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Introduction

Acute decompensated heart failure (ADHF) carries a significant burden of mortality

and morbidity, with few effective treatments available (Heidenreich et al., 2022; Greene

et al., 2023). Cardiopulmonary nerve stimulation (CPNS), which involves targeted

electrical stimulation of specific nerves that innervate the heart, is an innovative emerging

therapeutic ADHF management strategy (Petru et al., 2020; Goedeke et al., 2022; Emani

et al., 2023). In a recent study, Emani et al. (2023) used the CPNS using a low-

level stimulation which enhanced cardiac inotropy, decreased energy consumption, and

improved patients’ symptoms, function, and quality of life (Emani et al., 2023). The

mechanism of action of CPNS that drove these promising results was not described by

Emani et al. (2023).

This commentary aims to explore the mechanisms of CPNS, focusing on its

neuromodulatory effects on the cardiac autonomic nervous system (CANS) and its

potential to revolutionize ADHF therapy.

Cardiac autonomic nervous system

TheCANS is a complex network ofmultiple layers of neural control, each hierarchically

arranged to regulate cardiac function (Armour and Ardell, 2004; Hadaya and Ardell,

2020). CANS functionality is underpinned by several key layers: (1) the intrinsic cardiac

nervous system (ICNS) for local control, (2) intrathoracic extracardiac ganglia, including

sympathetic and superior cervical ganglia, for intrathoracic regulation, (3) the spinal cord

for processing cardiac sensory information and directing sympathetic outflow, (4) the

brainstem for integrating sensory information and modulating autonomic output, and (5)

the higher brain centers like the cortex for overarching control (Figure 1).

Neuromodulation of the CANS can be achieved by altering the

activity of cardiac neurons or nerves at various levels within the system,

each of which can directly or indirectly influence cardiac function.
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FIGURE 1

Cardiac autonomic nervous system. ICNS, Intrinsic Cardiac Nervous

System; SCG, Superior Cervical Ganglia; MCG, Middle Cervical

Ganglia; ICG, Inferior Cervical Ganglia; DRG, Dorsal Root Ganglia.

Parts of this figure were created with BioRender.com.

CANS stimulation

Sympathetic nerve stimulation

Activating the sympathetic nervous system releases

norepinephrine (NE) in the heart, enhancing contractility, blood

pressure, and heart rate. The effect varies depending on the heart

region innervated. For example, stimulating the stellate ganglion,

which is the fusion of the inferior cervical ganglia and thoracic

1(T1) sympathetic ganglia, on the left side primarily increases

left ventricular contractility without significantly affecting heart

rate, whereas right stellate ganglion stimulation predominantly

elevates heart rate (Ajijola et al., 2015; Dacey et al., 2022). The

ability of sympathetic nerve stimulation in altering hemodynamic

parameters such as heart rate and contractility is influenced by

the stimulation settings, the state of the heart, and the overall

condition of the CANS. In heart failure, CANS dysfunction may

alter expected responses, with the degree of response variability

tied to the extent of CANS remodeling (Tjeerdsma et al., 2001;

Campelo and Abreu-Lima, 2004; Hoyer et al., 2008; Kardesoglu

et al., 2011; Kishi, 2012; Phillips, 2012; Ali et al., 2018; Hadaya and

Ardell, 2020).

Parasympathetic nerve stimulation

Activating parasympathetic nerve fibers typically leads to

bradycardia and may also lower blood pressure. The choice of

stimulation parameters and the specific stimulation location are

crucial, as they greatly influence the outcomes. For example,

stimulating the vagus nerve, a key element of the parasympathetic

nervous system, at both the cervical and heart levels leads to

bradycardia. However, cervical vagus nerve stimulation is linked

to various off-target effects that are absent when only the cardiac

branch of the vagus nerve is stimulated (Fitchett et al., 2021).

