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Synthetic faces generated with 
the facial action coding system or 
deep neural networks improve 
speech-in-noise perception, but 
not as much as real faces
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The prevalence of synthetic talking faces in both commercial and academic 
environments is increasing as the technology to generate them grows more 
powerful and available. While it has long been known that seeing the face of 
the talker improves human perception of speech-in-noise, recent studies have 
shown that synthetic talking faces generated by deep neural networks (DNNs) 
are also able to improve human perception of speech-in-noise. However, in 
previous studies the benefit provided by DNN synthetic faces was only about 
half that of real human talkers. We sought to determine whether synthetic talking 
faces generated by an alternative method would provide a greater perceptual 
benefit. The facial action coding system (FACS) is a comprehensive system for 
measuring visually discernible facial movements. Because the action units that 
comprise FACS are linked to specific muscle groups, synthetic talking faces 
generated by FACS might have greater verisimilitude than DNN synthetic faces 
which do not reference an explicit model of the facial musculature. We tested 
the ability of human observers to identity speech-in-noise accompanied by a 
blank screen; the real face of the talker; and synthetic talking faces generated 
either by DNN or FACS. We replicated previous findings of a large benefit for 
seeing the face of a real talker for speech-in-noise perception and a smaller 
benefit for DNN synthetic faces. FACS faces also improved perception, but only 
to the same degree as DNN faces. Analysis at the phoneme level showed that 
the performance of DNN and FACS faces was particularly poor for phonemes 
that involve interactions between the teeth and lips, such as /f/, /v/, and /th/. 
Inspection of single video frames revealed that the characteristic visual features 
for these phonemes were weak or absent in synthetic faces. Modeling the real 
vs. synthetic difference showed that increasing the realism of a few phonemes 
could substantially increase the overall perceptual benefit of synthetic faces.
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Introduction

Recent advances in computer graphics have made it much easier 
to create realistic, synthetic talking faces, spurring adoption in 
commercial and academic communities. For companies, agents 
created by pairing a synthetic talking face with the output of large 
language models provide an always-available simulacrum of a real 
human representative (Perry et al., 2023). In academia, the use of 
synthetic talking faces in studies of speech perception provides more 
precise control over the visual features of experimental stimuli than is 
possible with videos of real human talkers (Thézé et al., 2020a).

Of particular interest is the long-standing observation that 
humans understand speech-in-noise much better when it is paired 
with a video of the talker’s face (Sumby and Pollack, 1954). The ability 
to rapidly generate a synthetic face saying arbitrary words suggests the 
possibility of an “audiovisual hearing aid” that displays a synthetic 
talking face to improve comprehension. This possibility received 
support from two recent studies that used deep neural networks 
(DNNs) to generate realistic, synthetic talking faces (Shan et al., 2022; 
Varano et al., 2022). Both studies found that viewing synthetic faces 
significantly improved speech-in-noise perception, but the benefit was 
only about half as much as viewing a real human talker.

The substantial disadvantage of synthetic faces raises the question of 
whether alternative techniques for generating synthetic faces might 
provide a greater perceptual benefit. DNNs associate given speech sounds 
with visual features in their training dataset, but do not contain any 
explicit models of the facial musculature. In contrast, the facial action 
coding system (FACS) uses 46 basic action units to represent all possible 
movements of the facial musculature that are visually discernable (Ekman 
and Friesen, 1976, 1978; Parke and Waters, 2008). Unlike DNNs, the 
FACS scheme is built on an understanding of the physical relationship 
between speech and facial anatomy, potentially resulting in more accurate 
representations of speech movements. To test this idea, we undertook a 
behavioral study to compare the perception of speech-in-noise on its 
own; speech-in-noise with real faces (to serve as a benchmark); and 
speech-in-noise presented with two types of synthetic faces. The first 
synthetic face type was generated by a deep neural network, as in the 
studies of (Shan et al., 2022; Varano et al., 2022). The second synthetic 
face type was generated using FACS, as implemented in the commercial 
software package JALI (Edwards et al., 2016; Zhou et al., 2018). For 
comparison with previous studies, we performed a word-level analysis in 
which each response was scored as correct or incorrect. To facilitate more 
fine-grained comparisons between the different face types, we  also 
analyzed data using the phonemic content of each stimulus word.

Methods

Participant recruitment and testing

All experiments were approved by the Institutional Review Board 
of the University of Pennsylvania, Philadelphia, PA. Participants were 
recruited and tested using Amazon Mechanical Turk,1 an online 
platform that provides access to an on-demand workforce. Only 

1 https://www.mturk.com/

“master workers” were recruited, classified as such by Amazon based 
on their high performance and location in the United States. Sixty-two 
participants completed the main experiment (median time to 
complete: 12 min) and received $5 reimbursement. The participants 
answered the questions “Do you  have a hearing impairment that 
would make it difficult to understand words embedded in background 
noise?” and “Do you have an uncorrected vision impairment that 
would make it difficult to watch a video of a person talking?” One 
participant was excluded because of a reported hearing impairment, 
leaving 61 participants whose data is reported here. There were 25 
females and 36 males, mean age 46 years, range 30–72.

Overview

Workers were asked to enroll in the experiment only if they were 
using a desktop or laptop PC or a tablet (but not a phone) and 
information about the user’s system was collected to verify compliance. 
At the beginning of the experiment, participants viewed an 
instructional video (recorded by author MSB) that explained the task 
and presented examples of the different experimental stimuli. The 
instructional video was accompanied by text instructions stating 
“Please adjust your window size and audio volume so that you can see 
and hear everything clearly.”

