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Migraine is one of the world’s most debilitating disorders, and it has recently 
been shown that changes in the retina can be  a potential biomarker for the 
disease. These changes can be  detected by optical coherence tomography 
(OCT), which measures retinal thickness, and optical coherence tomography 
angiography (OCTA), which measures vessel density. We  searched the 
databases Google Scholar, ProQuest, Scopus, and Web of Science for studies 
in English using OCT and OCTA in migraineurs, using the search terms “optical 
coherence tomography,” “OCT,” “optical coherence tomography angiography,” 
“OCTA” and “migraine.” We found 73 primary studies, 11 reviews, and 8 meta-
analyses pertaining to OCT and OCTA findings in migraineurs. They showed 
that migraineurs had reduced retinal thickness (via OCT), retinal vessel density, 
and greater foveal avascular zone area (via OCTA) than controls. OCTA changes 
reflect a perfusion compromise occurring in migraineurs as opposed to in 
healthy controls. OCT and OCTA deficits were worse in migraine-with-aura and 
chronic migraine than in migraine-without-aura and episodic migraine. Certain 
areas of the eye, such as the fovea, may be more vulnerable to these perfusion 
changes than other parts. Direct comparison between study findings is difficult 
because of the heterogeneity between the studies in terms of both methodology 
and analysis. Moreover, as almost all case–control studies were cross-sectional, 
more longitudinal cohort studies are needed to determine cause and effect 
between migraine pathophysiology and OCT/OCTA findings. Current evidence 
suggests both OCT and OCTA may serve as retinal markers for migraineurs, 
and further research in this field will hopefully enable us to better understand 
the vascular changes associated with migraine, perhaps also providing a new 
diagnostic and therapeutic biomarker.

OPEN ACCESS

EDITED BY

Takeshi Yoshimoto,  
University of Tsukuba Hospital, Japan

REVIEWED BY

Shi-Nan Wu,  
Xiamen University, China
Yukihiro Shiga,  
University of Montreal Hospital Research 
Centre (CRCHUM), Canada

*CORRESPONDENCE

John C. L. Mamo  
 J.Mamo@Curtin.edu.au

RECEIVED 25 January 2024
ACCEPTED 26 March 2024
PUBLISHED 15 April 2024

CITATION

Chaliha DR, Vaccarezza M, Charng J, 
Chen FK, Lim A, Drummond P, Takechi R, 
Lam V, Dhaliwal SS and Mamo JCL (2024) 
Using optical coherence tomography and 
optical coherence tomography angiography 
to delineate neurovascular homeostasis in 
migraine: a review.
Front. Neurosci. 18:1376282.
doi: 10.3389/fnins.2024.1376282

COPYRIGHT

© 2024 Chaliha, Vaccarezza, Charng, Chen, 
Lim, Drummond, Takechi, Lam, Dhaliwal and 
Mamo. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Review
PUBLISHED 15 April 2024
DOI 10.3389/fnins.2024.1376282

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1376282%EF%BB%BF&domain=pdf&date_stamp=2024-04-15
https://www.frontiersin.org/articles/10.3389/fnins.2024.1376282/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1376282/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1376282/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1376282/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1376282/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1376282/full
mailto:J.Mamo@Curtin.edu.au
https://doi.org/10.3389/fnins.2024.1376282
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1376282


Chaliha et al. 10.3389/fnins.2024.1376282

Frontiers in Neuroscience 02 frontiersin.org

KEYWORDS

optical coherence tomography, optical coherence tomography angiography (OCTA), 
migraine, retina, choroid, vasculature, vasodilation, vasoconstriction

Introduction

OCT measures retinal thickness, employing infra-red wavelength 
for image acquisition, and has an 8–10 μm axial resolution, which may 
be improved to 3 μm in some devices (Wojtkowski et al., 2004; Ascaso 
et al., 2017). Spectral-domain OCT (Ewering et al., 2015; Karalezli 
et  al., 2015; Yu et  al., 2016; Ulusoy et  al., 2019) provides higher 
resolution, faster acquisition speed, and fewer artifacts (Forte et al., 
2009). However, limitations include a small field of view, lack of vessel 
leakage detection, dependency of resolution on coherence length of 
light source, artifacts from minute patient movements, and inability 
to detect slower blood flow (Huang et al., 1991; De Carlo et al., 2015). 
Retinal thickness data in OCT images can be partitioned into four 
(superior, inferior, nasal, and temporal) or six (nasal, superior nasal, 
inferior nasal, temporal, superior temporal, and inferior temporal) 
regions, and one meta-analysis showed that the four-region partition 
method detected superior and inferior quadrant retinal nerve fiber 
layer (RNFL) thickness differences better than the six-region method 
for delineating migraine findings (Lin et al., 2021). The RNFL is the 
layer formed by the retinal ganglion cell axons, which collect visual 
impulses from the rods and cones of the retina.

Optical coherence tomography angiography (OCTA) is a 
non-invasive retinal vascular imaging technique generating a 3D 
image of the layers of retinal vasculature via motion contrast of blood 
flow (An and Wang, 2008; Mariampillai et al., 2008; De Carlo et al., 
2015; Spaide et al., 2015; Campbell et al., 2017; Fujimoto et al., 2023; 
Toth, 2023). This fast, continuous, repeated longitudinal scanning 
method allows blood cells inside the vessel lumen to be discriminated 
from surrounding tissue, and hence blood flow to be tracked scan by 
scan (De Carlo et al., 2015; Toth, 2023). This technique has several 
advantages over invasive retinal imaging methods such as fluorescence 
angiography and indocyanine green angiography, which have adverse 
effects and contraindications associated with the dye and its injection, 
as well as superimposed imaging of all layers in the retina owing to a 
lack of depth resolution and being time-consuming and expensive (De 
Carlo et al., 2015; Spaide et al., 2015). The compromise between signal 
bandwidth and detection sensitivity affects the maximum acquisition 
rate in OCT (Huang et al., 1991), but OCTA may overcome this with 
greater imaging speeds (De Carlo et al., 2015). It also outperforms 
fundus photography, which only provides a 2D visualization of blood 
vessels with low resolution (Chang et al., 2017).

Tomography involves taking cross-sectional images of 3D objects, 
and in 1991, Huang, Swanson, and Fujimoto used the coherence 
properties of light waves to apply the technique to a human eye in vitro 
(Huang et al., 1991). This can now be used via ophthalmoscope and 
camera in vivo, whereas previous eye-imaging methods could only 
take place on fixed tissue (Toth, 2023). Since the first publication of 
this innovative technique in 1991 (Huang et  al., 1991), optical 
coherence tomography (OCT) has been used in several medical fields 
with an increasing recognition that stems from its properties and 

potential clinical applications (Fujimoto et  al., 2023; Toth, 2023; 
Tzaridis and Friedlander, 2023).

OCTA, on the other hand, provides a robust assessment of the 
retinal vasculature, and it can also discriminate between superficial 
and deep capillary plexus networks (Magrath et al., 2017). OCTA can 
precisely show capillaries undergoing ischemia (Pang et al., 2023). 
OCTA is superior to traditional methods for imaging radial 
pericapillary and deep capillary networks based on flow characteristics 
(De Carlo et al., 2015; Spaide et al., 2015), and non-perfusion can 
therefore be quantified accurately (Campbell et al., 2017) with a high 
data acquisition rate (Huang et al., 1991). In fact, projection-resolved 
(PR) OCTA improves on conventional OCT by addressing the 
problem of the superficial vessels projecting flow artifacts detected 
from the deeper layers, therefore enhancing depth resolution 
(Campbell et al., 2017).

Nowadays, OCTA is widely used in ophthalmology and 
cardiovascular disease as a powerful tool called an “optical biopsy” 
(Brezinski et al., 1996; Tearney et al., 1997; Fujimoto et al., 2023). The 
retina is the only vasculature that can be visualized non-invasively in 
vivo (Pang et al., 2023). We consider the eye as an extension of the 
brain because the optic nerve, retina, and brain derive from the 
anterior neural tube during embryonic development (London et al., 
2013). The retina and cortex have similar angiogenesis patterns in 
development (Chan-Ling et al., 2004), so the brain and retina have 
close and similar blood regulations (Reiner et al., 2018).

