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Introduction

Neurodegenerative diseases (NDs) are characterized by the progressive loss of

neuronal function and structure (Lamptey et al., 2022). Additionally, neurodegeneration

is associated with neural networks, synaptic dysfunction, and the accumulation of

physiochemically altered proteins in the brain (Hoover et al., 2010; Milnerwood and

Raymond, 2010). NDs affect ∼15% of the global population making them the leading

cause of cognitive and physical disability worldwide (Feigin et al., 2020). Moreover, the

prevalence of several of these diseases increases with age, therefore the global trend toward

an increased life expectancymay also result in an increased burden of age-related NDs such

as Alzheimer’s disease (AD) and Parkinson’s disease (PD; GBD 2016 Parkinson’s Disease

Collaborators, 2018). Of all the NDs, AD and related dementias and PD have been the most

studied and genetically characterized. For this reason, these two disorders are highlighted

in this article.

On an international scale, the majority of genetic research still primarily focuses on

populations of European ancestry resulting in the relative absence of “non-European”

populations (also known as underrepresented populations; URPs) from large-scale

genomic study cohorts and subsequently, GWAS (Knerr et al., 2011).Many countries in the

“Global South” are considered URPs, including but not limited to countries in Africa, Asia,

Caribbean, Latin America, and Oceania (excluding Australia and New Zealand; Fatumo

et al., 2022; Schumacher-Schuh et al., 2022; Bhattacharya et al., 2023). For the purposes of

this article, URPs include countries in Asia such as Japan and Korea, since they have also

been comparatively underrepresented in genetic studies.

There is an increased prevalence of PD and AD in URPs (GBD 2021 Nervous System

Disorders Collaborators, 2024). Moreover, AD and related dementias are in the top

five most prevalent nervous system disorders across URPs (GBD 2021 Nervous System

Disorders Collaborators, 2024). It is predicted that worldwide there will be 65.7 million

people in 2030 and 115.4 million people in 2050 living with dementia, with 63 and 71%

living in URPs in 2030 and 2050, respectively (Ferri et al., 2005; Prince et al., 2013).
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AD and PD have a complex etiology and while age is a

common risk factor of certain disease development, many are

considered multifactorial diseases with both environmental and

genetic components. Exposure to environmental pollutants such

as neurotoxic metals (e.g., lead, manganese, and mercury) and

pesticides have been associated with disease pathogenesis by

increasing beta-amyloid peptides, the phosphorylation of Tau

protein, and the aggregation of α-synuclein (Chin-Chan et al.,

2015). Although there have been great advances in elucidating the

genetic architectures of AD and PD, the complete genetic etiology

has yet to be defined further highlighting the complexity of these

diseases. However, studies have shown that these diseases have a

significant genetic component through the identification of rare

variants with large effect in causal genes in familial cases, as well as

common variants with smaller effect through association analysis

studies in sporadic cases (Perrone et al., 2021).

Genetic risk variants, commonly known as susceptibility

variants, that are statistically associated with the risk of developing

a particular disease or trait, are identified using genome-

wide association studies (GWAS; Uffelmann et al., 2021).

In contrast to linkage analysis studies that utilize multiplex

family datasets, GWAS use unrelated case-control datasets

to perform an association analysis (Tan et al., 2014). These

studies have revealed the polygenic architecture of several

common complex disorders including NDs. For example,

more than 90 and 75 genetic loci have been linked to PD

(Nalls et al., 2019) and AD development (Bellenguez et al.,

2022), respectively.

GWAS on NDs in URPs

Historically, GWAS have almost solely focused on participants

of European ancestry (Lewis and Vassos, 2020), where ∼94.8%

of previously conducted GWAS included European participants,

while only 5.2% included all other population groups combined

(Mills and Rahal, 2020). Since current risk prediction methods

require an individual’s genetic ancestry to be similar to the

ancestries from a well-powered GWAS study, from which effect

sizes can be estimated (Martin et al., 2019), this significantly

limits the applicability of PRS done on Europeans, to URPs.

