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Determining the laterality of the seizure onset zone is challenging in frontal

lobe epilepsy (FLE) due to the rapid propagation of epileptic discharges to

the contralateral hemisphere. There is hemispheric lateralization of autonomic

control, and heart rate ismodulated by interactions between the sympathetic and

parasympathetic nervous systems. Based on this notion, the laterality of seizure

foci in FLE might be determined using heart rate variability (HRV) parameters. We

explored preictal markers for di�erentiating the laterality of seizure foci in FLE

using HRV parameters. Twelve patients with FLE (6 right FLE and 6 left FLE) were

included in the analyzes. A total of 551 (460 left FLE and 91 right FLE) 1-min epoch

electrocardiography data were used for HRV analysis. We found that most HRV

parameters di�ered between the left and right FLE groups. Among the machine

learning algorithms applied in this study, the light gradient boostingmachine was

the most accurate, with an AUC value of 0.983 and a classification accuracy of

0.961. Our findings suggest that HRV parameter-based laterality determination

models can be convenient and e�ective tools in clinical settings. Considering

that heart rate can be easily measured in real time with a wearable device,

our proposed method can be applied to a closed-loop device as a real-time

monitoring tool for determining the side of stimulation.

KEYWORDS

frontal lobe epilepsy, heart rate variability, laterality, seizure onset zone, autonomic

nervous system

1 Introduction

Frontal lobe epilepsy (FLE) is the secondmost common subtype of focal onset epilepsy,

and ∼30 % of patients with FLE develop drug resistance, making them candidates for

surgical treatment or non-invasive neuromodulation (Baumgartner et al., 1997). Although

demonstrating the laterality of the seizure onset zone is a fundamental step in presurgical

evaluation (Jobst et al., 2000; Miller and Fine, 2022) and in mapping for targeted

stimulation (Fisher and Velasco, 2014), it is challenging to determine it in FLE due to

the rapid propagation of epileptic discharges to the contralateral hemisphere through

the corpus callosum and widespread connectivities (Matsumoto et al., 2007; Chu et al.,

2017). Electroencephalography (EEG) data acquisitions through long-term monitoring

and high-density channels have been applied for lateralization and localization of precise

seizure foci (Lantz et al., 2003), but the examination process is complicated and requires a
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considerable time and economic burden. Therefore, surrogate

markers derived from data that are convenient to acquire and can

be processed quickly would have clinical utility in determining the

laterality of seizure foci in FLE.

It is well-known that there is hemispheric lateralization of

autonomic control (Oppenheimer et al., 1992; Yoon et al., 1997;

Kim et al., 2014, 2021; Phillips et al., 2020), and that heart rate

(HR) is modulated by interactions between the sympathetic and

parasympathetic nervous systems. Based on this knowledge, heart

rate variability (HRV) has been widely used to determine the

hemispheric lateralization of autonomic control (Rajendra Acharya

et al., 2006). Indeed, differences in HRV changes according

to hemispheric laterality were demonstrated during unilateral

amobarbital injection, suppressing the ipsilateral brain function,

in patients with temporal lobe epilepsy (TLE; Yoon et al.,

1997). Specifically, sympathetic activation was derived from left

hemisphere injection, and parasympathetic activation was derived

from right hemisphere injection (Yoon et al., 1997). The capability

of HRV parameters for determining the laterality of seizure foci was

reaffirmed in TLE (Dono et al., 2020; Sivathamboo and Perucca,

2021). Since the various frontal cortices (e.g., anterior cingulate

cortex) are known as fundamental components of the central

autonomic network (CAN; Benarroch, 1993), as well as structures

in the temporal lobe (e.g., insular cortex), the lateralization

of seizure foci in FLE might also be determined using HRV

parameters. Considering that recent technological advances in

digital health system have allowed the heart rate (HR) to be

monitored reliably and conveniently using wearable devices (e.g.,

smart watch; Lee et al., 2018), HR-based markers for determining

the laterality of seizure foci in FLE may be useful in closed-loop

neuromodulation systems (Supplementary Figure 1). To the best of

our knowledge, no study has investigated the applicability of HRV

parameters to determine the laterality of seizure foci in FLE.