One of the vascular-derived disorders that can be assessed via 
OCT/OCTA is migraine. Migraine incidence worldwide was 87.6 
million in 2019 (Fan et al., 2023). Episodic migraine (<15 migraine 
days per month) is believed to originate from neuronal 
hyperexcitability in the trigeminal vascular system (Welch et al., 2003) 
and can transform to chronic (15 or more days/month) through 
increased attack frequencies, perhaps due to functional and structural 
brain changes, central sensitization and neuroinflammation 
(Mungoven et al., 2021). Migraine can occur with or without aura, 
where aura occurs in 15% of migraineurs from the cortical spreading 
depression preceding a migraine attack. Aura symptoms are sensory 
disturbances, with 90% being visual, associated with more severe 
ischemic risk (Lucas, 2021).

It is believed that migraine involves chronic systemic 
vasoconstriction, with (Chang et al., 2017) and without aura (Komatsu 
et al., 2003). We previously hypothesized that heightened sympathetic 
tone results in progressive central microvascular constriction. 
Suboptimal parenchymal blood flow may activate nociceptors and 
trigger the migraine (Chaliha et al., 2020). This may be seen in the 
fundus as reduced vessel density. Vessel density can be measured as 
blood vessel length divided by scan area (Chang et al., 2017) or the 
percentage of vascularized tissue within the area (Taşlı and Ersoy, 
2020). From this, several areas of the posterior eye can be analyzed 
using OCTA. A schematic of the eye, showing vascular and neural 
anatomy, is shown in Figure 1 (Shiga et al., 2023).
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Aim/background

The current literature regarding cerebral and retinal vascular 
perfusion suggests that retinal vascular changes can indicate cerebral 
vascular disease, even proportionally, due to the common 
embryological origin and resultant homology between the retinal and 
cerebral microvasculatures (Patton et  al., 2005; Moss, 2015). For 
example, retinopathy signs such as retinal artery occlusion or greater 
retinal vein caliber may indicate cerebrovascular compromise (Moss, 

2015). In recent studies, lower retinal perfusion has been associated 
with MRI biomarkers of cerebral small-vessel disease (Wang et al., 
2021; Abdolahi et al., 2023). Previous studies examining migraine 
patients using OCT and OCTA show several differences between 
migraineurs (also with vs. without aura) and healthy controls in 
vascular tone in the retinal macular and retinal optic nerve areas, as 
measured via vessel density as well as choroidal and retinal thicknesses. 
This particular review highlights the relevance such OCT/OCTA signs 
have for the severity, classification, and prediction of migraine 

FIGURE 1

Vascular and neural anatomy of the eye (Shiga et al., 2023). (A) Neuronal layers of the retina. (B) Vascular layers of the retina. (C) Retinal (supplying the 
inner retina) vs. choroidal (supplying the outer retina) circulations. (D) The three interconnected and anastomosing vascular plexuses of the retina. 
(E) Neuronal layers of the eye converging into the optic nerve (ONH: optic nerve head). (F) Vascular layers of the eye branching out from the central 
retinal artery (at the ONH). Adapted from Shiga et al. (2023) reproduced under the terms of CC BY 4.0.
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episodes. The purpose of this study was to collate the information 
from various OCTA studies pertaining to migraine and sort them into 
ocular structural categories, as has not been done before to our 
knowledge. In the anterior eye, there seemed to be no differences in 
axial length, corneal curvature radius, anterior chamber depth, central 
corneal thickness, or pupil size between migraineurs and controls, 
ictally or interictally (Koban et al., 2016). Hence, we will focus only on 
the retinal and choroidal layers of the eye. For this review, we found 
different studies using OCT and OCTA to investigate migraineurs, 
using the search terms “optical coherence tomography,” “OCT,” 
“optical coherence tomography angiography,” “OCTA,” and “migraine” 
present in the abstracts and sorted by relevance on the databases 
Google Scholar, ProQuest, Scopus, and Web of Science via institutional 
access, as well as the reference lists of all the OCT/OCTA-migraine 
systematic reviews and meta-analyses we  found. Only articles in 
English or with available English translations have been included. Our 
results are presented in Supplementary Table S1.

Retina

Vessel density (VD) is taken as the length/area of flowing vessels 
as a percentage of the total area scanned (Pang et al., 2023) or the 
percentage area of vessels with active (OCTA-detectable) blood flow 
(Ke et al., 2022). The deep capillary network comprises multi-capillary 
units converging toward a central vortex of capillaries draining to 
superficial venules, which OCTA is able to detect (Bonnin et al., 2015). 
Both our search and Pang’s nine-study meta-analysis show that 
migraineurs had lower superficial plexus, deep plexus, macular, 
peripapillary (area around the retinal papillary region), and foveal VD 
than controls (Güler et  al., 2020; Pang et  al., 2023). Often, these 
reductions were present in those with aura only, although there was a 
similar tendency in non-aura migraineurs.

Aura and chronic migraineurs seem to have greater reductions 
than non-aura and episodic migraineurs. Aura migraineurs especially 
tended to have decreased superficial, deep, and parafoveal deep 
capillary plexus VD than did controls (Ke et al., 2022). Participants 
with a history of migraines with aura show lower retinal arteriole 
caliber compared to controls with no migraine history (Liew et al., 
2006). In chronic but not episodic migraineurs, retinal arteries were 
bulkier ipsilaterally to the headache compared to controls (Unlu et al., 
2017), but this did not correspond with retinal vein diameters, which 
were similar (Unlu et al., 2017). This suggests greater increased energy 
demand at the retina in chronic migraineurs. Unsurprisingly, 
migraineurs, especially those with aura, seem to have retinal capillary 
damage (Liu et al., 2023).

During migraine attacks and/or auras, transient vasospasm can 
compromise perfusion in both the eye and head (Liu et al., 2023). This 
can change retinal/neuronal perfusion, in turn causing hypoxic/
ischemic injury, ultimately damaging the retinal nerve (Liu et  al., 
2023) and structures. Lower deep retinal VD is correlated with lower 
signal strength index, longer axial length, and higher creatinine, where 
creatinine acts as an energy buffer for retinal cells (Tachikawa et al., 
2007; You et al., 2019). OCTA seems to be able to detect these changes, 
but there may be  confounders. Lower superficial retinal VD is 
correlated with lower signal strength index and participant sex being 
male (You et  al., 2019). This may underscore the importance of 
keeping male/female proportions similar between groups.

On OCT, retinal thickening may indicate oedema, whereas retinal 
thinning may indicate atrophy (Toth, 2023). It can be split into looking 
at the retinal nerve fiber layer (RNFL) and the ganglion cell layer 
(GCL). The OCT signal originates from two plexuses in the inner 
retina (SCP and DCP), both of which seem to be  affected by 
migraine pathophysiology.

Retinal nerve fiber layer (RNFL)

Retinal thickness can also perhaps be  examined to indicate 
perfusion related to migraines, and OCT allows high-resolution 
RNFL, GCL, and choroid thickness determination in vivo (Ascaso 
et al., 2017). RNFL thinning is actually associated with brain atrophy 
in general, with direct correlations with the central cingulate and 
pericalcarine cortices, especially in certain neurodegenerative diseases 
(Von Glehn et al., 2014; Shi et al., 2019). OCT can be used to measure 
the thickness of the RNFL, usually in the peripapillary (optic nerve 
head) region and macula (Ascaso et al., 2017). In controls, the inner 
retinal layers’ thickness correlates with retinal microvascular perfusion 
when using OCTA to visualize macular and peripapillary areas (Yu 
et al., 2016). On OCTA, vessel density in the RNFL is another measure 
of perfusion, and predictably, in some studies, investigators found that 
aura migraineurs had lower VD there than controls and that the more 
the migraine frequency/disability/history, the lower the VD (Hamamci 
et al., 2021; Hamurcu et al., 2021). Figure 2 shows a histology section 
showing the two capillary plexuses from which OCTA signals are 
derived (Campbell et  al., 2017). Out of the superficial vascular 
complex (SVC), it should be  noted that the radial peripapillary 
capillary plexus (RPCP) is found predominantly adjacent to the optic 
nerve, and the superficial vascular plexus (SVP) is found 
predominantly in the macula. The SVP density and GCL thickness 
decrease away from the optic nerve (Campbell et al., 2017).