Following completion of the instructional video, participants 
identified 73 words presented in five different formats (Figure 1). Sixty-
four of the words contained added auditory noise to make identifying 
them more difficult and increase the importance of visual speech. There 
were four formats of noisy words: auditory-only (An); with a talking face 
(audiovisual; AnV) that was either the real face of the talker (AnV:Real); 
a synthetic face created using the facial action coding system 
(AnV:FACS); or a synthetic face created using a deep neural network 
(AnV:DNN). To prevent perceptual learning, each word was only 
presented once to each participant, 16 words in each of the four formats. 
Within participants, the order of words and face formats was 
randomized, and across participants, the format of each word was cycled 
to ensure that every word was presented in every format. To assess 
participant compliance, the remaining nine words presented were clear 
audiovisual words (AV:catch_trials). The catch trials sampled all face 
types (3 Real, 3 FACS, and 3 DNN) and the talkers and words differed 
from those presented in the noisy trials to prevent learning. Accuracy for 
catch trials was very high (mean of 98%) demonstrating attention and 
task engagement. All data was analyzed in R, primarily using mixed 
effects models. See Supplementary Material for all data and an R 
markdown document that contains all analysis code and results.

Subject responses and scoring: word-level

Following presentation of a word, participants were instructed to 
“type the word” into a text box; the next trial did not begin until a 
response was entered. If a participant’s response matched the stimulus 
word, the trial was scored as “correct,” otherwise the trial was scored 
as “incorrect.” For example, the stimulus word wormhole and the 
response wormhole was correct, while the stimulus word booth and the 
response boot was incorrect. Misspellings were not considered 
incorrect (e.g., stimulus echos and response echoes was correct) nor 
were homophones (e.g., stimulus wore and response war was correct). 
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The analysis was performed separately for each condition (An, 
AnV:Real, AnV:DNN, AnV:FACS, AV:catch_trials). Mean accuracy for 
each condition was calculated per participant, and then averaged 
across participants. See Supplementary Material for a complete list of 
the words, response and scores.

Phonemic analysis

In addition to the binary word-level accuracy measure, a 
continuous accuracy measure was calculated for each trial based on 

the overlap in the phonemes in the stimulus word and the response. 
Phoneme composition was determined using the Carnegie Mellon 
University (CMU) pronouncing dictionary.2 Lexical stress markers 
were removed from vowels. For responses that contained multiple 
words, the phonemes for all response words were extracted from the 
CMU dictionary and entered into the calculation. Repetitions of the 
same phoneme were also entered into the calculation. The accuracy 

2 http://www.speech.cs.cmu.edu/cgi-bin/cmudict

FIGURE 1

(A) The main stimulus set consisted of 64 single words with auditory noise added, 32 recorded by a male talker and 32 recorded by a female talker. The 
noisy words were presented in four formats. The first format consisted of the noisy auditory recordings paired with a video of the actual talker 
(AnV:Real). (B) The second format consisted of the recordings paired with gender-matched synthetic face movies generated by a facial action coding 
system model (AnV:FACS). (C) The third format consisted of the recordings paired with synthetic face movies generated by a deep neural network 
(AnV:DNN). The gender of the synthetic face matched the gender of the voice. (D) The fourth format consisted of the recordings presented with a 
blank screen (An). Note that for (A)–(D), the auditory component of the stimulus was identical, only the visual component differed. (E) In catch trials, an 
additional stimulus set was presented consisting of recordings of 9 audiovisual words without added noise (AV) paired with gender-matched real, 
FACS, or DNN faces (three words each). The words, faces and voices were different than in the main stimulus set to prevent any interference. (F) Each 
participant was presented with 73 words (64 noisy and 9 clear) in random order. Within participants, each noisy word from the main stimulus set was 
presented only once, in one of the four formats. Counterbalancing was used to present every noisy word in each of the four formats shown in (A)–(D). 
For instance, for participant 1, the word spout was presented in AnV:DNN format, while for participant 2, spout was presented in AnV:Real format, etc. 
Following the presentation of each word, participants typed the word in a text box.
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measure was the Jaccard index: the number of phonemes in common 
between the stimulus and response divided by the total number of 
phonemes in the stimulus and response. The measure ranged from 0 
(no phonemes in common between stimulus and response) to 1 
(identical phonemes in stimulus and response) and was calculated as
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stimulus response

stimulus response
stimulus response stimulus response
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For example, the stimulus word polish contains the phonemes P, 
AA, L, IH, SH. One participant’s response was policy, containing the 
phonemes P, AA, L, AH, S, IY. The intersection contains three 
phonemes (P, AA, L) while the union contains 8 phonemes (P, AA, L, 
IH, SH, AH, S, IY) for a Jaccard index of 3/8 = 38%. In another 
example, the stimulus word ethic contains the phonemes EH, TH, IH, 
K while the response essay contains the phonemes EH, S, EY. The 
intersection contained 1 phoneme and the union contained 6 
phonemes, for a Jaccard index 1/6 = 17%. See Supplementary material 
for a complete list of Jaccard indices.

The analysis was performed separately for each stimulus 
condition. For participant-level analysis, the mean accuracy across all 
trials was calculated for each participant, and then averaged 
across participants.

For the phoneme-specific analysis, the dependent variable was the 
number of times a phoneme was successfully identified vs. the total 
number of times that phoneme was presented across all words, for 
each participant, for each movie type (Real, DNN, and FACS). Because 
participants were not shown all possible phonemes for all movie types, 
we plot the estimated marginal means and standard errors derived 
from the GLME.

Additional stimulus details
The original stimulus material consisted of 32 audiovisual words 

recorded by a female talker and 32 words recorded by a male talker. 
Pink noise was added to the auditory track of each recording at a 
signal-to-noise ratio (SNR) of −12 dB. For the An format, only the 
noisy auditory recording was played with no visual stimulus. For the 
AnV:Real format, the audio recording was accompanied by the 
original video recording. For the synthetic faces, gender-matched 
synthetic faces roughly approximating the appearance of the real 
talkers were created.

During the online testing procedure, videos were presented using 
a custom JavaScript routine that ensured that all stimuli were 
presented with the same dimensions (height: 490 pixels; width: 872 
pixels) regardless of the participant’s device.