As with sympathetic stimulation, the extent of bradycardia and

hemodynamic shifts induced by parasympathetic stimulation is

contingent upon the heart’s condition and the functional state of the

CANS. This variability underscores the complex interplay between

heart health and autonomic regulation.

A�erent nerve stimulation

Direct
Stimulating afferent fibers directly can yield various outcomes,

dependent on the specific fiber type and stimulation intensity.

These effects range from potentially cardioprotective impacts

(Fallen, 2005), to adverse reactions like pain, arrhythmias,

bradycardia, tachycardia, and other hemodynamic shifts. The

diversity of these effects illustrates the complexity and sensitivity

of afferent nerve responses to direct stimulation (Schwartz and

Foreman, 1991; Chandler et al., 1993).

Indirect
The nuanced effects of indirectly modulating afferent neurons

are often overlooked in neuromodulation therapies. It’s crucial to

recognize that the CANS operates as a closed-loop system. As such,

sympathetic or parasympathetic stimulation affects more than just

contractility, blood pressure, or heart rate; it also alters cardiac

sensory neurons. These neurons are responsible for detecting

mechanical and chemical changes in cardiac tissues and relay this

sensory information throughout the CANS hierarchy for further

processing (Armour, 2004; Armour and Ardell, 2004). Upon

processing this sensory data, the CANS can undergo a complete

state alteration. This underscores the profound impact of sensory

input on the autonomic system’s overall functioning, highlighting

the intricate feedback mechanisms within the CANS (Armour,

2004; Armour and Ardell, 2004).

Stimulation parameters

In electrical stimulation, parameters such as frequency,

amplitude, pulse width, duty cycle, polarity, burst time, and

ramp time are critical in shaping therapeutic outcomes. Different

stimulation parameters can result in markedly different effects.

For example, low-intensity parasympathetic stimulation may offer

cardioprotective benefits, whereas high-intensity stimulation of the

parasympathetic nerve can precipitate arrhythmias (Ardell et al.,

2017;Wang et al., 2019; Kharbanda et al., 2022). Identifying optimal

stimulation parameters for maximal therapeutic effects in various

cardiac diseases presents a significant challenge. There is a need for

extensive translational research involving large animal models to

determine these optimal parameters and to thoroughly understand

the mechanisms behind a neuromodulation therapy’s effectiveness.

Ganglionated plexi stimulation

The stimulation of cardiac ganglionated plexi (GPs) can lead to

diverse outcomes, largely dependent on the types of neurons and

nerve fibers present within these GPs. Activation of GPs containing
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sympathetic, parasympathetic, or local circuit neurons can result

in various cardiac responses, including bradycardia, tachycardia,

a combination of both, atrioventricular (AV) block, and atrial

arrhythmias. This underscores the critical need for precision in

targeting specific neuronal GPs in cardiac neuromodulation (Butler

et al., 1990; Cardinal et al., 2009; Lim et al., 2011a,b). Stimulating

multiple neuron types simultaneously within the GPs may lead to

inconsistent and undesirable effects across different subjects. This

variability highlights the complexity and challenges in achieving

uniform therapeutic responses through GP neuromodulation

(Butler et al., 1990; Cardinal et al., 2009).

CANS imbalance in HF patients

In early HF, the sympathetic nervous system becomes overly

active as a compensatory response to maintain cardiac output,

driven by heightened sensory signaling from cardiac afferent

neurons. As HF progresses without resolution, these neurons

continuously signal the CANS for increased sympathetic and

reduced parasympathetic activity, leading to autonomic imbalance.

This ongoing sympathetic dominance and parasympathetic

dysfunction contribute to the worsening of HF, increased

arrhythmias, decompensation, and mortality risk (Grassi et al.,

1995; Schnabel and Bohm, 1999; Noble, 2000; Floras, 2003, 2009;

Borovac et al., 2020; Gronda et al., 2022).

