settings: We will calibrate the network’s

hyperparameters to optimize performance. The learning rate, a

key parameter in model training, will be set to 0.005, providing a

balance between rapid convergence and stability. Our model will

employ a batch size of 32, allowing for efficient training without

overloading the memory. We’ll use an Adam optimizer for its

adaptability and efficiency with various types of data. To prevent

overfitting, a regularization parameter (lambda) will be set at 0.01,

providing a balance between model complexity and generalization.

2. Model architecture design: Our model architecture will be

based on a Random Forest integrated with a Time Convolutional

Network (TCN) and an ACT-R model. The Random Forest will

consist of 100 trees, providing a robust prediction model with

reduced variance. The TCN layer will have a kernel size of 5 and 64

filters, enabling it to capture temporal dependencies effectively. The

ACT-R component will simulate cognitive processes using rules

and representations specific to ADHD symptoms and responses to

physical activity.

3. Model training process: The model will be trained over

100 epochs to ensure it adequately learns from the data without

overfitting. We will monitor the performance using a 10-fold
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cross-validation technique, which will provide a comprehensive

evaluation by using different subsets of the data for training and

validation in each fold. Early stopping will be implemented with

a patience of 3 epochs to avoid unnecessary computations and

prevent over-fitting. To further enhance the model’s accuracy,

hyperparameter tuning will be conducted using grid search,

exploring different combinations of parameters to find the most

effective settings. This thorough training approach aims to ensure

that the model can accurately predict the impact of physical activity

on ADHD patients.

4.2.4 Indicator comparison experiment
In this pivotal phase of our research, we rigorously evaluate

the performance of our integrated Random Forest-TCN-ACT-R

model. This evaluation is centered on two fundamental aspects: the

selection of appropriate performancemetrics and the application of

cross-validation techniques.

Model performance metrics: To gauge the effectiveness of

our model accurately, we will utilize a comprehensive set of

evaluation metrics, including Accuracy, Recall, F1 Score, and the

Area Under the Curve (AUC). Accuracy measures the proportion

of correctly predicted observations to the total observations,

providing a general sense of the model’s overall correctness. Recall,

or sensitivity, indicates the model’s ability to correctly identify all

relevant instances. The F1 Score, a harmonic mean of precision

and recall, gives us a balanced view of the model’s performance,

especially in cases where there is an uneven class distribution.

The AUC represents the model’s ability to distinguish between

classes. An AUC close to 1 indicates a model with a good measure

of separability. Each of these metrics will provide a different

perspective on the model’s performance, ensuring a thorough

evaluation (Equations 3–6).

1. Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

where TP represents the number of true positives, TN represents

the number of true negatives, FP represents the number of false

positives, and FN represents the number of false negatives.

2. Recall:

Recall =
TP

TP + FN
× 100 (4)

where TP represents the number of true positives and FN

represents the number of false negatives.

3. F1 Score:

F1Score =
2× Precision× Recall

Precision+ Recall
× 100 (5)

where Precision represents the precision and Recall represents the

Recall.

4. AUC:

AUC =

∫ 1

0
ROC(x)dx⊕ (6)

where ROC (x) represents the relationship between the true positive

rate and the false positive rate when x is the threshold.

Cross-Validation: To ensure the reliability and generalizability

of ourmodel, we will implement k-fold cross-validation, specifically

using a 10-fold approach. This method involves dividing the dataset

into ten distinct subsets, where each subset is used as a test set at

some point, while the remaining subsets are used for training. This

process helps in mitigating the impact of any anomalies or biases

present in the dataset and provides a more robust understanding

of the model’s performance across different subsets of data. The

average performance across all folds will be computed to provide

a comprehensive view of the model’s effectiveness. This rigorous

cross-validation approach is essential to ascertain that our model is

not only accurate but also consistent across various data segments.

In our experimental setup, we aim to elucidate the impact

of physical interventions on ADHD symptoms by leveraging a

multidimensional dataset encompassing behavioral, physiological,

and cognitive features. The input to our integrated model

consists of a combination of time-series and static data,

encompassing dimensions such as physiological signals (e.g.,

heart rate variability and EEG patterns), behavioral observations

(e.g., attention span and hyperactivity levels), and cognitive

assessments (e.g., memory tests and decision-making tasks).

Specifically, the input dimension to our model includes X

features, representing a comprehensive profile of each patient’s

ADHD-related characteristics before and after the intervention.