AnV:FACS words were created using JALI software (Edwards 
et al., 2016).3 The text transcript was manually tuned to create more 
pronounced mouth movements (e.g., AWLTHOH for although; see 
Supplementary material for a complete list of the phonetic spelling). 
Following JALI animation, the mouth movements were manually 
adjusted with MAYA’s graph editor to better match the mouth 

3 https://jaliresearch.com/

movements in the real videos. The edited animation sequence was 
imported into Unreal Engine 5.10 and rendered as 16:9 images at 
50 mm focal length and anti-aliasing with 16 spatial sample count. 
Image sequences were assembled into mp4 format and aligned with 
the original audio track in Adobe Premiere. The video frame rates 
was 24 fps.

AnV:DNN words were created with the API for D-ID studio.4 Two 
artificial faces included with D-ID studio were used as the base face. 
Clear audio files from the real speakers were uploaded, and a static 
driver face was used to minimize head and neck movements. Eye 
blinking and watermarks in each movie were removed using Adobe 
Premiere and exported in mp4 format at 24 fps.

Power analysis

In a pilot study, the audiovisual benefit for real faces and synthetic 
(FACS) faces was measured in 34 participants using 60 words from the 
main experiment. Accuracy for real faces was 23% (SD = 13%) greater 
than synthetic faces. Using this effect size (1.68) in a power analysis 
with G*Power software estimated that only six participants 
would be required for 90% power to detect a real vs. synthetic difference 
(t-test, difference between two dependent means). However, because 
we expected a smaller difference between the two synthetic face types 
(FACS and DNN), a more conservative effect size estimate of 0.5 was 
substituted. A corrected-alpha level of 0.0167 (0.05/3, to account for 
three comparisons) resulted in an estimate of 57 participants for 90% 
power. In anticipation of excluding some participants, five additional 
participants were recruited, for a total of 62. Only one participant was 
excluded, resulting in a final sample size of 61.

Results

Participant-level analysis: word accuracy

In the first analysis, responses were scored as correct if they 
exactly matched the stimulus word and incorrect otherwise. Seeing 
the face of the talker improved the intelligibility of noisy auditory 
words. For real faces, accuracy increased from 10% in the auditory-
only condition (An) to 59% in the audiovisual condition (AnV:Real), 
averaged across words and participants. There was also an 
improvement, albeit smaller, for synthetic faces (Figure 2A). From the 
auditory-only baseline of 10%, accuracy improved to 29% with faces 
generated by the facial action coding system (AnV: FACS). Accuracy 
was 30% for faces generated by a deep neural network (AnV:DNN). 
While there was a range of accuracies across participants, accuracy 
was higher for the real face format than the auditory-only format in 
60 of 61 participants and higher for real faces than synthetic faces 
(Synthetic; average across DNN and FACS) in 59 of 61 participants 
(Figure 2B).

To estimate statistical significance, a mixed-effects model was 
constructed with a dependent variable of accuracy; fixed effect of word 
format; and random effects of word, participant and participant batch 

4 https://www.d-id.com/
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(complete model specification and output in Supplementary material). 
There was a main effect of stimulus format (χ2

3 = 768, p < 10−16) and 
post hoc pair-wise comparisons showed that words accompanied by a 
visual face (real or synthetic) were perceived more accurately than 
auditory-only words (all p < 10−16). The accuracy for real faces was 
higher than for synthetic faces (Real vs. DNN; t = −17, p < 10−16; Real 
vs. FACS; t = −17, p < 10−16) but accuracy for the two synthetic face 
formats was equivalent (DNN vs. FACS; t = 0.2, p = 0.99).

Participant-level analysis: phoneme 
accuracy

In a second analysis, instead of classifying each response as either 
correct or incorrect, partial credit was given if the response contained 
phonemes that matched those in the stimulus word. This scoring 
method generated a phoneme accuracy score for each condition in 
each participant. The pattern of results were very similar to the word 
accuracy analysis (Figure 2C Supplementary material). There was a 
main effect of stimulus format (χ2

3 = 986, p < 10−16) and post hoc 

pair-wise comparisons showed that words accompanied by a visual 
face (real or synthetic) were perceived more accurately than auditory-
only words (all p < 10−16). The accuracy for real faces was higher than 
for synthetic faces (Real vs. DNN; t = −17, p < 10−16; Real vs. FACS; 
t = −18, p < 10−16) but equivalent for the two synthetic face formats 
(DNN vs. FACS; t = 0.9, p = 0.82). Accuracy was higher for real faces 
than synthetic faces in every participant (Figure 2D).

Phoneme-level analysis

In a third analysis, the accuracy difference between real and 
synthetic faces was examined separately for each phoneme 
(Figure 3A). For 38 of 39 phonemes, accuracy was higher for real faces 
than synthetic faces, and this difference was significant for 19 of 39 
phonemes (after Bonferroni-correction for multiple comparisons). 
For four phonemes (/th/, /dh/, /f/, /v/) the accuracy advantage of real 
faces was especially pronounced (Real >> Synthetic). This observation 
could arise because these four phonemes had high accuracy for real 
faces, low accuracy for synthetic faces, or both. To distinguish these 

FIGURE 2

(A) For word-level scoring, the response was assessed as correct if it exactly matched the stimulus word and incorrect if it did not. Each bar shows the 
mean accuracy for each stimulus format (error bars show the standard error of the mean across participants). (B) Variability across participants 
assessed with word-level scoring (one symbol per participant). The y-axis shows the perceptual benefit of real faces (real minus auditory-only 
accuracy). The x-axis shows the perceptual benefit of synthetic faces (average of FACS and DNN accuracies minus auditory-only). Participants above 
the dashed line show a benefit for real faces compared with auditory-only. Participants above the solid identity line show a greater benefit for real 
faces than synthetic faces. (C) For phoneme-level scoring, the phonemic content of the stimulus and response were compared and the percentage of 
correct phonemes calculated for each stimulus format. (D) Variability across participants assessed with phoneme-level scoring (one symbol per 
participant).
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FIGURE 3