We found 35 studies examining specifically the RNFL in 
migraineurs and found that studies have inconsistently shown that 
migraineurs have thinner RNFL than controls (Cunha et al., 2008; 
Costello, 2009; Gipponi et al., 2013; Sorkhabi et al., 2013; Ekinci et al., 
2014; Demircan et  al., 2015; Yülek et  al., 2015; Acer et  al., 2016; 
Demirci et  al., 2016; Feng et  al., 2016; Verroiopoulos et  al., 2016; 
Ergiyit, 2017; Reggio et al., 2017; Tunç et al., 2017; Abdellatif and 
Fouad, 2018; Tak et al., 2018; Bing et al., 2019; Ulusoy et al., 2019; You 
et al., 2019; Sirakaya et al., 2020; Yener and Yılmaz, 2020; Altunisik 
and Oren, 2021; Kanar et al., 2021; Panicker et al., 2021; Temel et al., 
2021; Yurtoğulları et al., 2021), generally ipsilateral to the usual side 
of headache (Martinez et al., 2008; Gunes et al., 2016; Khosravi et al., 
2018). Lin et al. examined 26 studies and also found thinner mean 
RNFL in migraineurs than in controls, especially in the superior and 
inferior eye quadrants (Lin et al., 2021). Feng et al. meta-analyzed six 
studies whose investigators found migraineurs to have a much thinner 
average RNFL than controls, significant in all four retinal regions 
(superior, inferior, nasal, and temporal) (Feng et al., 2016). Notably, 
they did not detect publication bias (Feng et al., 2016), although this 
may have been difficult to identify as they tested fewer than 10 studies.

RNFL thinning indicates axon loss (Martinez et al., 2008). It could 
serve as a marker for hypoxic damage to ganglion cells and retinal 
nerve fibers/axons (Gunes et al., 2018; Raga-Martínez et al., 2022), 
especially given an association between macular RNFL thinning and 
the anti-oxidant molecular marker catalase (Bulboacă et al., 2020). 
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The longer the migraine history/attack/aura, or the higher the 
migraine frequency/disability, the thinner the RNFL (Martinez et al., 
2008; Costello, 2009; Gipponi et al., 2013; Yülek et al., 2015; Reggio 
et al., 2017; Ao et al., 2019; Ulusoy et al., 2019; Sirakaya et al., 2020; 
Dereli Can et al., 2021; Burgos-Blasco et al., 2023). In children, there 
may not have been time for this effect to develop (Dereli Can et al., 
2021). Migraineurs have transient retinal vasospasm ictally, leading to 
visual aura postdromally (McKendrick and Nguyen, 2022). These 
recurrent retinal vasospasms may chronically lead to permanent 
vascular changes in the eye, detectable via OCT (McKendrick and 
Nguyen, 2022). The recurring transient retinal and ciliary artery 
constrictions may cause hypoxic damage to the optic nerve, retina, 
and choroid; thereby, the RNFL and GCL may undergo thinning with 
general retinal capillary decrement (Xue, 2022).

Migraine-related disability and average RNFL thinning may 
be strongly correlated through the Migraine Disability Assessment 
(MIDAS) (Martinez et  al., 2008; Sorkhabi et  al., 2013), but not 
through the Visual Analog Scale (VAS) (Yülek et al., 2015), scoring 
system. Sample heterogeneities may have also played a role in this 
discrepancy. For example, both eyes, a randomized eye, or only the 
right or left eye may be selected for the study. A systematic review 
showed that those choosing only the left eye found no such RNFL 
thinning, whereas the other studies’ investigators did find RNFL 
thinning in migraineurs compared to controls (Lin et al., 2021). The 
random and right-eye selection methods yielded medium effects, 
whereas both-eye selection yielded small effects (Lin et al., 2021). 
We wonder if most of the migraineurs had right-sided migraines 
most of the time. In addition, physiological confounders such as 
visual aura could have exacerbated RNFL thinning in some studies 
(Lin et al., 2021).

Aura migraineurs show more severe changes than do non-aura 
migraineurs. The effect size and amount of thinning were greater in 
migraineurs with than without aura (Lin et  al., 2021). Aura 
migraineurs had thinner RNFL in many different ocular areas 
compared to controls and often non-aura migraineurs (Ekinci et al., 
2014; Tunç et al., 2017; Labib et al., 2020; Kanar et al., 2021; Lin et al., 
2021; Burgos-Blasco et al., 2023; Sim et al., 2023), whereas non-aura 
migraineurs sometimes did (Tunç et al., 2017) and sometimes did not 
(Ao et al., 2019; Burgos-Blasco et al., 2023) have significant changes 
relative to controls. Still, others did not find such differences between 
aura and non-aura migraineurs (Sorkhabi et al., 2013; Demirci et al., 
2016; Nalcacioglu et al., 2017; Yu et al., 2022), especially at the macula 
(Kirbas et al., 2013; Salman et al., 2015; Simsek et al., 2015; Hamurcu 
et al., 2021). Aura migraineurs were likelier to have RNFL thinning 
than non-aura migraineurs, while most auras were visual (Rasmussen 
and Olesen, 1992; Lin et al., 2021). Indeed, visual aura migraineurs 
had thinner RNFL than non-visual aura migraineurs in another study 
(Torun et  al., 2023). Aura migraineurs had RNFL thickening 
interictally but remaining thinner than controls (El-Shazly et  al., 
2017). Ictally, the posterior hemisphere shows hypoperfusion with 
ipsilateral aura (Killer et al., 2003), and migraineurs with aura may 
show greater RNFL changes than those without (Ascaso et al., 2017).

Chronic migraineurs had thinner RNFL than episodic 
migraineurs (Reggio et al., 2017) and controls (Kirbas et al., 2013; 
Labib et al., 2020; Raga-Martínez et al., 2022; Oba et al., 2023). Studies 
show that mainly chronic migraineurs (as opposed to episodic) have 
thinner retinae and choroids compared to controls, with the RNFL 
and fovea more affected in those with aura than those without (Ascaso 
et al., 2017). An acute attack may not affect macular or peripapillary 
perfusion (Güler et al., 2020). However, RNFL thinning does not seem 

FIGURE 2

An histological cross-section of the retina (Campbell et al., 2017). The red blots represent vascular plexuses. DCP: deep capillary plexus; DVC: deep 
vascular complex; GCL: ganglion cell layer; ICP: intermediate capillary plexus; INL: inner nuclear layer; IPL: inner plexiform layer; NFL: nerve fibre layer; 
ONL: outer nuclear layer; OPL: outer plexiform layer plus Henle’s fibre layer; PR: photoreceptor layers; RPCP: radial peripapillary capillary plexus; RPE: 
retinal pigment epithelium; SCP: superficial capillary plexus; SVC: superficial vascular complex; SVP: superficial vascular plexus. Adapted from Campbell 
et al. (2017) under the terms of CC BY 4.0.
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to be  related to migraine duration or history, so perhaps it is not 
cumulative, but rather, its likelihood of acute occurrence may increase 
with each acute attack (McKendrick and Nguyen, 2022). Participants 
with a migraine history less than 15 years had thinner temporal RNFL 
than controls, but those with more than a 15-year migraine history 
had thinner average, superior, inferior, and temporal RNFL than 
controls (Feng et al., 2016). On the other hand, age, sex, migraine 
history and frequency, and intraocular pressure do not seem to 
correlate with RNFL thickness (Lin et al., 2021), and migraineurs with 
and without white matter hyperintensities (WMH) have similar 
thicknesses (Tak et al., 2018). WMH are considered a marker of focal 
hypoperfusion and are associated with aura (Colombo et al., 2011). 
They are believed to arise from microvascular damage, are made of 
myelin and gliosis (Colombo et al., 2011), and are correspondingly 
associated with ischemia (Ulusoy et al., 2019).