Herein, we aimed to compare HRV parameters between right

and left FLE. In addition, if there were differences in HRV

parameters, we sought to evaluate the applicability of HRV

parameters as surrogate markers for determining the laterality

of seizure foci in FLE using machine learning algorithms.

We hypothesized that HRV parameters reflecting sympathovagal

balance might shift toward sympathetic dominance in right FLE

and parasympathetic dominance in left FLE. We also hypothesized

that HRV parameter-based machine learning models might

accurately classify the laterality of seizure foci in FLE.

2 Materials and methods

2.1 Subjects and data acquisition

This study was based on a retrospective review of an inpatient

long-term video-EEG monitoring database at Korea University

Anam Hospital between January 2019 and December 2020.

From the entire database, we first screened patients with EEG

data containing ictal discharges and selected patients confirmed

to have FLE through a comprehensive evaluation, including

neurological examination, electroclinical diagnosis by board-

certified epileptologists (HK, JBK), and neuroimaging studies. All

participants had epilepsy with no underlying structural lesions,

except for transient seizure-related signal changes. Only FLE

patients having EEG data with two or more ictal discharges

originating in the frontal lobe of entirely consistent laterality

were included in this study, and when seizure activity occurred

repeatedly at intervals of <10 min, to such an extent that the

timing of ictal onset and termination was unclear, were excluded.

The criteria for determining the laterality of the seizure onset

zone were established when all of the following conditions were

met: (1) the presence of seizure semiology that clearly suggests

laterality; (2) demonstration of at least two ictal EEGs compatible

with the seizure semiology; and (3) the laterality of the seizure

onset zone in electrical source imaging consistent with both

clinical and electrophysiological findings. EEG recordings were

conducted using a 32-channel recording system (Comet-PLUS,

Grass Technologies Inc., West Warwick, RI, USA) with electrodes

placed according to the International 10–20 system. EEG data were

sampled at 200 Hz, and the bandpass filter was set between 0.1 and

70 Hz. The study followed the ethical guidelines of the Declaration

of Helsinki and was approved by the Institutional Review Board of

Korea University Anam Hospital (No. 2020AN0435).

2.2 Exact Low-Resolution Brain
Electromagnetic Tomography

Exact Low-Resolution Brain Electromagnetic Tomography

(eLORETA) was developed to minimize source localization errors

by estimating deeper source locations from standard LORETA

(Pascual-Marqui et al., 2011; Aung et al., 2022). eLORETA was

calculated to solve the three-dimensional (3D) linear solutions in

a three-shell spherical head model, which includes the scalp, skull,

and brain tissues. The LORETA solution consists of the voxel

current density with estimable power spectral density from EEG

on the scalp. eLORETA is a reference-free EEG analysis method

that calculates the equal source distribution from independent

EEG data. These methods estimate cortical sources that reflect the

synchronization of synaptic neural currents associated with local

field potentials. To reconfirm the laterality of seizure onset zone,

electrical source imaging analysis was performed using EEG data

for 1 min immediately before seizure onset (Figure 1; Kovac et al.,

2014). In this study, eLORETA analysis was conducted utilizing

the Head Atlas Model and the Boundary Element Method (BEM)

template for enhanced standardization and comparability across

subjects. A symmetric matrix is used as a parameterization for the

family of linear imaging methods, where the symmetric matrix is

denoted as C and ĵi is an estimator of neuronal activation at the

ith voxel. By considering the actual source as an arbitrary point

test source at each voxel, it is possible to refine the localization

capability of the linear imaging method, where Kj is the lead field

matrix and A is a vector containing information of dipole moments

for a source. An estimator of neuronal activation can be calculated

using the following (Equation 1):

ĵi =
[

(KT
i CKi)

−1/2)KT
i C

]

ϕ,ϕ = kjA (1)

These equations can be used to write estimation values as

(Equation 2):

∥

∥

∥
Ĵi

∥

∥

∥

2
= ATKT

j CKi(K
T
i CKi)

+KT
i CKjA (2)
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FIGURE 1

Electrical source imaging. An illustration of the exact low-resolution brain electromagnetic tomography (eLORETA) solutions is shown for two

patients with left frontal lobe epilepsy [FLE (upper row)] and two patients with right FLE. The source current density of electroencephalography data

during 1 min immediately before seizure onset is presented as a bright color. The left side of each image represents the left side of the brain.