(A) For each phoneme, the perceptual accuracy was calculated separately for each stimulus format across all participants. The accuracy for audiovisual 
synthetic faces (average of DNN and FACS) was subtracted from the accuracy for audiovisual real faces to generate a single value for each phoneme. 
For plotting, phonemes were sorted by the difference value. Four phonemes (boldface labels and left four bars colored dark green) showed the largest 
real-synthetic difference. Phonemes marked with asterisk showed a significantly greater accuracy for real faces after correction for multiple 
comparisons. (B) Four phonemes (/th/, /dh/, /v/, /f/) showed the largest real-synthetic difference phonemes (left plot). Average of these four 
phonemes shown by dark green bar, average of all other phonemes shown by light green bar, error bar shows SEM. This was not due to differences in 
the real face condition (middle plot) but rather to low accuracy for the top four phonemes in the synthetic face condition (right plot). (C) Enlargement 
of the mouth region for the three different face formats for words containing (/th/, /dh/, /v/, /f/). Enlargement for illustration only, participants viewed 
the entire face, as shown in Figure 1. Top row: video frame 18 from the word thank. Second row: video frame 30 from the word loathe. Third row: 
video frame 27 from the word chief. Fourth row: Video frame 16 from the word voice.
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possibilities, we calculated the mean Real accuracy for (/th/, /dh/, /f/, 
/v/) compared with other phonemes, and found little difference (78% 
vs. 78%, t = −0.2, p = 0.81, paired samples t-test). In contrast, the mean 
Synthetic accuracy was significantly lower for (/th/, /dh/, /f/, /v/) than 
for other phonemes (28% vs. 61%, t = −25, p = 10−16). Thus, the greater 
real-synthetic difference for /th/, /dh/, /f/, /v/ than other phonemes 
(50% vs. 17%, t = 11, p = 10−16) was attributable to particularly low 
Synthetic accuracy (Figure 3B).

The poor accuracy for synthetic /th/, /dh/, /f/, /v/ suggested that 
some key visual features might be missing (Figure 3C). For /th/ and /
dh/, the salient visual feature is the tongue sandwiched between the 
teeth. This feature was clearly visible in the real face videos but was 
absent from the DNN and FACS face videos. For /f/ and /v/, the salient 
visual feature is the upper teeth pressed onto the lower lip. This feature 
was obvious in the real face videos but not in the synthetic face videos.

Modeling the effects of improving the four 
phonemes

Advances in computer graphics will make it possible to create 
synthetic faces that more accurately depict /th/, /dh/, /f/, /v/ and 
thereby increase the synthetic face benefit for words containing these 
phonemes. To estimate this increase, we constructed a logistic model 
that predicted the word accuracy based on the presence or absence 
of every different phoneme in the word. The fitted model contained 
one coefficient for each synthetic face phone me and one coefficient 
for each real face phoneme, and was a good fit to the data (r2 = 0.85, 
p < 10−16). In the hypothetical best case, the improved synthetic 
versions of /th/, /dh/, /f/, /v/ would be as good as the real face versions. 
This was simulated in the model by replacing the synthetic face 
coefficients for these phonemes with the real face coefficients. With 
this adjustment, the model predicted a word accuracy of 43%, 
compared with 29% for the original versions of /th/, /dh/, /f/, /v/, 
suggesting that improving the quality of the synthetic faces for the 
four phonemes with very low synthetic benefit could significantly 
boost overall accuracy.

Effects of alternative stimulus material

The overall phoneme accuracy rates shown in Figure 2C were 
determined by the phonemic content of the 64 tested words. This 
raises the question of how the results might differ for a much larger 
corpus of words. With a large enough corpus, the frequency of 
phonemes should match their overall prevalence in the English 
language. To simulate an experiment with a large corpus, we weighted 
the real-synthetic difference for each phoneme by its prevalence in the 
English language (Hayden, 1950). This procedure predicted an overall 
auditory-only phoneme accuracy of 40%, compared with 37% for the 
actual stimulus set. The predicted synthetic face phoneme accuracy 
was 60%, compared with 58% for the actual stimulus set, and the 
predicted real face accuracy was 78%, compared with 79% for the 
tested words. The predicted real-synthetic difference was 18% 
compared with 21% for the actual stimulus set. Testing with a large 
corpus of words (or a smaller set of words that matched overall 
English-language phoneme frequency) should lead to only small 
changes in accuracy.

Differences between synthetic face types

The accuracy for DNN and FACS faces was similar for the word 
analysis (Figure  4A; t = 0.2, p = 0.99) and the phoneme analysis 
(Figure 4B; t = 0.9, p = 0.82) leading us to combine both conditions into 
a single “synthetic face” accuracy for the analyses presented above. To 
search for more subtle differences between the synthetic face types, 
we  compared DNN and FACS accuracy for individual phonemes 
(Figure 4C). 51% (20 out of 39) of the phonemes had higher accuracy 
for DNN faces vs. FACS faces, but after correction for multiple 
comparisons, the difference was significant for only three phonemes 
(/b/, /p/ and /aw/), all with higher accuracy for DNN faces. An 
examination of word videos containing these phonemes did not reveal 
any obvious differences between the mouth movements of FACS and 
DNN faces.

Individual differences

There was substantial variability in the benefit of visual speech to 
noisy speech perception across individuals. To determine if these 
individual differences were consistent, we correlated the visual benefit 
for different face types. For word accuracy (Figure 2B), there was a 
strong correlation across participants between the benefit of real and 
synthetic faces (r = 0.49, p = 10−4). The same was true for phoneme 
accuracy (Figure 2C; r = 0.71, p = 10−10). Comparing the two types of 
synthetic faces, there was a positive correlation between the benefit of 
DNN and JALI faces for both word accuracy (Figure 4A; r = 0.39, 
p = 0.002) and phoneme accuracy (Figure 4B; r = 0.47, p = 10−4).