In migraineurs with aura, average RNFL, superior hemisphere, 
and superior layer are decreased (Ulusoy et al., 2019). In migraineurs 
without aura, those with WMH had thinner RNF, a superior 
hemisphere, and superior layers than those without (Ulusoy et al., 
2019). Additional non-perfusion-related factors may also contribute 
to WMH formation (Altunisik and Oren, 2021).

There are potential confounders to interpretation. While OCT 
angiography also detects depth-resolved motion contrast, 
reconstructing vessel perfusion at different layers of the retina, 
projection artifacts can get in the way of examining the layers 
underneath the topmost RNFL (McKendrick and Nguyen, 2022). 
Between studies, the retinal depths segmented for OCTA output 
varied, making comparison difficult (McKendrick and Nguyen, 2022), 
and the different layers of the eye are vulnerable to different extents to 
confounding by the same artifact (McKendrick and Nguyen, 2022).

Ganglion cell layer (GCL)

Nineteen studies showed ganglion cell complex thinning in 
migraineurs (Güler et al., 2020). Compared to controls, both aura and 
non-aura migraineurs had thinner GCL (Ekinci et al., 2014; Reggio 
et al., 2017; Abdellatif and Fouad, 2018; Altunisik and Oren, 2021; 
Yurtoğulları et al., 2021), where chronicity and severity yielded greater 
GCL reduction (Abdellatif and Fouad, 2018). The presence of WMH 
did not influence this effect (Altunisik and Oren, 2021). Yet again, 
aura and chronic migraineurs seem most affected. Aura migraineurs 
had thinner GCL than non-aura migraineurs (Ascaso et al., 2017; 
Labib et al., 2020) and controls (Ekinci et al., 2014; Kanar et al., 2021). 
The corresponding reduced perfusion could explain this, especially 
given that migraineurs without aura do not seem to have interictal 
choroidal hypoperfusion. Chronic migraineurs had thinner ganglion 
cell layer (GCL) and complex (GCC) than controls (Uludag et al., 
2014; Gunes et al., 2018; Raga-Martínez et al., 2022) and episodic 
migraineurs (Reggio et al., 2017). Migraineurs with more than four 
attacks a month had thinner GCL than controls (Tunç et al., 2017). 
The recurrent perfusion fluctuations and transneuronal retrograde 
degenerations in the primary visual cortex may cause chronic retinal 
damage in migraineurs, leading to ganglion cell loss (Martinez et al., 
2008). GCL thinning could be a more accurate biomarker of axonal 
damage than RNFL (Ascaso et al., 2017). If the GCL is thinner but the 
RNFL is not, this may indicate fewer or shorter migraines (Gunes 
et al., 2018).

Optic nerve

OCTA has also been able to detect optic nerve area differences 
between migraineurs and controls. RNFL thickness measurement has 
been used to monitor optic nerve diseases as an indirect measure of 
retinal ganglion cell loss and is not specific to migraine (Feng et al., 
2016; Ascaso et al., 2017). Figures 3C,D shows an example of the optic 
nerve area imaged via OCTA (Chang et al., 2017).

Migraineurs, especially those with aura, tend to have optic nerve 
head damage (Liu et al., 2023). Migraineurs had smaller optic and 
neuroretinal rim disc areas, a lower cup-disc ratio at the optic nerve 
head, greater disc area, and larger cup volumes than controls 
(Khosravi et al., 2018; Yener and Yılmaz, 2020). Both aura (more so 
those with WMH than those without) and non-aura migraineurs 
had reduced whole optic disc VD compared to controls (Ulusoy 
et al., 2019). Different peripapillary areas of the left and right eyes 
may have RNFL thinning in migraineurs compared to controls 
(Altunisik and Oren, 2021). In some studies, investigators found no 
differences between aura and non-aura migraineurs (Altunisik and 
Oren, 2021; Kanar et al., 2021; Yurtoğulları et al., 2021).

Some areas of the RNFL may be more vulnerable than others, as 
seen via both depth and en-face imaging. For example, migraineurs 
have less superior peripapillary vessel density and marginally thinner 
superior RNFL than controls, suggesting that the superior retinal 
region may be more vulnerable to hypoperfusion (Colak et al., 2016; 
Sirakaya et al., 2020). The peripapillary RNFL has many unmyelinated 
ganglion cell axons, which require more energy to maintain, so it is 

FIGURE 3

OCTA imaging of macular vessel densities in the top two panels, 
taken at the superficial capillary plexus (A) and deep capillary plexus 
(B). OCTA imaging of the optic nerve area in the bottom two panels, 
taken at the superficial RPC (C) and deep RPC (D). RPC: radial 
peripapillary capillary. Copied from Chang et al. (2017) under the 
terms of CC BY-NC-ND 4.0.
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more vulnerable to hypoxic damage (Wang et al., 2003). Liu et al. 
examined 16 studies on episodic migraineurs in their systemic review 
and meta-analysis, finding that aura migraineurs had exceedingly 
thinned peripapillary RNFL in most areas (Liu et al., 2023). Some 
studies reported mean peripapillary RNFL thinning in migraineurs, 
whereas others only in a specific quadrant (Ascaso et al., 2017). Feng’s 
analyzed studies showed lower mean peripapillary RNFL in 
migraineurs than controls (Feng et al., 2016). Peripapillary VD is 
lower in migraineurs and chronic hypoperfusion, which eventually 
leads to RNFL thinning/atrophy (Pang et al., 2023). In a meta-analysis, 
average peripapillary RNFL thickness was lower in migraineurs with 
and without aura than in controls, possibly due to vascular 
dysregulation and focal cerebral ischemia (Liu et al., 2023). There 
seems to be  peripapillary RNFL thinning in all quadrants, with 
superior and inferior being more susceptible (which may be associated 
with higher ganglion axon vulnerabilities) than temporal and nasal 
quadrants (Liu et al., 2023), corresponding with fundus hypoperfusion 
occurring mostly there (Gunes et al., 2016). Migraineurs with WMH 
had thinner RNFL than controls (Yu et  al., 2022), whereas those 
without WMH did not (Simsek, 2017) or had thicker RNFL than 
controls interictally (Yu et al., 2022). RNFL is more susceptible to 
damage due to greater retinal axon vulnerability than other optic areas 
(Gunes et  al., 2016). Ictal vasospasm involving retrobulbar 
(ophthalmic, posterior ciliary, and central retinal) arteries may 
culminate in optic nerve head hypoperfusion and thus necrosis of 
retinal ganglion cells (Kirbas et al., 2013; Feng et al., 2016).

Again, aura migraineurs seem to have more exaggerated 
differences than non-aura migraineurs with controls. At the optic 
nerve head, aura migraineurs had reduced VD (OCTA) (Chang et al., 
2017; Karahan et al., 2021) and RNFL thickness (OCT) (Sim et al., 
2023) and larger optic disc rim (OCTA) (Hamurcu et al., 2021) than 
non-aura migraineurs and controls, with some studies finding no 
difference between non-aura migraineurs and controls (OCTA) 
(Chang et al., 2017) and some finding there was a difference between 
the latter two groups (also OCTA) (Güler et al., 2020). The lower the 
VD was, the higher the migraine frequency and severity (He et al., 
2022). Decreased superior peripapillary VD and a tendency toward 
decreased superior peripapillary RNFL thickness in migraineurs with 
aura (Chang et al., 2017) suggest peripapillary hypoperfusion and that 
the optic nerve head may be more susceptible to damage in  local 
hypoperfusion (McKendrick and Nguyen, 2022). Decreased VD at the 
optic nerve could lead to peripapillary hypoperfusion (McKendrick 
and Nguyen, 2022). Optic nerve injury may be caused by vascular 
disturbances and focal ischemia (Yülek et  al., 2015), which is 
supported by Kara et al.’s finding of reduced perfusion in the central 
retinal and posterior ciliary arteries of migraineurs compared to 
controls (Kara et al., 2003). If the retina or optic nerve head perfusion 
is compromised, ganglion cell damage may ensue (Martinez et al., 
2008). Migraine chronicity is characterized by ictal recurrent 
vasospasms and focal ischemia, which may explain optic nerve 
damage and peripapillary RNFL thinning (Reggio et al., 2017).