With regard to eLORETA, we can obtain the density estimate at

the ith voxel using following (Equation 3):

ĵi = W−1
i KT

i (KW
−1KT

+ αH)+ϕ (3)

With the equations given above, exact, zero error localization is

possible by selecting the weights derived from (Equation 4):

Wi =

[

KT
i (KW

−1KT
+ αH)+Ki

]1/2
(4)

2.3 Electrocardiography recording and
HRV analysis

The ECG signal was simultaneously recorded with the EEG,

at a sampling rate of 200 Hz. The single-channel ECG data were

extracted during the EEG recording, visually inspected for accuracy

and quality, and used for HRV analysis. Ectopic beats and artifacts

were discarded, and only normal-to-normal beats were selected for

analysis (Camm et al., 1996). Since HR changes dynamically during

the transition to ictal onset, it may be appropriate to use HRV

parameters analyzed from HR data immediately before ictal onset

to accurately determine the laterality of seizure onset zone (Jirsa

et al., 2014); herefore, time and frequency domain HRV parameters
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were calculated using ECG data from 1 min immediately before

seizure onset and compared between the left and right FLE

groups (Pecchia et al., 2018; Moya-Ramon et al., 2022). The time-

domain HRV parameters used in this study are as follows (Camm

et al., 1996): mean NN interval (interbeat intervals with artifacts

removed, Equation 4), SDNN (standard deviation of NN intervals,

Equation 5), SDSD (standard deviation of successive NN interval

differences, Equation 6), RMSSD (root mean square of successive

NN interval differences, Equation 7), and pNNx (percentage of

successive intervals differing by more than x ms, Equation 8).

Mean NN interval(ms) =
1

n− 1

n−1
∑

i=1

RRi+1 − RRi (5)

SDNN(ms) =

√

√

√

√

1

n− 1

n
∑

i=1

(RRi − RRmean)2 (6)

SDSD(ms) =
√

√

√

√

1

n− 1

n
∑

i=1

(RR2i − RR2mean)−
1

n− 1

n
∑

i=1

(RRi − RRmean)2 (7)

RMSSD(ms) =

√

√

√

√

1

n− 1

n−1
∑

i=1

(RRi+1 − RRi)2 (8)

pNNx =
NNx

n− 1
(9)

where x in pNNx indicates threshold of difference between adjacent

NN intervals.

The frequency domain of HRV parameters was estimated from

the power spectral density (PSD) for NN interval series. The

three main frequency component was calculated: the very low

frequency (VLF) components under 0.04 Hz, the low frequency

(LF) components between 0.04 and 0.15 Hz, and the high frequency

(HF) between 0.15 and 0.4 Hz. For estimate the balance of

sympathetic tone and parasympathetic tone, the LF/HF ratio was

calculated. For estimate the balance of sympathetic tone and

parasympathetic tone, the LF/HF ratio was calculated.

2.4 Machine learning and statistical
analysis

The AutoML technique was implemented for applying various

classifiers to determine the laterality of seizure onset in FLE using

HRV parameters as input features (He et al., 2021; Qi et al.,

2022). Four frequency domain (i.e., VLF, LF, HF, and LF/HF ratio)

and six time domain HRV parameters (i.e., mean NN interval,

SDNN, RMSSD, SDSD, pNN20, and pNN50) were utilized as

input features. Since the range of values in each HRV parameter

differs, z-scaled normalized values were applied in the machine

learning. The validation of the machine learning classification was

conducted through an automated, random, and unbiased selection

process. This process utilized a stratified fivefold cross-validation

technique to ensure a balanced and representative division between

the training and test sets, thereby minimizing potential biases and

enhancing the reliability of the results. Specifically, 551 epochs

of HRV parameters were randomly divided into five groups for

cross-validation. Four groups were assigned to the learning set,

and one group to the test set to validate classification accuracy.