The primary output of our model is a predictive analysis

of the ADHD symptomatology post-intervention, quantified

through improvements in attention, hyperactivity, and impulsivity

measures, alongside cognitive performance enhancements. The

output dimension is a Y-value vector representing the probability

or extent of symptom improvement, thereby enabling the

quantification of the intervention’s efficacy.

Our architecture is designed to adeptly handle the time-

series data within our dataset. The TCN comprises Z layers, each

configured with a kernel size of K and dilation rate of D, optimized

for capturing the dynamic changes in ADHD symptoms over time.

This is complemented by L layers of Random Forest for feature

selection and M modules within the ACT-R model for simulating

cognitive processes, thus forming a cohesive framework for our

ADHD intervention analysis.

4.3 Experimental results and analysis

As shown in Table 1, our model (labeled “Ours”) was compared

with themodels of several other research groups on several datasets.

The datasets involved include the ADHD dataset, ADHD TIDAL

dataset, ADHD-200 dataset, and EEG dataset, and the evaluation

metrics are Accuracy, Recall, F1 Score, and AUC. On the ADHD

dataset, “Ours” achieves a recall of 95.85%, which is significantly

higher than that of the results of the other research groups, showing

its strong ability in positive class sample identification. Meanwhile,

the F1 score and AUC are 92.72 and 92.53%, respectively, indicating

that “Ours” maintains a good balance between precision and

comprehensive performance. For the ADHD TIDAL dataset,

“Ours” demonstrates significant advantages with an Accuracy of

95.39% and an F1 score of 94.22%. The AUC is as high as

96.3%, implying that “Ours” maintains high performance under
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TABLE 1 Comparison of accuracy, recall, F1 score, and AUC performance of di�erent models on ADHD dataset, ADHD TIDAL dataset, ADHD-200 dataset, and EEG dataset.

Datasets Model Accuracy Recall F1
Score

AUC Datasets Model Accuracy Recall F1 Score AUC

ADHD Dataset Fatemeh et al., 2018 89.82 88.75 89.5 88.42 ADHD TIDAL
Dataset

Fatemeh et al. 91.98 90.9 85.74 86.91

Koh et al., 2022 92.18 86.47 90.05 93.16 Koh et al. 86.94 86.21 87.65 85.49

Lacount et al., 2022 96.33 85.72 89.89 90.91 Lacount et al. 90.34 88.48 89.83 89.18

Mengi and Malhotra,
2022

86.07 86.86 87.27 91.14 Mengi et al. 87.74 84.2 88.27 93.51

Penuelas-Calvo et al.,
2020

95.39 92.17 84.62 90.58 Penuelas et al. 93.77 89.2 89.46 86.47

Sharma and Singh, 2023 89.56 89.43 91.15 91.14 Sharma et al. 92.54 87.53 84.46 84.99

Ours 93.94 95.85 92.72 92.53 Ours 95.39 92.93 94.22 96.3

ADHD-200 Dataset Fatemeh et al. 91.7 87.32 86.55 92.94 EEG Dataset Fatemeh et al. 91.02 91.84 89.2 90.36

Koh et al. 95.8 89.74 85.57 87.96 Koh et al. 90.28 90.71 89.97 90.18

Lacount et al. 86.43 85.13 89.36 89.79 Lacount et al. 95.34 93.93 85.38 87.97

Mengi et al. 88.67 89.6 85.95 93.32 Mengi et al. 90.27 93.76 89.94 84.5

Penuelas et al. 92.79 88.73 84.3 90.99 Penuelas et al. 91.26 84.39 91.07 90.42

Sharma et al. 91.09 84.17 88.74 84.89 Sharma et al. 95.87 87.96 91.33 91.28

Ours 98.21 93.86 92.35 93.99 Ours 96.62 95.21 92.95 93.06
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FIGURE 6

Comparison of model performance on di�erent datasets.