Discussion

Our study replicates decades of research by showing that seeing 
the face of a real talker improves speech-in-noise perception (Sumby 
and Pollack, 1954; Peelle and Sommers, 2015). Our study also 
confirms two recent reports that viewing a synthetic face generated by 
a deep neural network (DNN) significantly improves speech-in-noise 
perception (Shan et al., 2022; Varano et al., 2022). Both the present 
study and these previous reports found that the improvement from 
viewing DNN faces was only about half that provided by viewing 
real faces.

To determine if some idiosyncrasy of DNN faces was responsible 
for their poor performance relative to real faces, we  also tested 
synthetic faces generated with a completely different technique, the 
facial action coding system (FACS). Since FACS explicitly models the 
relationship between the facial musculature and visual speech 
movements, we  anticipated that it might provide more benefit to 
speech perception than DNN faces. Instead, the perceptual benefit of 
FACS faces was very similar to that of DNN faces.

Across participants, there was a positive correlation between the 
benefit of real and synthetic faces, leading us to infer that observers 
extract similar visual speech information from both kinds of faces, but 
that less visual speech information is available in synthetic faces. To 
better understand the real-synthetic difference, we  decomposed 
stimulus words and participant responses into their component 
phonemes. This analysis revealed variability across phonemes. Four 
phonemes (/th/, /dh/, /f/, /v/) had an especially large real-synthetic 
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difference, driven by low performance for both DNN and FACS faces. 
Examining single frames of the real and synthetic videos for words 
containing these phonemes revealed an obvious cause for the reduced 
benefit of synthetic faces. The synthetic videos were missing the 
interactions between teeth, lip and tongue that are the diagnostic 
visual feature for /th/, /dh/, /f/, /v/. Without these visual cues, 
participants did not receive the visual information beneficial for 
detecting these phonemes in speech-in-noise.

The concept of visemes

Visemes can be defined as the set of mouth configurations used to 
pronounce the phonemes in a language and may be shared across 
different phonemes. For instance, (/f/, /v/) are visually similar 
labiodental fricatives that require talkers to place the top teeth on the 
lower lip. The acoustic difference is generated by voicing (/f/ is 
unvoiced while /v/ is voiced); this voicing difference does not provide 
a visible cue to an observer. Similarly, (/th/, /dh/) are dental fricatives, 
articulated with the tongue against the upper teeth, with /th/ unvoiced 
and /dh/ voiced. While there is no generally agreed upon set of English 
visemes, five common viseme classifications all place (/f/, /v/) in one 
viseme category and (/th/, /dh/) in a different viseme category 
(Cappelletta and Harte, 2012). Our results confirm the veracity of 
this grouping.

How to improve synthetic faces

For the FACS faces, it would be possible to manually control teeth 
and tongue positioning using the underlying 3D face models, although 
this would be a time-consuming process. Alternately, the automated 
software used to animate the 3D face models (JALI)(Edwards et al., 
2016) could be  modified to automatically code teeth and tongue 
positioning. For DNN faces, it is less straightforward to incorporate 
dental and labial interactions. The DNN models are trained on 
thousands or millions of examples of auditory and visual speech, and 
the network learns the correspondence between particular sounds and 
visual features. It may be that dental and labial interactions are highly 
variable across talkers, or not easily visible in the videos used for 
training, resulting in their absence in the final output. A common step 
in neural network model creation is fine-tuning. Incorporating 
training data that explicitly includes dental and labial features, such as 
from electromagnetic articulography (Schönle et al., 1987) or MRI 
(Baer et  al., 1987), would improve the DNN’s ability to depict 
these features.

Other factors

While four phonemes showed an especially large real-synthetic 
difference (mean of 48% for /th/, /dh/, /f/, /v/) there was also a 

FIGURE 4

(A) Variability across participants for synthetic faces assessed with word-level scoring (one symbol per participant). The y-axis shows the perceptual 
benefit of synthetic DNN faces (DNN minus auditory-only accuracy). The x-axis shows the perceptual benefit of synthetic FACS faces (FACS minus 
auditory-only). (B) Variability across participants for synthetic faces assessed with phoneme-level scoring (one symbol per participant). For phoneme-
level scoring, the phonemic content of the stimulus and response were compared and the percentage of correct phonemes calculated. (C) For each 
phoneme, the perceptual accuracy was calculated separately for DNN and FACS synthetic faces and subtracted (positive values indicate higher 
accuracy for DNN than FACS, negative values the opposite). Three phonemes (boldface labels, and star) showed significant difference in accuracy 
between formats (p  <  0.05, corrected for multiple comparisons). Phoneme order identical to Figure 3A to facilitate comparison.
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substantial difference for the remaining phonemes (mean of 16%). The 
origin of this difference is likely to be  multi-faceted. One likely 
contributing factor is that just as for /th/, /dh/, /f/, /v/, the diagnostic 
mouth features for other phonemes are not as accurately depicted or 
as obvious in the synthetic faces as they are in the real face videos. This 
possibility could be  tested by showing the most diagnostic single 
frame from each type of video and asking participants to guess the 
phoneme being spoken. The prediction is that, even for single video 
frames, synthetic performance would be  worse than real face 
performance. Differences between DNN faces and real faces when 
pronouncing particular phonemes has been proposed as a method to 
detect deep-fake videos (Agarwal et al., 2020) although the phonemes 
examined in their study (/m/, /b/, /p/) were not those that showed the 
largest real-synthetic difference in the present study.

For real talkers, information about speech content is available 
throughout the face. Since synthetic face generation concentrates on 
the mouth and lip region, this decreases the information about speech 
content available to observers (Munhall and Vatikiotis-Bateson, 2004).