A review of the GWAS Catalog (Sollis et al., 2023), revealed

that as of September 11th, 2023, there were 355 ND GWAS

studies reported with only 18% (n = 63) of these studies

including individuals from URPs. This data is summarized in

Figure 1, and a complete list of these studies is provided in

Supplementary Table 1.

Moreover, there is a lack of diversity in ND research overall,

including clinical trials, epidemiology studies, neuroimaging

studies, and case studies (Vaswani et al., 2020; Franzen et al.,

2022). This may be due to limited neurology services in

URP regions, such as Africa, leading to people with NDs

being undiagnosed or mis-diagnosed (Hamid et al., 2021). The

disproportionate exclusion of ethnically diverse individuals in ND

research and clinical trials can be attributed to the challenges

with the diagnosis process, recruitment strategies, study enrolment,

and participant retention practices (Gilmore-Bykovskyi et al.,

2019).

Polygenic risk scores

Originally, risk prediction for complex diseases relied heavily

on information on the family’s medical history. More recently,

polygenic risk scores (PRS) can be calculated and used to

estimate an individual’s lifetime risk of developing a particular

disease. This is based on the combination of genetic susceptibility

variants that they carry contributing either to an increased or

decreased disease risk (Lewis and Vassos, 2020). The genetic

susceptibility variants and the effect size estimates utilized

in a PRS analysis are typically identified through GWAS.

However, it should be noted that PRS only explains a small

percentage of the risk, which needs to be complemented with a

combination of factors including family history, environmental

exposures, lifestyle factors, and clinical features, such as loss

of smell and sleep disturbances as prodromal symptoms of

disease (So et al., 2011; Seifan et al., 2019). It has been

reported that PRS based on common genetic variants accounts

for ∼7% of the variance in AD risk in European populations

(Leonenko et al., 2021) and 2.2% variance for PD risk in the

Latino population (Loesch et al., 2022). Ultimately, increasing

representation from URPs may improve the predictive validity

by capturing a broader range of genetic variation associated with

the disease.

As an emerging precision medicine tool, accurate disease risk

prediction could inform clinicians at different points of disease

trajectory from providing information regarding the most efficient

prevention strategies, to targeted screening interventions and

disease diagnosis, as well as provide improved clinical management

(Lewis and Vassos, 2020; Corpas et al., 2022). While there is

evidence for the clinical utility and validity of PRS, there are

still concerns relating to the transferability of these results across

populations, the accuracy of disease prediction in heterogenous

diseases, and whether PRS disclosure does indeed affect morbidity

and mortality rates (Kumuthini et al., 2022). An individual’s

genetic ancestry has a significant impact on risk prediction. The

distinct genetic architectures of different populations influence

PRS performance due to differences in population-specific linkage

disequilibrium patterns and allele frequencies (Sirugo et al.,

2019). Additionally, the transferability of PRS across different

populations can be questioned, as prevalence rates and genetic

risk variants vary between populations (Kachuri et al., 2024).

Therefore, a PRS developed using one ancestry may not be

applicable to individuals of another ancestral group (Fatumo et al.,

2023).

To address the issue of transferability, it is essential to develop

methods and models that are inclusive of diverse populations

and incorporate ancestry-specific genetic information (Cavazos

and Witte, 2021; Fatumo et al., 2023). The incorporation of local

ancestry in GWAS, using software such as TRACTOR (Atkinson

et al., 2021), has shown promising results in identifying ancestry-

specific risk loci which in turn can be used for PRS calculations

(Swart et al., 2021). Recent efforts, such as PRS-CSx (Ruan et al.,

2022) and BridgePRS (Hoggart et al., 2023), aim to improve PRS

transferability by leveraging multi-ethnic datasets and accounting

for population stratification and admixture. However, accurately

predicting disease risk in admixed populations remains a challenge

due to their complex genetic composition (Duan et al., 2018; Swart
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FIGURE 1