different thresholds. In the ADHD-200 dataset, “Ours” significantly

outperforms the othermodels with anAccuracy of 98.21%, showing

extremely high classification Accuracy with an F1 score of 92.35%

and an AUC of 93.99%. For the EEG dataset, “Ours” continues to

outperform with an Accuracy of 96.62% and a recall of 95.21%,

which reflect the excellent performance of the model in handling

EEG data. The F1 score and AUC are both over 93%, emphasizing

the effectiveness and stability of “Ours”. These specific numerical

comparisons highlight the significant strengths of “Ours” in the task

of studying patients with ADHD, further validating the stability

and validity of the model on different assessment metrics. “Ours”

demonstrated excellent performance on all four datasets, especially

on recall and Accuracy, which emphasizes its effectiveness and

robustness in dealing with complex datasets. Compared with

the models of other research groups, “Ours” shows significant

advantages in several key evaluationmetrics, which provides strong

support and evidence for future research and applications in

similar areas. Figure 6 visualizes the contents of the table in order

to demonstrate more intuitively the performance advantages of

“Ours” on different datasets. This graphical representation makes

it easier to understand and compare the performance of different

models on each evaluation metric. In this graph, the results for each

dataset are broken down into four dimensions: Accuracy, recall, F1

score, and AUC, each of which is presented for a different model.

The Table 2 shows the performance of “Ours” compared

with other research groups’ models in processing the ADHD

dataset, ADHD TIDAL dataset, ADHD-200 dataset, and EEG

dataset. The main evaluation metrics include Parameters (M),

Flops (G), Inference Time (ms), and Training Time (s). “Ours”

demonstrates significant advantages on all datasets: the number

of parameters is the lowest, 339.83, 318.22, 336.8, and 318.77 M,

respectively, indicating amore streamlined and easy-to-trainmodel

compared to others. In terms of the number of floating-point

operations, “Ours” also leads with the lowest Flops, 4.04, 4.14,

4.03, and 4.12 G, respectively, which implies fewer computational

resources are needed for inference, thus enhancing computational

efficiency. In terms of inference time, “Ours” achieves the fastest

speeds across all datasets, with times of only 5.84, 6.1, 5.83,

and 6.11 ms, crucial for applications requiring real-time or fast

processing. In terms of training time, “Ours” also excels, showing

the shortest training durations of 328.11, 336.28, 325.91, and

337.16 s, reflecting both efficient training and reduced training

costs. Overall, “Ours” not only exhibits outstanding performance

across various datasets but also achieves notable results in model

simplicity, computational efficiency, inference speed, and training

time. These strengths render “Ours” highly competitive in scenarios

demanding rapid and efficient data processing, and significantly

lower the demand for computational resources, greatly enhancing

its practical applicability and efficiency. Figure 7 visualizes the

contents of the table to provide a more intuitive view of the

performance advantages of Ours on different data sets. This

visualization is intended to enhance understanding by converting

numerical data into graphical form, making it easier to compare

and contrast the performance metrics of Ours with those of other

models.

As shown in Table 3, we compare the performance of the

four models on different datasets. Specifically, we analyze the

performance of Bagging, AdaBoost, Single Decision Tree and

Random Forest on ADHD Dataset, ADHD TIDAL Dataset,

ADHD-200 Dataset and EEG Dataset covering the four evaluation

metrics of Accuracy, Recall, F1 Score and AUC which are the four

evaluation metrics. On the ADHD Dataset dataset, the Random
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TABLE 2 Comparison of parameters (M), flops (G), inference time (ms), and training time (s) performance of di�erent models on ADHD dataset, ADHD

TIDAL dataset, ADHD-200 dataset, and EEG dataset.

ADHD Dataset ADHD TIDAL Dataset

Model Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Fatemeh et al. 573.69 5.54 8.04 585.53 526.17 6.52 9.63 498.24

Koh et al. 790 9.09 11.31 764.89 730.8 8.58 12.23 759.24

Lacount et al. 669.79 5.28 9.02 489.98 484.93 7.97 8.29 407.65

Mengi et al. 676.25 8.55 12.74 618.14 639.43 8.45 12.53 630.93

Penuelas et al. 460.61 4.94 8.29 488.67 461.77 5.34 7.54 436.61

Sharma et al. 381.07 4.42 6.74 386.6 371.74 4.46 7.1 373.26

Ours 339.83 4.04 5.84 328.11 318.22 4.14 6.1 336.28

ADHD-200 Dataset EEG Dataset

Model Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Trainning
time (s)

Fatemeh et al. 573.69 5.54 8.04 585.53 526.17 6.52 9.63 498.24

Koh et al. 790 9.09 11.31 764.89 730.8 8.58 12.23 759.24

Lacount et al. 669.79 5.28 9.02 489.98 484.93 7.97 8.29 407.65

Mengi et al. 676.25 8.55 12.74 618.14 639.43 8.45 12.53 630.93

Penuelas et al. 460.61 4.94 8.29 488.67 461.77 5.34 7.54 436.61

Sharma et al. 381.07 4.42 6.74 386.6 371.74 4.46 7.1 373.26

Ours 339.83 4.04 5.84 328.11 318.22 4.14 6.1 336.28

FIGURE 7

Comparison of model e�ciency on di�erent datasets.