Another contributing factor for the real-synthetic difference could 
be  temporal asynchrony, since the temporal alignment between 
auditory and visual speech contributes to causal inference and other 
perceptual processing underlying speech perception (Magnotti et al., 
2013; Bhat et al., 2015). Synthetic faces were aligned to the auditory 
speech recording using a software processing pipeline; the JALI 
software used to create the FACS faces claims an audiovisual alignment 
accuracy of 15 ms (Edwards et al., 2016). Asynchrony produced by 
dubbing synthetic faces and real voices could be replicated for the real 
face condition by dubbing real faces and auditory recordings from a 
different talker or a synthesized voice.

Relevance to experimental studies of 
audiovisual speech perception

An important reason for creating synthetic talking faces is to 
investigate the perceptual and neural properties of audiovisual speech 
perception (Thézé et al., 2020a,b). In the well-known illusion known 
as the McGurk effect, incongruent auditory and visual speech leads to 
unexpected percepts (McGurk and MacDonald, 1976). However, 
different McGurk stimuli vary widely in their efficacy. For instance, 
Basu Mallick et al. (2015) tested 12 different McGurk stimuli used in 
published studies, and found that the strongest evoked the illusion on 
58% of trials while the weakest stimulus evoked the illusion on only 
17% of trials. The causes of high inter-stimulus variability are difficult 
to study, as talkers are limited in their ability to control the visual 
aspects of speech production. In contrast, synthetic faces, especially 
those created with FACS and related techniques, provide the ability to 
experimentally manipulate visual speech (Thézé et al., 2020a; Shan 
et al., 2022; Varano et al., 2022) making them a key tool for improving 
our understanding of the McGurk effect other incongruent audiovisual 
speech (Dias et al., 2016; Shahin, 2019).

Individual differences

Two findings of the present study are consistent with decades of 
research. First, that seeing the face of the talker is beneficial for noisy 
speech perception and second, that the degree of benefit varies widely 

between individuals (Sumby and Pollack, 1954; Erber, 1975; Grant 
et al., 1998; Tye-Murray et al., 2008; Van Engen et al., 2014, 2017; 
Peelle and Sommers, 2015; Sommers et  al., 2020). Individual 
differences are observed even when participants’ eye movements are 
monitored, ruling out the trivial explanation that participants with low 
visual benefit fail to look at the visual display (Rennig et al., 2020). 
However, eye movements to particular parts of the talker’s face 
(specifically, a preference for foveating the mouth of the talker when 
viewing clear speech), combined with recognition performance 
during auditory-only noisy speech, explain about 10% of the 
variability across individuals (Rennig et al., 2020). At the neural level, 
fMRI response patterns in superior temporal cortex to clear and noisy 
speech are more similar in participants with a larger benefit from 
seeing the face of the talker (Rennig and Beauchamp, 2022; Zhang 
et al., 2023).

Limitations of the present study

The present study has a number of limitations. In order to 
maximize the number of tested words and minimize experimental 
time, only a single noise level was tested, as in a previous study of 
DNN faces (Varano et al., 2022). A high level of noise (−12 dB) was 
selected to maximize the benefit of visual speech (Ross et al., 2007; 
Rennig et al., 2020). Another previous study of DNN faces tested 
multiple noise levels and found a lawful relationship between different 
noise levels and perception (Shan et al., 2022). As the amount of added 
auditory noise decreased, accuracy increased for the no-face, real face 
and DNN face conditions in parallel, converging at ceiling accuracy 
for all three conditions when no auditory noise was added. We would 
expect a similar pattern if our experiments were repeated with 
different levels of auditory noise. Another experimental approach is 
to present visual-only speech without any auditory input, although 
this condition differs from most real-world situations with the 
exception of profound deafness. The ability to extract information 
about speech from the face of the talker (known as lipreading or 
speechreading) varies widely across individuals, and it may be possible 
to improve this ability through training (Auer and Bernstein, 2007; 
Bernstein et al., 2022).

While our study only examined speech perception, a similar 
approach could be taken to compare real and synthetic faces in other 
domains, such as emotions and looking behavior (Miller et al., 2023).

Conclusion

Massaro and Cohen (1995) pioneered the use of synthetic faces to 
examine audiovisual speech perception and recent advances in 
computer graphics and deep neural faces show that synthetic faces 
offer a promising tool for both research and practical applications to 
help patients with deficits in speech perception.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

https://doi.org/10.3389/fnins.2024.1379988
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yu et al. 10.3389/fnins.2024.1379988

Frontiers in Neuroscience 10 frontiersin.org

Ethics statement

The studies involving humans were approved by Institutional 
Review Board of the University of Pennsylvania, Philadelphia, PA. The 
studies were conducted in accordance with the local legislation and 
institutional requirements. The ethics committee/institutional review 
board waived the requirement of written informed consent for 
participation from the participants or the participants’ legal guardians/
next of kin because Participants were recruited and tested online. 
Written informed consent was obtained from the individual(s) for the 
publication of any potentially identifiable images or data included in 
this article.

Author contributions

YY: Writing – original draft, Writing – review & editing. AL: 
Writing – original draft, Writing – review & editing. YZ: Writing – 
original draft, Writing – review & editing. JM: Writing – original draft, 
Writing – review & editing. MB: Writing – original draft, Writing – 
review & editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. This research 

was supported by NIH R01NS065395 and U01NS113339. The funders 
had no role in study design, data collection and analysis, decision to 
publish, or preparation of the manuscript.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fnins.2024.1379988/
full#supplementary-material

References
Agarwal, S., Farid, H., Fried, O., and Agrawala, M., (2020). Detecting deep-fake videos 

from phoneme-Viseme mismatches, in: 2020 IEEE/CVF Conference on Computer 
Vision and Pattern Recognition Workshops (CVPRW). Presented at the 2020 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 
2814–2822.