(A) World map showing the distribution of GWAS on NDs in URPs. The numbers in the black blocks indicate the number of GWAS publications that

included participants from URPs in either a discovery or replication cohort. (B) A summary of the GWAS Catalog results for NDs indicating from which

continent the URPs included in the GWAS originated from [(Sollis et al., 2023); all data as of September 11th, 2023]. (C) A summary of two recent

multi-ancestry meta-analysis and fine-mapping studies on PD (Vaswani et al., 2020) and AD (Hamid et al., 2021) that identified novel loci and

fine-mapping of causal loci by leveraging diverse haplotype blocks in URPs (Kim et al., 2022; Lake et al., 2023). AD, Alzheimer’s disease; ALS,

Amyotrophic Lateral Sclerosis; MJD-III, Machado-Joseph Disease; MS, Multiple Sclerosis; ND, Neurodegenerative disease unspecified; NMO,

Neuromyelitis optica; PD, Parkinson’s disease.

et al., 2021). Therefore, the general PRS calculation method that

utilizes only a single training (i.e., discovery) population would

not be adequate to predict polygenic risk in admixed individuals

since the choice of the discovery cohort to use is unknown. To

tackle this issue, approaches like using a linear combination of PRS

based on multiple training datasets show promise in improving

prediction accuracy in admixed populations (Márquez-Luna and

Loh, 2017). However, there are still limitations with the current

methods, and it remains vital that the development of novel

methods should go hand-in-hand with increasing the diversity of

study cohorts.

Steady increase in genomic data from
URPs

There has been a steady increase in the number of

GWAS including URPs, specifically individuals of Asian ancestry

(Mills and Rahal, 2020). This has been achieved through the

implementation of large prospective population-based biobanks

such as the China Kadoorie Biobank (Chen et al., 2011), BioBank

Japan (Nagai et al., 2017) and major genome projects such as

the Singapore 10K Genome project (Precise Health Research

Singapore, 2023). In the future, the application of PRS in African
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countries may be feasible through initiatives like the Three Million

African Genome (3MAG) project (Wonkam, 2021).

Furthermore, as the field progresses, there is an increase in

the establishment of disease-specific consortia. For example, the

Multi-Partner Consortium to Expand Dementia Research in Latin

America (ReDLat) is an initiative aiming to increase dementia

research in Latin America and the Caribbean by combining

clinical and genomic data (Ibanez et al., 2021). Likewise, the

European Alzheimer & Dementia Biobank (EADB) consortium

brings together various European GWAS consortia focused on

investigating the genetic architecture of AD through a GWAS

meta-analysis study (Bellenguez et al., 2022). Notably, collaborative

efforts in the field of PD genetics have been particularly promising.

Consortia such as the Latin American Research Consortium on the

Genetics of Parkinson’s Disease (LARGE-PD; Zabetian and Mata,

2017), the Genetic Epidemiology of Parkinson’s Disease consortium

(GEoPD; Farrer et al., 2021), the International Parkinson’s Disease

Genomics Consortium (IPDGC) Africa (Rizig et al., 2021), and the

East Asian Parkinson’s Disease Genomics Consortium (EAPDGC;

Mok, 2021) were formed to investigate the genetic etiology of

PD. Many of these consortia are in the process of integrating

into a global effort to support the Global Parkinson’s Genetics

Program (GP2).

GP2 is an international collaboration investigating the genetic

etiology of PD and making the knowledge globally relevant by

increasing representation of URPs in PD research (Towns et al.,

2023). GP2’s goal is to collect standardized clinical data and

genotype more than 200,000 participants with a minimum of

50,000 individuals from URPs for use in association studies.

A recent GP2 GWAS, involving African and African admixed

participants (not yet included in GWAS Catalog), revealed a novel

ancestry-specific genetic risk factor for PD in GBA1 (rs3115534;

Rizig et al., 2023). This finding highlights the value of leveraging

genetic diversity to detect novel disease associations. Collaborative

large-scale international efforts, such as GP2, show promise in

correcting the significant imbalance of European population biases

in GWAS, thereby ultimately improving the accuracy of disease

prediction in URPs.