Cardiopulmonary nerve stimulation

Location

In human clinical studies, CPNS was delivered through a

catheter equipped with a 16-electrode anchoring nitinol braid and

placed within the right pulmonary artery (RPA; Figure 2). This

specific location facilitated targeted stimulation of cardiac nerves

in the mid- RPA region (Petru et al., 2020; Goedeke et al., 2022).

The RPA, targeted in CPNS, is characterized by a complex mix of

nerve structures, including various sympathetic, parasympathetic,

and afferent nerves, alongside GPs. This area encompasses a variety

of nerves such as the right dorsal medial cardiopulmonary nerve

(CPN), right dorsal lateral CPN, right stellate CPN, CPN plexus,

both superficial and deep cardiac plexus, vagal cardiac branches,

inferior cervical cardiac nerves, and RPA GP (Janes et al., 1986;

Murphy and Armour, 1992; Chiou et al., 1997; Kawashima, 2005;

Niu et al., 2007; Wang et al., 2010; Wink et al., 2020; Zandstra et al.,

2021).

CPNS e�ect

CPNS therapy, applied in areas densely populated with

sympathetic, parasympathetic, and afferent nerves, leverages the

intricate neural network of the target region to modulate

cardiac function (Janes et al., 1986; Murphy and Armour, 1992;

Kawashima, 2005; Wink et al., 2020; Zandstra et al., 2021). In

addition, the target region for CPNS contains GPs (Chiou et al.,

1997; Niu et al., 2007; Wang et al., 2010), which are home to a

FIGURE 2

Cardiopulmonary nerve stimulation catheter.

diverse array of neurons, including those forming local circuits

(Armour, 1991; Armour et al., 1997). This variety of neurons within

the GPs contributes to the nuanced and multifaceted effects of

CPNS therapy. The effectiveness of CPNS is influenced by several

factors, including the precise location of the electrode, stimulation

parameters, patients’s RPA neural anatomy, and the stage of CANS

remodeling in HF patients. The positioning of the electrode in

relation to specific nerves, especially those near the RPA like cardiac

vagal nerves, plays a crucial role. For instance, if CPNS electrodes

near cardiac vagal nerves are used, the therapy could induce

bradycardia (Murphy and Armour, 1992). A multitude of afferent

fibers are also present near the RPA which branch out toward

either the dorsal root ganglia (DRG) or the nodose ganglia. This

proximity of afferent fibers to the RPA underscores their potential

involvement in the responses elicited by CPNS therapy (Janes et al.,

1986; Murphy and Armour, 1992; Chiou et al., 1997; Kawashima,

2005; Niu et al., 2007; Wang et al., 2010; Wink et al., 2020; Zandstra

et al., 2021). In this region, the presence of the RPA-GP or the

superior vena cava-aorta (SVC-Ao) GP is notable. Stimulation of

these GPs typically results in a deceleration of the sinus rate and

atrioventricular conduction, demonstrating the profound impact of

GP stimulation on cardiac rhythm (Cooper et al., 1980; Mick et al.,

1992; Chiou et al., 1997; Lu et al., 2010). Simultaneously stimulating

sympathetic, parasympathetic, and afferent fibers in CPNS can lead

to non-specific CANS modulation, potentially causing issues like

pain from direct nociceptive afferent stimulation or autonomic

conflicts. This highlights the complexity and potential risks of

CPNS, underscoring the need for precise modulation to avoid such

adverse effects (Schwartz and Foreman, 1991; Chandler et al., 1993;

Foreman et al., 2015; Eickholt et al., 2018; Winter et al., 2018).

The use of a catheter with multiple electrodes and the

assessment of the hemodynamic response of stimulation seems to
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be essential in CPNS therapy for the accurate targeting of specific

nerves. By selecting the electrodes adjacent to the targeted nerves,

CPNS can precisely modulate nerve activity, thereby enhancing the

therapy’s effect and reducing the risk of non-specific modulation

and related complications.