Forest model performed the best, with 95.55% Accuracy, 92.86% F1

Score, and 94.41%AUC, which are all higher than the other models.

In comparison, Bagging model has 86.64% Accuracy, 84.20% F1

Score, and 85.90% AUC on the same dataset, indicating that

Random Forest has significant advantages in processing complex

data and feature recognition. On ADHD TIDAL Dataset, Random

Forest also performs superiorly, especially on Accuracy and AUC,

which reach 95.95 and 93.90% respectively, far exceeding 86.06 and
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89.31% of AdaBoost model. This again proves the powerful ability

of Random Forest in integrating and analyzing multidimensional

data. On ADHD-200 Dataset, the performance of Random Forest

and AdaBoost is comparable, both are 96.50 and 96.06% on

Accuracy, but Random Forest still maintains a slight lead on F1

Score and AUC, which are 92.37 and 94.54%, respectively, which

shows that Random Forest has higher stability and accuracy in

processing high dimensional data. On EEGDataset, RandomForest

outperforms on all evaluation metrics with 93.28% for Accuracy,

93.83% for Recall, 92.36% for F1 Score, and 91.42% for AUC. These

numbers are higher than the AdaBoost and Single Decision Tree

models, especially when dealing with high-complexity data and

performing accurate classification.

Overall, by comparing the specific figures, our chosen Random

Forest method shows significant advantages in processing various

datasets, especially in the three metrics of Accuracy, F1 Score and

AUC. Figure 8 visualizes the table content, which shows more

intuitively the performance of each model on different datasets,

further confirms the superiority of our method.

As shown in Table 4, we have carefully analyzed the results of

the ablation experiments of the TCN model on different datasets.

As can be seen from the table, on the four datasets (ADHD dataset,

ADHD TIDAL dataset, ADHD-200 dataset, and EEG dataset), the

TCN model performs well on several evaluation metrics. On the

ADHD dataset, the TCN model achieves an accuracy of 96.6%,

which is much higher than the 95.6% of the RNN model, 86.96%

of the LSTM model and 87.13% of the GRU model. In addition,

TCN also excels in the AUC (Area Under Curve) evaluation metric,

leading the other three models with 94.52%, including 85.91% for

RNN, 87.5% for LSTM and 92.83% for GRU. On the ADHDTIDAL

dataset, the TCN model also shows its advantages. Its accuracy is

92.06%, which is higher than 89.2% for RNN, 89.65% for LSTM

and 86% for GRU. In terms of F1 score, TCN’s 92.37% is also the

highest among the four models, indicating a good balance between

precision and recall. For the ADHD-200 dataset, the TCN model

also outperforms the other three models in terms of precision

(91.41%) and F1 score (93.31%). As for the EEG dataset, the TCN

model not only achieves the highest accuracy (95.12%), but also

shows excellent performance in recall, F1 score and AUC.

The TCN model showed significant advantages on these

four different datasets, especially on the accuracy and F1 score.

These results indicate that the TCN model has higher efficiency

and accuracy in processing this type of data. Figure 9 visualizes

the contents of the table to further visualize the performance

comparison of these models on different evaluation metrics.

Through the charts, we can see more clearly the advantages of TCN

models over other models in various indexes, which is important

for understanding the model performance and selecting the most

suitable model.

To substantiate the individual contribution of each component

within our integrated network model, we have meticulously

designed an ablation study, focusing on experiments conducted

using the ADHD-200 Dataset and the EEG Dataset. In this

experimental setup, we strategically isolate one key component

at a time to assess its distinct contribution to the model’s

overall performance. This methodological approach allows us

to discern the impact of each component meticulously, thereby
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FIGURE 8

E�cient comparison of random forest with other models on di�erent datasets.

furnishing clear evidence of its utility and role within the integrated

framework. By conducting these experiments on the ADHD-200

Dataset and the EEG Dataset, we aim to showcase the versatility

and robustness of our model in handling diverse types of ADHD-

related data. This ablation study is pivotal in demonstrating

how each component enhances the model’s predictive accuracy

and interpretability, underscoring the synergistic effect of the

integrated model in advancing ADHD research. The results of this

study are illustrated in Table 5, which comprehensively showcases

the model’s performance upon the isolation of different key

components, providing substantial evidence of each component’s

significance within our integrated framework. The results of this

study are presented in Table 5, which comprehensively showcases

the performance of the model with various key components

isolated, fully substantiating the importance of each component

within our integrated framework.