Auer, E. T. Jr., and Bernstein, L. E. (2007). Enhanced visual speech perception in 
individuals with early-onset hearing impairment. J. Speech Lang. Hear. Res. 50, 
1157–1165. doi: 10.1044/1092-4388(2007/080)

Baer, T., Gore, J. C., Boyce, S., and Nye, P. W. (1987). Application of MRI to the analysis 
of speech production. Magn. Reson. Imaging 5, 1–7. doi: 10.1016/0730-725x(87)90477-2

Basu Mallick, D., Magnotti, J. F., and Beauchamp, M. S. (2015). Variability and stability 
in the McGurk effect: contributions of participants, stimuli, time, and response type. 
Psychon. Bull. Rev. 22, 1299–1307. doi: 10.3758/s13423-015-0817-4

Bernstein, L. E., Jordan, N., Auer, E. T., and Eberhardt, S. P. (2022). Lipreading: a review of 
its continuing importance for speech recognition with an acquired hearing loss and 
possibilities for effective training. Am. J. Audiol. 31, 453–469. doi: 10.1044/2021_AJA-21-00112

Bhat, J., Miller, L. M., Pitt, M. A., and Shahin, A. J. (2015). Putative mechanisms 
mediating tolerance for audiovisual stimulus onset asynchrony. J. Neurophysiol. 113, 
1437–1450. doi: 10.1152/jn.00200.2014

Cappelletta, L., and Harte, N., (2012). Phoneme-to-Viseme mapping for visual speech 
recognition. In Presented at the proceedings of the 1st international conference on 
pattern recognition applications and methods, SciTePress, 322–329.

Dias, J. W., Cook, T. C., and Rosenblum, L. D. (2016). Influences of selective adaptation 
on perception of audiovisual speech. J. Phon. 56, 75–84. doi: 10.1016/j.wocn.2016.02.004

Edwards, P., Landreth, C., Fiume, E., and Singh, K. (2016). JALI: an animator-centric 
viseme model for expressive lip synchronization. ACM Trans. Graph. 35, 1–11. doi: 
10.1145/2897824.2925984

Ekman, P., and Friesen, W. V. (1976). Measuring facial movement. J. Nonverbal Behav. 
1, 56–75. doi: 10.1007/BF01115465

Ekman, P., and Friesen, W. V., (1978). Facial Action Coding System (FACS) [Database 
record]. APA PsycTests.

Erber, N. P. (1975). Auditory-visual perception of speech. J. Speech Hear. Disord. 40, 
481–492. doi: 10.1044/jshd.4004.481

Grant, K. W., Walden, B. E., and Seitz, P. F. (1998). Auditory-visual speech recognition 
by hearing-impaired subjects: consonant recognition, sentence recognition, and 
auditory-visual integration. J. Acoust. Soc. Am. 103, 2677–2690. doi: 10.1121/1.422788

Hayden, R. E. (1950). The relative frequency of phonemes in general-American 
English. Word 6, 217–223. doi: 10.1080/00437956.1950.11659381

Magnotti, J. F., Ma, W. J., and Beauchamp, M. S. (2013). Causal inference of 
asynchronous audiovisual speech. Front. Psychol. 4:798. doi: 10.3389/fpsyg.2013.00798

Massaro, D. W., and Cohen, M. M. (1995). Perceiving talking faces. Curr. Dir. Psychol. 
Sci. 4, 104–109. doi: 10.1111/1467-8721.ep10772401

McGurk, H., and MacDonald, J. (1976). Hearing lips and seeing voices. Nature 264, 
746–748. doi: 10.1038/264746a0

Miller, E. J., Foo, Y. Z., Mewton, P., and Dawel, A. (2023). How do people respond to 
computer-generated versus human faces? A systematic review and meta-analyses. 
Comput. Hum. Behav. Rep. 10:100283. doi: 10.1016/j.chbr.2023.100283

Munhall, K. G., and Vatikiotis-Bateson, E. (2004). “Spatial and temporal constraints 
on audiovisual speech perception” in The handbook of multisensory processes. eds. G. A. 
Calvert, C. Spence and B. E. Stein (MIT Press), 177–188.

Parke, F. I., and Waters, K., (2008). Computer facial animation, 2nd Edn, A K Peters, 
Wellesley, Mass.

Peelle, J. E., and Sommers, M. S. (2015). Prediction and constraint in audiovisual 
speech perception. Cortex 68, 169–181. doi: 10.1016/j.cortex.2015.03.006

Perry, G., Blondheim, S., and Kuta, E., (2023). A web app that lets you video chat with 
an AI on human terms. [WWW document]. D-ID. Available at: https://www.d-id.com/
chat/ (Accessed January 20, 2024).

Rennig, J., and Beauchamp, M. S. (2022). Intelligibility of audiovisual sentences drives 
multivoxel response patterns in human superior temporal cortex. NeuroImage 
247:118796. doi: 10.1016/j.neuroimage.2021.118796

Rennig, J., Wegner-Clemens, K., and Beauchamp, M. S. (2020). Face viewing behavior 
predicts multisensory gain during speech perception. Psychon. Bull. Rev. 27, 70–77. doi: 
10.3758/s13423-019-01665-y

Ross, L. A., Saint-Amour, D., Leavitt, V. M., Javitt, D. C., and Foxe, J. J. (2007). Do 
you see what I am saying? Exploring visual enhancement of speech comprehension in 
noisy environments. Cereb. Cortex 17, 1147–1153. doi: 10.1093/cercor/bhl024

https://doi.org/10.3389/fnins.2024.1379988
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fnins.2024.1379988/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2024.1379988/full#supplementary-material
https://doi.org/10.1044/1092-4388(2007/080)
https://doi.org/10.1016/0730-725x(87)90477-2
https://doi.org/10.3758/s13423-015-0817-4
https://doi.org/10.1044/2021_AJA-21-00112
https://doi.org/10.1152/jn.00200.2014
https://doi.org/10.1016/j.wocn.2016.02.004
https://doi.org/10.1145/2897824.2925984
https://doi.org/10.1007/BF01115465
https://doi.org/10.1044/jshd.4004.481
https://doi.org/10.1121/1.422788
https://doi.org/10.1080/00437956.1950.11659381
https://doi.org/10.3389/fpsyg.2013.00798
https://doi.org/10.1111/1467-8721.ep10772401
https://doi.org/10.1038/264746a0
https://doi.org/10.1016/j.chbr.2023.100283
https://doi.org/10.1016/j.cortex.2015.03.006
https://www.d-id.com/chat/
https://www.d-id.com/chat/
https://doi.org/10.1016/j.neuroimage.2021.118796
https://doi.org/10.3758/s13423-019-01665-y
https://doi.org/10.1093/cercor/bhl024