Macula

Migraineurs had reduced macular retinal vessel and perfusion 
densities and thinner maculae than controls (Acer et al., 2016; Ulusoy 
et al., 2019; Taşlı and Ersoy, 2020; Panicker et al., 2021; Yurtoğulları 

et al., 2021), especially those with more than four attacks a month 
(Tunç et al., 2017)—the more this effect was, the higher the migraine 
frequency and severity (He et al., 2022). However, in some studies, 
investigators found similar macular thicknesses between all groups 
(Kirbas et al., 2013; Demircan et al., 2015; Nalcacioglu et al., 2017; 
Hamurcu et al., 2021). These contradictory findings could be a result 
of the former group of studies having slightly higher participant 
numbers and/or the latter group including a study with children, 
where we do not yet expect such differential results due to shorter 
migraine history. Figures 3A,B shows an example of the macular vessel 
densities imaged via OCTA.

Retinal ganglion cells predominate in the macula, so macular 
thinning is indicative of ganglion cell loss (comprised of cell bodies) 
and RNFL (comprised of axons) loss (Keller et al., 2014; Gupta et al., 
2016; Gunes et  al., 2018). In one study, investigators found no 
difference between those with and without WMH (Taşlı and Ersoy, 
2020). Although deep foveal VD tended to be lower in migraineurs 
than controls, this was not significant—but this may be because of 
projection artifacts (Campbell et al., 2017) and the small number of 
studies analyzed (Pang et al., 2023). Chronic migraineurs had thinner 
macular RNFL and macular thickness than controls (Raga-Martínez 
et al., 2022).

The changes in aura migraineurs were more severe. Aura 
migraineurs had thinner maculae and lower VD than non-aura 
migraineurs and controls (Cankaya and Tecellioglu, 2016; Chang 
et al., 2017; Ao et al., 2019; Ulusoy et al., 2019; Karahan et al., 2021; 
Liu et  al., 2023). In the deep capillary plexus, the VD in aura 
migraineurs was lower in the parafovea than in controls (Ke et al., 
2022), but the measurement of the parafoveal ring differs from study 
to study (Ke et al., 2022). Aura migraineurs had decreased deep foveal 
VD ipsilateral to headache during prodromal aura, improving 3 hours 
post-aura (Kızıltunç and Atilla, 2020). In one study, investigators 
found that aura migraineurs had right-eye macular hypoperfusion 
during the right aura but left hemicranial pain, resolving within a 
week after resolution of pain and aura (González-Martín-Moro et al., 
2023). Aura migraineurs had thinner maculae after 6 months post-
attack (Cunha et al., 2008). Interestingly, the macular deep capillary 
density may be lower in all regions but the fovea in aura migraineurs 
(possibly due to retinal ischemia) (Liu et al., 2023).

Aura migraineurs with brain WMH had lower deeper foveal VD, 
thinner maculae, superior hemisphere densities, and an increased 
FAZ area than those without WMH (Tunç et al., 2017; Ulusoy et al., 
2019). Hence, retinal VD may also be related to brain WMH (Ulusoy 
et al., 2019), which have been visualized in migraineurs using MRI 
(Seneviratne et al., 2013). In migraineurs without aura, those with 
WMH had lower deeper foveal and superior hemisphere VD (Ulusoy 
et al., 2019). However, in another study, non-aura migraineurs had 
lower superficial and deep macular vessel densities than controls, 
whether they had accompanying WMH or not (Taşlı and Ersoy, 2020), 
suggesting that neither WMH nor aura are sensitive markers of retinal 
hypoxic threat.

Foveal avascular zone (FAZ)

The foveal avascular zone is the center of the macula. The lack of 
blood vessels here serves to reduce light scattering and provide 
maximal optical quality at the point of ocular fixation on an object. 
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Figure 4 shows an example of the central FAZ imaged via OCTA 
(Ghassemi et al., 2017).

Pang’s meta-analysis of nine studies shows that migraineurs had 
a larger FAZ area than controls (Pang et al., 2023). Ke et al. (2022) 
examined nine studies, where they found that the FAZ area of aura 
migraineurs was greater than controls after correcting for publication 
bias (Ke et al., 2022). We  found seven studies that looked at FAZ 
parameters (area and/or perimeter/circumference). They showed that 
the FAZ area and its perimeter were larger in migraineurs compared 
to controls (Chang et al., 2017; You et al., 2019; Taşlı and Ersoy, 2020; 
Liu et  al., 2023), and most studies’ investigators found that aura 
migraineurs had increased FAZ area and perimeters compared to 
non-aura migraineurs and controls (Chang et al., 2017; You et al., 
2019; Hamamci et al., 2021; Hamurcu et al., 2021; Ke et al., 2022). One 
study’s investigators also found that most of their aura migraineurs 
had deep-plexus FAZ enlargement (Karahan et al., 2021).

These observations may indicate an association between aura and 
ischemia (Ke et al., 2022). The larger FAZ may indicate permanent 
changes due to the recurrent retinal capillary ischemia causing chronic 
capillary ischemia or remodeling (McKendrick and Nguyen, 2022; 
Pang et  al., 2023). FAZ area and circumference/perimeter may 
be greater in both aura and non-aura migraineurs, to which retinal 
ischemia from vasospasms may contribute (Liu et al., 2023). Recurrent 
attacks are associated with intracranial and intraocular vessel spasms, 
which result in both acute and chronic capillary and blood flow 
changes in the retina and trigger the FAZ enlargement via vessel death 
(Liu et al., 2023). In one study checking for ocular alterations and 
clinical differences between non-aura migraineurs and controls, 
investigators found no difference in FAZ size or VD, whether they had 

accompanying WMH or not (Taşlı and Ersoy, 2020). This suggests that 
neither WMH nor aura are necessarily sensitive markers of hypoxic 
threat. The FAZ size increases with subjective headache pain and 
disability scores, just as superficial and deep macular VD decrease 
with age and these subjective scores (Taşlı and Ersoy, 2020; Özçift 
et al., 2021). Women may already have larger superficial and deep FAZ 
than men, as seen in non-migraine volunteers (Ghassemi et al., 2017). 
Therefore, investigators ought to control for similar age and sex 
proportions between the groups tested.

Choroid

OCT can also be used to measure the width of the choroid (Ascaso 
et  al., 2017). Figure  5 shows an example of choroidal thickness 
measured via OCT (Li et al., 2016).

Choroidal thickness could be another indicator of hypoperfusion 
associated with migraine. This is because the choroid receives 95% of 
oxygenated ocular blood flow, so changes in choroidal structure are 
likely to reflect choroidal and ocular blood flow (Alm and Bill, 1970; 
Cioffi et  al., 2003; Karalezli et  al., 2015). As up to 90% of the 
ophthalmic artery blood supply goes to the choroid, which then 
perfuses the outer retina and regulates foveal heat retention, blood 
supply disturbances here can cause ganglion cell necrosis (Hayreh, 
1975). Indeed, in a previous study, investigators showed that increased 
blood flow into the choroid leads to its increased thickness (Fitzgerald 
et  al., 2002). Choroidal hypoperfusion can lead to focal ischemic 
damage in the optic disc (Flammer et  al., 2001). Ocular pulse 
amplitude is an indirect indicator of choroidal perfusion, reflecting 

FIGURE 4

OCTA imaging of the FAZ, taken at the superficial capillary plexus (A) and the deep capillary plexus (B) (Ghassemi et al., 2017). Red dots: blood flow 
signals. Copied from Ghassemi et al. (2017) under the terms of CC BY-NC-ND 4.0.
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intraocular pressure fluctuation from systole to diastole, which 
appears to be similar in migraineurs without aura and controls (Acer 
et al., 2016). The greater the migraine duration and frequency, the 
greater the increase in subfoveal choroidal thickness in migraineurs 
compared to controls (Gouravani et al., 2023). Migraineurs may have 
thinner choroids because of reduced perfusion of the posterior ciliary 
artery and central retinal vessels (Tuncer et  al., 2014). Reduced 
choroidal perfusion (with subsequent thinning) may cause ischemic 
damage even in the retina, such that retinal pigment epithelium, 
photoreceptor, and ganglion cells malfunction and die—more so in 
migraineurs with aura than those without (Ascaso et al., 2017).