Potential mechanism of action

It has been shown that low-level CPNS could provide

significant benefits to ADHF patients (Emani et al., 2023). In this

commentary article, we try to discuss the potential mechanism of

action of CPNS, however, to determine the exact mechanism of

action of CPNS, mechanistic animal studies are needed. In the

recent CPNS clinical trial, the low-intensity CPNSwas performed at

a cardiopulmonary sympathetic nerve which was identified prior to

initiation of CPNS therapy. By this method, the CANS is stimulated

at a low level which does not cause a clinically relevant acute

hemodynamic response. Although the low-level CANSmodulation

might not cause a large acute hemodynamic response, it can

cause a profound protective effect by indirect modulation of the

afferent pathway (Armour and Ardell, 2004). We hypothesize

that during CPNS therapy, afferent signaling is modulated either

directly by direct stimulation of afferent nerve fibers or indirectly by

reacting to the low-level CPNS sympathetic stimulation. The CANS

controls the sympathetic and parasympathetic outflow based on

the afferent/sensory input and therefore afferent modulation could

cause a significant change in the whole CANS (Chen et al., 2015;

van Weperen and Vaseghi, 2023).

Chronic e�ect

Neuromodulation therapies can provide therapeutic effects that

last longer than the stimulation period as seen in the vagus nerve

neuromodulation therapy in the setting of atrial fibrillation in

which a 3min vagus nerve stimulation provided more than 20min

of cardioprotective effect (Salavatian et al., 2016). The main reason

for this prolonged therapeutic effect is that neuromodulation

therapies aim to target the CANS imbalance, which is one of the

root causes of HF progression.

Neuromodulation therapies, such as CPNS, have the potential

to help the CANS exit the maladaptive state present during HF

progression. This can lead to a more functional state that does

not accelerate HF worsening and may even partially reverse it.

The CANS is capable of adapting/changing its neural network

to improve its processing function which ultimately results in an

improvement of cardiac function. If the CANS, with the help of

acute or chronic neuromodulation therapy, starts its own adaptive

reverse remodeling process to reach amore functional state, cardiac

function, and patient outcome can improve dramatically even

without continuous neuromodulation therapy.

Discussion

The malfunctioning CANS is heavily remodeled in cardiac

diseases such as myocardial ischemia, myocardial infarction, heart

failure, and arrhythmias (Francis and Cohn, 1986; Tjeerdsma et al.,

2001; Campelo and Abreu-Lima, 2004; Piepoli and Capucci, 2007;

Hoyer et al., 2008; Kardesoglu et al., 2011; Phillips, 2012; van

Bilsen et al., 2017; Ali et al., 2018; Hadaya and Ardell, 2020; Elia

and Fossati, 2023; Kumar et al., 2023). The CPNS is capable of

modulating the entire state of the CANS through both direct

and indirect afferent pathway modulation that is transmitted to

multiple levels of the CANS. Therefore, such profound modulation

of the CANS has the potential to cause a significant improvement

in a patient’s trajectory by restoring the autonomic balance as

seen in the low level CPNS study (Abboud, 2010; Sobotka et al.,

2013; Emani et al., 2023). Neuromodulation techniques can provide

cardioprotective effects including, but not limited to, reduction in

cardiac arrhythmia events, improvement of cardiac function, relief

of symptoms like chest pain, shortness of breath, and palpitations

due to cardiac disorders, and prevention of sudden cardiac

death (Salavatian and Ardell, 2018; Hadaya and Ardell, 2020). By

addressing one of the root causes of HF progression, this profound

CANS modulation can promote long-term cardiovascular health

and reduce the risk of recurrent cardiac events, rehospitalization,

and mortality.

It is also important to note that the extent of the therapeutic

effect of the neuromodulation therapies varies among patients and

it depends on factors like underlying cardiovascular condition,

CANS condition, the neuromodulation technique and its

mechanism of action, and the overall health of the patient.
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