Additional key factors to aid in the analysis of admixed

populations and allow for the inclusion of URPs in GWAS

include suitable genotyping arrays, reference panels for phasing

and imputation, ancestry inference, and robust GWAS QC metrics

tailored for URPs (Atkinson et al., 2021; Yang et al., 2023).

Innovations inmethodological development are ongoing to address

the complexities of genetic studies involving URPs. Anticipated

advancements in statistical methods, software tools, and genetic

reference panels are poised to play pivotal roles as research

endeavors increasingly embrace representative sample recruitment

and the global population’s growing diversity (Sariya et al., 2019;

Tan and Atkinson, 2023).

Value of increasing URPs in genomic
studies

It has been widely acknowledged that increasing diversity

in genetic research will aid in understanding disease etiology,

ultimately improving the effectiveness of genomic medicine

(Peterson et al., 2019). However, results from genetic research do

not translate equally across populations, further highlighting the

importance of including URPs in genetic research. For example,

the apolipoprotein E (APOE) gene is a well-studied risk factor for

AD and related dementias, however, its prevalence and influence

on disease risk varies significantly among ancestral groups (Farrer

et al., 1997; Tang et al., 2001). In East-Asian populations, APOE

ε4 is the strongest risk effect, however, in African populations,

it is the lowest risk effect, trending toward a protective effect

(Hendrie et al., 2014; Rajabli et al., 2022). Moreover, many URPs

are comprised of multiway admixed individuals with genomic

architecture that consists of smaller haplotype blocks than those of

the European genomes (Fatumo et al., 2023). Haplotype structure is

useful in inferring information relating to gene flow and population

structure (Shipilina et al., 2023).

Consequently, the inclusion of URPs can aid in fine-

mapping known disease loci to improve post-GWAS functional

studies by reducing the number of candidate variants prioritized.

Additionally, the alleles observed in diverse admixed populations

can facilitate the identification of novel population-specific disease

risk variants (Rizig et al., 2023) and reveal disease risk variants

for various populations, simultaneously (Swart et al., 2022). This

utility was highlighted in recent multi-ancestry GWAS studies

on PD and AD (Figure 1C). A PD meta-analysis identified 12

potentially novel loci and six putative causal variants (Kim

et al., 2022). For AD, a similar approach was employed to

leverage diverse haplotype structures to aid in variant identification

and causal loci fine-mapping, where two novel disease loci

were identified and nine loci were fine-mapped (Lake et al.,

2023).

In addition to the unique ancestral makeup, there are a

range of varying socio-economic factors affecting URPs, resulting

in observed differences in disease prevalence and phenotypes.

For example, in comparison to European populations, Latin

American populations are 1.5 times more likely to develop AD

and related dementias (Prince et al., 2013; Matthews et al.,

2018). Factors affecting the increased prevalence may include

lifestyle, work exposures, economic access to resources, access

to healthcare, education on preventive and precautionary actions

as well as living conditions (Epping-Jordan et al., 2005; Babulal

et al., 2019). Consequently, the inclusion of URPs in genomic

studies is vital to investigating the underlying genetic etiology

of these diseases through the identification of pathogenic and

susceptibility variants, in addition to identifying the social and

environmental factors resulting in an increased or decreased

disease risk.