We found 26 studies assessing the choroid in migraineurs. In 
general, migraineurs have [often asymmetrically between eyes 
(Khosravi et al., 2018)] thinner choroids than controls (Demircan 
et al., 2015; Zengin et al., 2015; Karaca et al., 2016; Ergiyit, 2017; 
Reggio et al., 2017; Khosravi et al., 2018), especially those with aura 
(Ekinci et al., 2014; Karaca et al., 2016; Ao et al., 2019; Kanar et al., 
2021; Gouravani et al., 2023; Torun et al., 2023). This may be more 
pronounced in the non-central choroid (Abdellatif and Fouad, 2018). 
We wonder whether a self-regulatory mechanism protects the central 
choroid, whose function it is to supply blood to the outer retina. 
Gouravani et  al. cross-sectionally checked macular choroids and 
found that migraineurs, both with and without aura, had thinner 
subfoveal choroids than controls, with aura migraineurs having them 
even thinner than non-aura migraineurs, although they only tested 10 
studies. Thinner choroids in aura, compared to non-aura, migraineurs 
might be due to greater hypoxic damage in those with aura (Gouravani 
et  al., 2023). During attack-free periods (seven continuous days 
without an attack), investigators find that choroidal thickness is 
decreased due to hypoperfusion. For example, in studies using OCT, 
investigators found that headache-side choroids were thinner in 
migraineurs with ≥5 migraine attacks per month, especially during 
attack-free periods; however, this was assessed at the same time of day 
to avoid diurnal variation between measurements as opposed to the 
same phase of the migraine cycle (Karalezli et al., 2015; Karaca et al., 
2016; Unlu et al., 2017).

These results were especially associated with migraine history 
(Abdellatif and Fouad, 2018; Altunisik and Oren, 2021; Özçift et al., 
2021), which supports the hypothesis that recurrent transient 
vasospasms of migraine attacks (especially with aura and trigemino-
vascular system stimulation) may result in choroidal and retinal 

thinning (Karalezli et al., 2015; Zengin et al., 2015; Karaca et al., 2016; 
McKendrick and Nguyen, 2022; Gouravani et  al., 2023) through 
posterior ciliary artery hypoperfusion (McKendrick and Nguyen, 
2022). Chronic migraineurs (especially those with aura) had thinner 
choroids ipsilaterally to headache than controls (Colak et al., 2016; 
Unlu et al., 2017). In fact, where there is monocular transient loss of 
vision, the choroidal circulation is implicated (O'Sullivan et al., 1992). 
Interictally, there may also be predominating vasoconstriction in the 
peripheral circulation in migraine patients (detected through fingertip 
photoplethysmography) (Komatsu et al., 2003).

Choroidal thickness appears to increase during a migraine 
attack but decreases between attacks (Sorkhabi et al., 2013; Karalezli 
et al., 2015; Gunes et al., 2018). In one study, 46 ictal migraineurs 
had thicker central and peripheral choroids than controls, perhaps 
due to rebound vasodilation (Karalezli et al., 2015). Another study 
found that migraineurs ictally had thicker choroids in both eyes 
than controls, possibly from rebound vasodilation (Altunisik and 
Oren, 2021). Using OCT, investigators found that during a migraine 
attack, choroidal thickness was greater on the headache side with 
unilateral headaches (Dadaci et al., 2014). With bilateral headaches, 
foveal choroids increased more in the left than right eyes during 
migraines (Dadaci et al., 2014). The investigators attributed this 
phenomenon possibly to neurogenic inflammation triggered by 
cortical spreading depression, reflex autonomic activity due to 
trigemino-vascular activation (which is known to occur in 
migraines), or indeed altered ocular circulation (Dadaci et  al., 
2014). McKendrick et  al. proposed that it may be  due to acute 
vascular variations in the aftermath of the migraine attack 
(McKendrick and Nguyen, 2022). Considering that migraine is 
associated with decreased perfusion (De Simone et al., 2022), one 
would expect choroidal thickness to decrease during attacks. 
Instead, given that the choroid provides blood supply to the outer 
retina and sometimes thickens during an attack, it appears that the 
overall ocular vascular perfusion is increased interictally. 
We hypothesize that this acute thickening of the choroid during a 
migraine attack could be a cause or effect of retinal thinning. As a 
result, if the brain is underperfused, the choroid thickening may 
be induced autonomically to compensate, but that may result in an 
adverse effect on the vascular tone in the retina, leading to retinal 
thinning. As an effect, the choroid may attempt to compensate for 
retinal thinning by increasing its vascular tone to supply the retina. 

Nasal 
thicknesses 

Temporal 
thicknesses

FIGURE 5

OCT cross-sectional imaging of the choroid (Li et al., 2016). The choroid is outlined in red; the green vertical lines represent its nasal and temporal 
thicknesses; the green horizontal lines represent the measured distances (from the fovea), to the right and the left. N: nasal; T: temporal. Adapted from 
Li et al. (2016) under the terms of CC BY 4.0.
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Similar to within the brain, this may instead cause further 
constriction of the retinal capillaries (to maintain the blood 
perfusion gradient within the eye), exacerbating the problem.

Counterintuitively, in three studies, investigators found choroids 
thinner ictally than interictally (Zengin et al., 2015) and migraineur 
choroids thicker than control choroids interictally (Dervisogullari 
et al., 2015; Altunisik and Oren, 2021; Temel et al., 2021; Çam and 
Arikan, 2022). In one study, investigators found chronic migraineurs 
have thicker choroids than controls (tested both interictally and 
ictally), especially during migraines (Gunes et  al., 2018). These 
inconsistencies could be  due to different severities and perfusion 
effects (Ascaso et  al., 2017), or we  think perhaps compensatory 
vascular changes to reduced focal blood flows surrounding attacks. 
Inferences were hard to make because studies rarely examined 
migraineurs ictally, understandably due to the difficulty in managing 
patients in pain.

These conflicting results may not be surprising, as the choroid is 
the most vascular layer of the eye and thus most sensitive to any 
changes in blood circulation (Yülek et al., 2015). These include acute, 
chronic, internal, and external changes, such as caffeine, smoking, 
medication, age, systemic disease, nicotine, systemic circulation 
issues, light exposure, diurnal rhythm, and sex (Parver, 1991; Lee et al., 
2014; Allais et al., 2020; Gouravani et al., 2023), so all these factors 
need to be  controlled in future studies. For example, menstrual/
hormonal changes affect choroidal vascularity (Tan et al., 2016). While 
non-aura migraineurs have thinner choroids than controls, this 
difference becomes smaller with increasing age (Gouravani et  al., 
2023). Choroidal thinning especially occurs in those with chronic 
migraine, but some studies may be compromised in their ability to 
detect posterior choroidal changes due to device limitations (Ekinci 
et al., 2014; Reggio et al., 2017), with those using enhanced depth 
imaging (EDI) OCT possibly being more reliable due to better 
distinguishing of posterior structures of the eye. EDI OCT allows 
screening of 10 retinal layers and the choroid at 2 μm resolution using 
spectral-domain technology (Gouravani et al., 2023). In addition, a 
study showed that at distances of 500, 1,000, and 1,500 μm from the 
fovea, there were no differences in choroidal thicknesses between 
migraineurs and controls interictally (Gouravani et al., 2023), while 
others showed no difference in thickness or vascularity index between 
chronic migraineurs and controls (Nalcacioglu et  al., 2017; Güler 
et al., 2020; Kanar et al., 2021; Sezer et al., 2023) (although investigators 
often did not specify whether they assessed interictally or ictally). For 
instance, some investigators found migraineurs have thicker choroids 
than controls, but they admit their migraineurs may have had attacks 
during imaging (Çam and Arikan, 2022).