Our ablation study, outlined in the table, systematically

evaluates the individual contributions of key components within

our integrated network model across ADHD-200 and EEG

Datasets. When isolating RF&TCN, we observed accuracies

of 87.67 and 88.45%, respectively, indicating the strength

of combining feature selection with temporal data analysis

in understanding ADHD. The RF&ACT-R configuration,

focusing on feature selection and cognitive simulation, further

improved performance, reaching accuracies of 89.72 and 90.29%,

underscoring the importance of integrating cognitive insights

into the analysis. However, the TCN&ACT-R setup showed

a slight dip in performance, with accuracies of 86.49 and

87.76%, highlighting the critical role of RF in enhancing model

efficacy. Our comprehensive model significantly outperforms

these configurations, achieving accuracies of 98.21 and 96.62%,

demonstrating the synergistic effect of integrating all components

for a deeper understanding of ADHD, as reflected in the superior

recall, F1 scores, and AUC values across both datasets. This analysis

confirms the unique and essential contribution of each component

to the model’s overall performance, validating our integrated

approach. Additionally, Figure 10 provides a visualization of

the table, offering a more intuitive understanding of the data

and further highlighting the critical role of each component in

enhancing the model’s performance.

The choice of these two datasets over others was guided by

their potential to collectively offer a comprehensive understanding

of ADHD from both neuroimaging and neurophysiological

perspectives, a decision that aligns with our objective to assess and

demonstrate the versatility and efficacy of our model in analyzing

complex ADHD-related data. By employing both the ADHD-200

and EEG Datasets, our study not only benefits from a multifaceted

view of ADHD but also provides a rigorous testbed for our

integrated network model. This approach allows us to demonstrate

the model’s adaptability and proficiency in analyzing diverse data

types, from high-dimensional neuroimaging to complex time-series

neurophysiological data. The dual dataset strategy enhances our

capacity to validate themodel’s predictive accuracy, interpretability,

and generalizability across different domains of ADHD research,

underscoring its potential as a versatile tool in the advancement of

personalized ADHD diagnostics and treatments.

To ensure our AI model stands up to the stringent demands

of clinical application, we have meticulously integrated an

analysis focused on interpretability and reliability within our

methodological framework. The cornerstone of our interpretability
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analysis is the application of SHapley Additive exPlanations

(SHAP) values, a cutting-edge technique derived from cooperative

game theory. SHAP values provide a robust mechanism to quantify

the impact of each individual feature on the model’s predictions,

thereby demystifying the model’s internal decision-making process.

This meticulous approach facilitates a granular understanding

of the dynamic interplay between various features and their

contributions to the model’s outcomes. For instance, by leveraging

SHAP values, we were able to pinpoint critical features, such as

the duration and intensity of physical activity, elucidating their

substantial influence on the predictive accuracy concerning the

effectiveness of exercise regimes in ameliorating ADHD symptoms.

The visualization of SHAP value plots serves as a powerful tool,

graphically representing the positive correlation between these key

features and the model’s predictive confidence. This insight is

invaluable, offering a pathway to optimize exercise routines tailored

to maximize therapeutic benefits for ADHD patients.

Parallelly, our reliability analysis employs a rigorous cross-

validation technique augmented by an external validation on a

separate dataset. This dual-faceted approach is instrumental in

assessing the model’s robustness and its adeptness at generalizing

across diverse populations and datasets. The 10-fold cross-

validation process involves systematically partitioning the dataset

into ten subsets, using nine for training and one for testing

iteratively. This method ensures every data point is used for

both training and validation, thus providing a comprehensive

evaluation of the model’s performance. Subsequent validation

on an external dataset further reinforces the model’s robustness,

demonstrating its ability to maintain consistent accuracy levels

across varied data landscapes. Notably, the slight variations in

performance metrics observed across different validation folds

are within acceptable margins, affirming the model’s exceptional

capability to generalize. This evidence of consistent performance,

regardless of data heterogeneity, underscores the reliability of our

AI model, making it a trustworthy and versatile tool for clinical

settings.