It has been shown that there is limited clinical utility for

PRS in non-European populations when calculating risk prediction

using a European cohort as the discovery dataset (Saffie-Awad

et al., 2023). This further highlights the importance of large-scale

diverse GWAS and potentially improving PRS model prediction

at a variant level by incorporating local ancestry proportions, and

at a population level by incorporating global ancestry proportions

(Márquez-Luna and Loh, 2017). Globally, to an extent, most

individuals are multiway admixed, therefore the development and

implementation of more inclusive GWAS and PRS models will

allow a more accurate risk prediction by leveraging variant effect

size distributions across populations (Song et al., 2020).
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Need for integrated datasets for PRS

PRS models calculate an individual’s risk of disease

development using the cumulative estimated effect of all

nominally associated genetic variants and not only genome-

wide significant variants (Bellou et al., 2020). Ultimately, PRS

uses the weighted sum of a large number of SNPs with small

effect sizes. Risk allele patterns were previously examined using

individual-level data where differences in allele frequency,

directionality, and the magnitude of effect were observed across

several ancestral populations (Saffie-Awad et al., 2023). This

further highlights the allele frequency differences observed

between populations as well as population-specific disease

risk, emphasizing the need for diverse GWAS summary

statistics to be employed in PRS models to improve risk

prediction accuracy.

Due to the complexity of these diseases, there is a level

of environmental risk factors that contribute independently to

disease risk (Lewis and Vassos, 2020). Therefore, integrated

prediction models using PRS with additional environmental

exposures and lifestyle information enables researchers to more

accurately quantify risk (Martin et al., 2019). However, cohort

size, lack of population diversity in PRS research, and inconsistent

clinical characteristics severely limit PRS estimates (Saffie-

Awad et al., 2023). Hence, incorporation of environmental

information (e.g., smoking status and pesticide exposure) as

well as clinical information (e.g., age of onset and family

history) can improve the risk prediction model’s stability,

accuracy, and sensitivity (Truong et al., 2023). This information

needs to be consistently recorded and standardized between

study cohorts and would need to be collected during study

participant recruitment.

Standardization of the data

The medical and biological fields have advanced greatly over

the past two decades resulting in a data-rich area of research

(Holmes et al., 2010). Many large publicly available repositories

are used in research by compiling several sources of data

including demographic data, clinical data, environmental and

lifestyle information, molecular genetic data, and genealogical

information (Lowrance, 2001). However, many of these repositories

often have extensive clinical information without genetic data

or alternatively have sufficient molecular genetic data with

a limited clinical characterization of phenotypes. While there

are disease-specific databases like the Accelerating Medicines

Partnership- Alzheimer’s Disease (AMP-AD) and the Parkinson’s

Disease Biomarkers Program (PDBP; Hodes and Buckholtz,

2016; Ofori et al., 2016), the majority of individuals included

in these databases are from European populations, further

highlighting the lack of URP representation. Ultimately, there is

an increased need for standardized databases that are representative

of the global population with sufficient quality information

for each data category that can be used in PRS models for

increased sensitivity and specificity to ultimately improve risk

prediction accuracy.

Recommendations

In summary, a list of the pertinent recommendations for future

PRS studies is provided below:

• Inclusion of ethnically diverse individuals in research studies.

• Need for continuous advancements in statistical methods,

software tools, and genetic reference panels to appropriately

include URPs samples in PRS research.

• Leverage genetic data from biobanks and

disease-specific consortia.

• Leverage genetic diversity to detect novel disease associations

and fine-mapping of known disease loci.

• Use of integrated prediction models using PRS combined with

environmental exposures, lifestyle factors, and traditional risk

factors e.g., smoking status.

• Standardization of genomic databases that are representative

of the global population.

Concluding remarks

The value of including URPs in genetic research is highlighted

by building capacity for genomic research on a global scale and

ensuring the equitable implementation of precision medicine tools.

While it has been perceived that incorporating genetically diverse

populations (mainly URPs) in genetic research is challenging, there

are expanding analytical approaches and algorithms to accurately

account for population substructure in GWAS (Peterson et al.,

2019) aiding in the detection of true genetic associations that can

be utilized in risk prediction. Ultimately, the inclusion of URPs

has the potential to fast-track the field of risk prediction, to aid

in novel susceptibility variant detection, disease prediction, and

the development of precision medicine strategies that are both

applicable and accessible to all populations.
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