Discussion

Migraine is the world’s leading cause of disability in terms of 
productivity loss, given its prevalence in young working people 
(Feigin et  al., 2019). Therefore, it is imperative for affordable, 
non-invasive, and efficient instruments to be developed to monitor 
this widespread disorder. OCT could not only be used as a diagnostic 
biomarker for migraine but also to track its therapy progress (Ascaso 
et al., 2017). We searched several databases and found papers using 
this technology to examine the differences between migraineurs and 
controls. Out of 28 studies with episodic migraineurs, 21 included 
those with aura and 25 included those without. Out of 19 studies with 

chronic migraineurs, 14 included those with aura and 14 included 
those without. Out of the 21 studies with episodic migraineurs with 
aura, 19 were cross-sectional and 2 were longitudinal. Out of the 25 
studies with episodic migraineurs without aura, all 25 were cross-
sectional. Out of the 14 studies with chronic migraineurs with aura, 
all 14 were cross-sectional. Out of the 14 studies with chronic 
migraineurs without aura, all 14 were cross-sectional. Therefore, it 
would be interesting to see more longitudinal OCT/OCTA studies 
with migraineurs, such as in instances where a vasoactive therapy is 
investigated and its effects measured before vs. after treatment 
(Supplementary Figure S1).

RNFL, macular, and choroidal changes have been examined as 
biomarker signs for the symptoms of migraine in the last few years 
(Ascaso et  al., 2017). Within the macula, the FAZ was given 
particular attention. We  found that studies generally show that 
migraineurs have thinner RNFL, GCL, and maculae, reduced optic 
nerve and VD parameters, and larger FAZ and their perimeters 
than controls. For example, in the retina, a study showed that 
migraineurs had lower superficial and deep macular, superficial 
foveal, deep parafoveal, and peripapillary VD than controls (Güler 
et  al., 2020; Pang et  al., 2023). These findings can indicate 
retrograde trans-synaptic neuronal degeneration of the retinal 
ganglion cells from the resultant ischemia in the posterior visual 
pathway, which can be seen as a sign in OCT scans (Ascaso et al., 
2017). It may be worth investigating whether there are different 
hypoperfusion patterns across the cerebral cortex for the different 
types of vascular headache. The RNFL thinning could mostly 
be due to many migraine attacks chronically causing optic nerve 
hypoperfusion (Sirakaya et al., 2020). As the macular deep capillary 
density appears to have lower perfusion density in all regions but 
the fovea in aura migraineurs (Liu et al., 2023), we wonder whether 
a self-regulatory mechanism protects the fovea (as a center of 
retinal function) from the worst of the hypoperfusion. This calls 
for further investigation.

Throughout this study, there was a recurring theme of aura and 
chronic migraineurs having more severe versions of the same 
results in the various OCT and OCTA parameters than non-aura 
and episodic migraineurs (Supplementary Table S2). The migraine 
severity/duration/history/impact were also positively correlated 
with the severity of these findings. Interestingly, the lower 
superficial foveal VD and larger FAZ were detected only in females 
(Chang et  al., 2017), corresponding with the observation that 
women have a higher ischemic risk (Gryglas and Smigiel, 2017). 
OCT and OCTA can be  used to detect significant differences 
between patients with and without aura, potentially helping with 
diagnosis and therapy. Migraineurs with aura could have a higher 
cerebrovascular risk (Sacco et al., 2012), corresponding to a higher 
ischemic risk in the retina and choroid than controls and those 
without aura (Kanar et  al., 2021), perhaps due to endothelial/
smooth-muscle dysfunction and hypercoagulability (Larrosa-
Campo et  al., 2012). The posterior cerebral hemispheres are 
similarly less perfused ictally in aura migraineurs than non-aura 
migraineurs (Romozzi et al., 2023). Repetitive migraine attacks 
involving transient vasoconstrictions could ultimately result in 
permanent retinal and general cerebral damage (Feng et al., 2016), 
especially through hypoperfusion of the optic nerve, retina, and 
choroid through cerebral and retrobulbar vessels and retinal and 
ciliary arteries repetitively constricting over time in chronic 
migraineurs (Ascaso et al., 2017). In fact, a literature review of 
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chronic migraine and OCT imaging admitted that brain 
hypoperfusion may be  implicated in the pathophysiology of 
migraine, indicating that vascular changes detected may therefore 
be used as a biomarker for migraine in general (Ascaso et al., 2017).

What happens during a single migraine attack? It has been 
shown that cranial vasodilation is not a prerequisite, nor enough, 
for migraine onset (Charles, 2013); in fact, it may even be a result 
of the headache instead (Amin et  al., 2013). Calcitonin gene-
related peptide drives meningeal vasodilation, inducing transient 
hyperperfusion (cortical spreading depression), then a longer 
hypoperfusion or spreading ischemia; coupled with increased 
energy demand, the ischemia intensifies (Pang et al., 2023). Since 
ischemia can be detected in between attacks (Chang et al., 2017), 
this suggests a chronic vascular indicator (systemic 
vasoconstriction) that we  can use to diagnose migraineurs 
(especially those with aura) even when they are not having attacks 
(Komatsu et al., 2003; Chang et al., 2017). Ictal changes in optic 
nerve and RNFL perfusion could lead to hypoxic injury and death 
of retinal ganglion cells (Osborne et al., 2001), possibly explaining 
aura and retinal vascular disease in migraineurs (Lin et al., 2021). 
Cortical spreading depression is said to initiate aura and can 
induce hyperperfusion to hypoperfusion transiently in the cortex 
(Liu et al., 2023). Cortical spreading depression is associated with 
hypoxemic injury, inflammatory activation, and a neurovascular 
mismatch in energy supply and demand (Lai and Dilli, 2020). 
Decreased VD, which resolves after 3 hours post-aura (Kızıltunç 
and Atilla, 2020), could be from transient vasospasm (McKendrick 
and Nguyen, 2022). The reduced occipital blood flow reported in 
some studies (Lauritzen et al., 1983; Denuelle et al., 2008), coupled 
with the increased neurological activity in the area (Aurora et al., 
1999; Janis et al., 2010; Martín et al., 2011), may explain visual 
auras, which comprise 98–99% of migraine-related auras (Eriksen 
et al., 2004; Viana et al., 2017). This is thought to be attributed to 
transient cerebral vasospasm occurring around the onset of pain, 
which is also considered a risk factor for optic ischemic neuropathy 
(Ascaso et  al., 2017). Visual auras from occipital cortex 
hypoperfusion are more common than from retinal/choroidal 
hypoperfusion (Ascaso et al., 2017). Migraineurs are more prone 
to retinal microvascular disorders (decreased VD and increased 
FAZ) (Pang et al., 2023).

Certain retinal layers or regions may be more vulnerable than 
others to the effects of hypoperfusion. This is particularly evident in 
the RNFL results above, perhaps due to the studies more extensively 
covering that layer of the eye. In addition, one study mentioned that 
the central macula may be more vulnerable to inflammation and 
hypoxic/ischemic insult than the optic nerve head (Kurtul et  al., 
2022). Several studies suggest that perfusion is reduced through the 
central retinal and posterior ciliary arteries, both ictally and 
interictally (Kara et al., 2003; Kirbas et al., 2013; Feng et al., 2016; 
Gouravani et  al., 2023), culminating in optic nerve head 
hypoperfusion, ganglionic retinal necrosis, and choroidal vascular 
insufficiency (Tuncer et al., 2014; McKendrick and Nguyen, 2022). 
Reduced choroidal perfusion (with subsequent thinning) may cause 
ischemic damage in the outer retina (since the inner retina is supplied 
by the central retinal artery), such that the retinal pigment epithelium 
and photoreceptor cells malfunction and die—more so in migraineurs 
with aura than those without (Ascaso et al., 2017).