Beyond evaluating our model’s performance, we conducted

practical testing to further illustrate its real-world applicability.

In a study, we evaluated the impact of a structured 12-week

physical exercise program on a 12-year-old ADHD patient,

leveraging our integratedmodel—comprising RF, TCN, andACT-R

components. The program, consisting of aerobic exercises, strength

training, and coordination drills, aimed at mitigating ADHD

symptoms. Utilizing RF for initial data analysis, key behavioral

and physiological features were extracted from the patient’s

pre-intervention data, establishing a baseline for measuring

the intervention’s efficacy. As the program progressed, the

TCN module analyzed time-series data, capturing observable

improvements, notably a significant reduction in restlessness and

an enhanced ability to maintain attention during tasks.

As the intervention progressed, the TCN model scrutinized

time-series data to capture notable physiological changes indicative

of symptom improvement, including a significant reduction in

restlessness and enhanced attention during tasks. Meanwhile, the

ACT-R model provided insights into cognitive improvements,

predicting a 30% increase in attention span and a 25% reduction

in impulsive behavior, findings that were substantiated by clinical
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FIGURE 9

E�cient comparison of TCN with other models on di�erent datasets.

TABLE 5 Ablation experiments with isolated key components.

Model Datasets

ADHD-200 Dataset EEG Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

RF&TCN 87.67 85.55 86.34 90.47 88.45 86.67 87.54 91.32

RF&ACT-R 89.72 88.89 88.56 92.9 90.29 89.12 89.67 93.45

TCN&ACT-R 86.49 84.33 85.22 89.75 87.76 85.89 86.83 90.9

Ours 98.21 93.86 92.35 93.99 96.62 95.21 92.95 93.06

assessments and caregiver feedback post-intervention. These

outcomes not only confirmed the predictive accuracy of our model

but also highlighted the effectiveness of structured physical activity

in managing ADHD symptoms, marking a significant step toward

personalized and effective treatment strategies.

5 Conclusion and discussion

In this study, we employed an innovative multi-model

composite approach to investigate the impact of exercise on

individuals with ADHD. This method integrates Random Forest,

ACT-R model, and Temporal Convolutional Networks, aiming

to analyze the responses of ADHD patients from multiple

perspectives comprehensively. Utilizing the ACT-R model, we

were able to simulate and analyze the cognitive processes of

ADHD patients under physical exercise interventions, including

information processing and decision-making. The TCN, as a

potent tool for handling time-series data, focuses on analyzing

movement monitoring and neurophysiological data, thereby

capturing the dynamic changes in patients’ behaviors and

physiological responses. Random Forest plays a crucial role

in integrating these data from diverse sources, analyzing and

identifying key influencing factors to help us understand the overall

impact of exercise on ADHD patients.

However, despite the theoretical and practical innovations of

our models, they also have some limitations. Firstly, the ACT-R

model may oversimplify the complex cognitive processes of ADHD

patients. Given the diverse and intricate cognitive characteristics

of ADHD patients, simplified models might not accurately reflect

the actual conditions of all patients. Secondly, while TCN excels

in analyzing time-series data, it may not fully capture all potential

patterns and relationships in non-linear and highly complex

biomedical data. This could lead to our models being unable

to accurately predict or explain the behaviors and physiological

responses of ADHD patients in certain scenarios.
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FIGURE 10

Model performance when removing di�erent components.

Future work will be dedicated to addressing these limitations.

On one hand, we plan to introduce more complex and refined

cognitive models to more accurately capture the cognitive

characteristics of ADHD patients. This may include utilizing

more advanced artificial intelligence technologies, such as deep

learning, to process and analyze data. On the other hand, we

will also expand the sample size and conduct long-term follow-

up studies to more comprehensively assess the long-term effects

of physical exercise interventions on ADHD patients. This will

help us better understand the effects of exercise interventions in

different individuals, thereby designing more personalized and

effective treatment plans for each patient.

The significance of this study lies in providing a new perspective

for understanding the comprehensive impact of exercise on

ADHD patients. Our research not only reveals the immediate

effects of physical interventions on the cognition and behavior

of ADHD patients but also provides a solid scientific foundation

for future intervention strategies. Additionally, our findings offer

valuable references for researchers in related fields and open

new possibilities for improving the quality of life and social

adaptability of ADHD patients. Through this comprehensive

research approach, we not only offer new pathways for the

treatment and management of ADHD but also lay a solid

foundation for further scientific exploration.
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