Yu et al. 10.3389/fnins.2024.1379988

Frontiers in Neuroscience 11 frontiersin.org

Schönle, P. W., Gräbe, K., Wenig, P., Höhne, J., Schrader, J., and Conrad, B. (1987). 
Electromagnetic articulography: use of alternating magnetic fields for tracking 
movements of multiple points inside and outside the vocal tract. Brain Lang. 31, 26–35. 
doi: 10.1016/0093-934x(87)90058-7

Shahin, A. J. (2019). Neural evidence accounting for interindividual variability of the 
McGurk illusion. Neurosci. Lett. 707:134322. doi: 10.1016/j.neulet.2019.134322

Shan, T., Wenner, C. E., Xu, C., Duan, Z., and Maddox, R. K. (2022). Speech-in-noise 
comprehension is improved when viewing a deep-neural-network-generated talking 
face. Trends Hear. 26:23312165221136934. doi: 10.1177/23312165221136934

Sommers, M. S., Spehar, B., Tye-Murray, N., Myerson, J., and Hale, S. (2020). Age 
differences in the effects of speaking rate on auditory, visual, and auditory-visual speech 
perception. Ear Hear. 41, 549–560. doi: 10.1097/AUD.0000000000000776

Sumby, W. H., and Pollack, I. (1954). Visual contribution to speech intelligibility in 
noise. J. Acoust. Soc. Am. 26, 212–215. doi: 10.1121/1.1907309

Thézé, R., Gadiri, M. A., Albert, L., Provost, A., Giraud, A.-L., and Mégevand, P. 
(2020a). Animated virtual characters to explore audio-visual speech in controlled and 
naturalistic environments. Sci. Rep. 10:15540. doi: 10.1038/s41598-020-72375-y

Thézé, R., Giraud, A.-L., and Mégevand, P. (2020b). The phase of cortical oscillations 
determines the perceptual fate of visual cues in naturalistic audiovisual speech. Sci. Adv. 
6:eabc6348. doi: 10.1126/sciadv.abc6348

Tye-Murray, N., Sommers, M., Spehar, B., Myerson, J., Hale, S., and Rose, N. S. 
(2008). Auditory-visual discourse comprehension by older and young adults in 
favorable and unfavorable conditions. Int. J. Audiol. 47, S31–S37. doi: 
10.1080/14992020802301662

Van Engen, K. J., Phelps, J. E. B., Smiljanic, R., and Chandrasekaran, B. (2014). 
Enhancing speech intelligibility: interactions among context, modality, speech style, and 
masker. J. Speech Lang. Hear. Res. 57, 1908–1918. doi: 10.1044/JSLHR-H-13-0076

Van Engen, K. J., Xie, Z., and Chandrasekaran, B. (2017). Audiovisual sentence 
recognition not predicted by susceptibility to the McGurk effect. Atten. Percept. 
Psychophys. 79, 396–403. doi: 10.3758/s13414-016-1238-9

Varano, E., Vougioukas, K., Ma, P., Petridis, S., Pantic, M., and Reichenbach, T. (2022). 
Speech-driven facial animations improve speech-in-noise comprehension of humans. 
Front. Neurosci. 15:781196. doi: 10.3389/fnins.2021.781196

Zhang, Y., Rennig, J., Magnotti, J. F., and Beauchamp, M. S. (2023). Multivariate fMRI 
responses in superior temporal cortex predict visual contributions to, and individual 
differences in, the intelligibility of noisy speech. NeuroImage 278:120271. doi: 10.1016/j.
neuroimage.2023.120271

Zhou, Y., Xu, Z., Landreth, C., Kalogerakis, E., Maji, S., and Singh, K. (2018). 
Visemenet: audio-driven animator-centric speech animation. ACM Trans. Graph. 37, 
1–10. doi: 10.1145/3197517.3201292

https://doi.org/10.3389/fnins.2024.1379988
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/0093-934x(87)90058-7
https://doi.org/10.1016/j.neulet.2019.134322
https://doi.org/10.1177/23312165221136934
https://doi.org/10.1097/AUD.0000000000000776
https://doi.org/10.1121/1.1907309
https://doi.org/10.1038/s41598-020-72375-y
https://doi.org/10.1126/sciadv.abc6348
https://doi.org/10.1080/14992020802301662
https://doi.org/10.1044/JSLHR-H-13-0076
https://doi.org/10.3758/s13414-016-1238-9
https://doi.org/10.3389/fnins.2021.781196
https://doi.org/10.1016/j.neuroimage.2023.120271
https://doi.org/10.1016/j.neuroimage.2023.120271
https://doi.org/10.1145/3197517.3201292

	Synthetic faces generated with the facial action coding system or deep neural networks improve speech-in-noise perception, but not as much as real faces
	Introduction
	Methods
	Participant recruitment and testing
	Overview
	Subject responses and scoring: word-level
	Phonemic analysis
	Additional stimulus details
	Power analysis

	Results
	Participant-level analysis: word accuracy
	Participant-level analysis: phoneme accuracy
	Phoneme-level analysis
	Modeling the effects of improving the four phonemes
	Effects of alternative stimulus material
	Differences between synthetic face types
	Individual differences

	Discussion
	The concept of visemes
	How to improve synthetic faces
	Other factors
	Relevance to experimental studies of audiovisual speech perception
	Individual differences
	Limitations of the present study

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions

	References