Other brain areas can also be  affected. In previous studies, 
investigators have found that during a migraine attack, even without 

aura, there is regional hypoperfusion in the occipital areas of the brain 
(Woods et al., 1994; Denuelle et al., 2008). Where there is unilateral 
headache (with or without aura), the hypoperfusion appears to occur 
only on the affected (with or without aura) side (Olesen et al., 1990; 
Killer et al., 2003). During aura, cortical hypoperfusion could also 
occur in a more generalized pattern (O'brien, 1971), although in 
migraine attacks themselves, hypoperfusion of the optic nerve and 
retina has been implicated as discussed above (Martinez et al., 2008; 
Reggio et al., 2017). It is during those with aura that there is a greater 
ischemic risk (Sacco et al., 2012). Cortical thickness is related to retinal 
damage and higher vessel resistance (Gouravani et al., 2023). Ictally, 
vasospasm and compromised blood flow usually occur in one 
hemisphere, although other parts may also be affected, according to a 
case report (Killer et  al., 2003). In one study, investigators found 
migraineurs had thicker irises than controls, which they attributed to 
pupillary dynamics in response to photophobia, although they did not 
specify how many of their migraineurs had photophobia (Çam and 
Arikan, 2022). OCTA studies in migraineur children may show more 
ocular areas affected because migraine may affect children more 
severely (more intense posterior retinal trigemino-vascular events), 
and this may be from a stronger family migraine history (hence early 
onset) (Yener and Yılmaz, 2020).

These changes in vascular tone can also involve the peripheral 
circulation, not just the cerebral (McKendrick and Nguyen, 2022). 
Interictally, migraineurs have been shown to have vasoconstriction in 
the fingertip and dermal capillary networks, as well as abnormal 
circulation, arteriolar resistance, and decreased vessel caliber in the 
retina (McKendrick and Nguyen, 2022). Interictally, migraineurs have 
poor perfusion and increased capillary resistance (Pang et al., 2023). 
Vasospasms may indicate generalized/systemic vascular dysregulation 
(McKendrick and Nguyen, 2022), with Flammer syndrome (a 
constellation of signs and symptoms due to systemic perfusion 
dysregulation) being a potential differential diagnosis for migraine 
(Konieczka et al., 2014). There are other diseases with similar OCT/
OCTA findings, such as RNFL and GCL thinning in neurodegenerative 
diseases (Satue et al., 2016; Doustar et al., 2017; Tsokolas et al., 2020; 
Augustin and Atorf, 2022); therefore, these findings alone should not 
rule out other differential diagnoses. In fact, the vascular changes 
detected may reflect an ischemic mechanism underlying all of these 
disorders in common. An example of this is glaucoma, where vascular 
insufficiencies are known to be involved (McKendrick and Nguyen, 
2022). Here, optic disc ischemia and optic nerve head ischemia are also 
present, which even increases glaucoma risk (McKendrick and Nguyen, 
2022). In addition, neovascularization leads to obvious changes in both 
OCT and OCTA. In the case of a patient undergoing active retinal 
neovascularization, the changes in OCT and OCTA would confound 
changes to both images due to systemic conditions. Hence, investigators 
should assess changes in OCT and OCTA due to systemic diseases after 
neovascularization has been managed medically.

Other methods can be used to find additional information, 
such as the following: Using doppler sonography, in another study, 
investigators found that it is the actual vascular resistances (central 
retinal and posterior ciliary arteries) that are increased in 
migraineurs, even when they are not having an attack (Kara et al., 
2003). During those attack-free periods, migraineurs with ≥5 
migraine attacks per month have a greater retinal artery diameter 
than controls (Unlu et  al., 2017). We  wonder whether this is a 
compensatory adaptation to chronically increased oxygen demand. 
Using magnetic resonance imaging (MRI) scanning, WMH can 
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be superimposed on the OCTA images to show areas especially 
prone to hypoperfusion in any given patient and also self-evident 
on the retinal OCTA.

The studies reviewed in this article were heterogeneous in 
various parameters and present many confounding factors that need 
to be addressed to reliably compare OCT and OCTA findings across 
studies. For instance, while the OCT and OCTA devices are named 
in the methodologies, their artifact-clearing abilities are not 
(McKendrick and Nguyen, 2022). Device type did not affect effect 
sizes calculated in Gouravani et al.’s review on OCT (Gouravani et al., 
2023), so we did not separate studies by device type in our own 
analyses. However, this may be  worthwhile to do in the future. 
Investigators should also control for age and sex proportions between 
groups. Based on subgroup analyses, there may also be a need for a 
calibrating calculation between studies using different devices to 
be able to make comparisons (Gouravani et al., 2023). We observed 
that the studies vary in methodology (device, scanned ocular areas, 
including foveal diameter and statistical analyses), which makes it 
difficult to compare results across them. So there is also a need to 
standardize both measurements and analysis in future studies (Pang 
et al., 2023). Smaller effects, such as those from migraine history and 
frequency, may be camouflaged by the differences in findings arising 
from different methodologies alone (McKendrick and Nguyen, 
2022). Some parameters are not reported [such as participant 
migraine history or attack frequency data (Chang et al., 2017)], while 
others’ findings are compromised by small sample sizes (McKendrick 
and Nguyen, 2022; Gouravani et  al., 2023; Pang et  al., 2023). In 
particular, the studies included participants taking vasoactive 
medications, so this needs to be uniformly reported and controlled 
in the future to avoid confounding when measuring vascular tone 
solely in relation to migraine pathophysiology (Lin et al., 2021). Most 
studies were from Turkey, and we would be interested in finding out 
whether the findings could be generalized to migraineurs across the 
world. Most are cross-sectional studies, precluding us from making 
causative inferences as to migraine and vascular pathology, such that 
we cannot tell whether the findings are due to local ischemia over 
time or a systemic disorder that also affects the ocular vasculature 
(McKendrick and Nguyen, 2022; Pang et al., 2023). In our study, 
we noticed that the vast majority of the case–control studies seem to 
be cross-sectional, with only case studies looking at migraineurs 
longitudinally. Hence, we cannot determine cause and effect in terms 
of vascular tone changes and migraine outcomes. Longitudinal 
studies could tell us whether cortical vascular damage occurs in 
migraineurs before or after their migraine history. Failing this, it 
would help if studies recorded these vascular measurements at 
similar timepoints in the migraine cycles (McKendrick and Nguyen, 
2022), to be  able to compare longitudinally. If evaluating 
measurements during migraine attacks, we would recommend that 
measurements be  taken within 3 h of onset. This is because in a 
recent case study, Kızıltunç et al. took measurements of the optic disc 
and fovea during a visual aura where migraine pain followed on the 
right side (Kızıltunç and Atilla, 2020). The right eye showed diffuse 
narrowing of the retinal vessels, as well as decreased radial 
peripapillary capillary and superficial and deep foveal vessel densities 
(Kızıltunç and Atilla, 2020). This improved 3 hours after the visual 
aura (Kızıltunç and Atilla, 2020). Since the right-eye pain and 
headache occurred after the visual aura with vascular constriction, it 
is possible that eye pain in migraineurs might result from 
hypoperfusion of the eye (Kızıltunç and Atilla, 2020).

In summary, the retina (including the macula and its fovea) 
and optic nerve head can be observed through the relatively new 
OCT and OCTA technologies, and migraine sufferers may benefit 
from its use as a biomarker for diagnosis, progression, and 
response to therapies. OCT is useful for retinal layer thickness 
measurement, whereas OCTA is useful to measure vascular density 
in different areas of the eye. Perhaps OCT and OCTA profiles can 
be  established in the future to determine the type of migraine 
according to perfusion patterns across different parts of the brain, 
ictally and interictally. Subsequent treatment and management 
plans would also be influenced by this. There are many issues still 
to be addressed, and we keenly look forward to continued research 
into the use of OCT and OCTA in migraine.
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