The same process was repeated five times, and the average value

was reported as the final classification performance. The models

were learned using optimal parameters selected through grid search

analysis. The performance of each classifier was evaluated using

a confusion matrix containing the parameters of precision, recall,

and accuracy. The recall and specificity were used to generate

a receiver operating characteristic (ROC) curve. The area under

the ROC curve (AUC) was also calculated. The Shapley Additive

Explanations (SHAP) method was applied to the classifier models,

showing the most accurate performance in evaluating and ranking

the contribution of each variable to the model (Lundberg and Lee,

2017). Group comparisons of demographic and clinical variables

were performed using Mann-Whitney U-test and Fisher’s exact

test, where appropriate. HRV parameters were compared between

groups using an independent t-test. Statistical significance was set

to p < 0.05. Statistical analyzes were performed with the Statistical

Package for the Social Sciences software (Version 25.0; IBM Corp.,

Armonk, New York, USA).

3 Results

3.1 Demographic and clinical
characteristics

A flow chart of participant selection is presented in Figure 2.

Among the 84 patients with focal epilepsy in the database, EEG data

with two or more ictal discharges from 35 patients were initially

screened in this study. Twenty-three patients having seizure onset

zone other than frontal lobe (19 temporal, three parietal, one

occipital, and 10 multifocal) were excluded. A total of 12 patients

with FLE (6 right and 6 left) were included in the analyzes. A total

of 551 (460 left FLE and 91 right FLE) 1 min epoch ECG data

were used for HRV analysis. The laterality of seizure onset zone

determined by eLORETA was in accordance with that on the basis

of electroclinical diagnosis in all patients with FLE. There were

no differences in age, age of seizure onset, sex, and proportion of

having comorbidities, including hypertension, cardiac arrhythmia,

diabetes, and dyslipidemia, between the left and right FLE groups

(Table 1).

3.2 HRV parameters

Details of the HRV parameters and statistical results are

presented in Table 1. Among the frequency domain HRV

parameters, LF and HF power were greater, while VLF and LF/HF

ratio were lesser in the left FLE group than in the right FLE group.

Compared to the left FLE group, all time domain HRV parameters

(i.e., SDNN, RMSSD, SDSD, pNN20, and pNN50), except the mean

NN interval, were greater in the right FLE group.

3.3 Machine learning

The performance of machine learning algorithms is presented

in Figure 3 and Table 2. Among the algorithms for classification,
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FIGURE 2

A flow chart of participant classification.

TABLE 1 Between group comparisons.

Characteristic Left FLE (460 epochs) Right FLE (91 epochs) p-value

Demographic and clinical variables

Age (median, IQR) 62.50 (46.7–70.0) 60.00 (57.5–72.3) NS

Age of seizure onset (median, IQR) 57.50 (26.3–70.0) 60.00 (57.5–72.3) NS

Sex (women, %) 50.00 16.67 NS

Hypertension (%) 33.33 50.00 NS

Cardiac arrhythmia (%) 0.00 0.00 NS

Diabetes mellitus (%) 0.00 33.33 NS

Dyslipidemia (%) 0.00 16.67 NS

Heart rate variability

Frequency domain

VLF (ms2) 15.14± 12.45 25.93± 17.13 <0.001

LF (ms2) 53.09± 17.68 47.63± 18.69 <0.001

HF (ms2) 31.77± 23.00 26.44± 25.38 0.048

LF/HF ratio 4.46± 7.19 10.18± 20.47 <0.001

Time domain

Mean NN interval (ms) 627.35± 245.43 629.70± 173.45 NS

SDNN (ms) 19.2± 13.08 35.55± 36.68 <0.001

RMSSD (ms) 11.98± 12.70 23.2± 30.65 <0.001

SDSD (ms) 8.03± 10.675 15.73± 21.575 <0.001

pNN20 (%) 0.57± 3.85 7.88± 16.95 <0.001

pNN50 (%) 0.24± 2.33 1.84± 5.57 <0.001

FLE, frontal lobe epilepsy; HF, high frequency; IQR, interquartile range; LF, low frequency; NN, normal beat-to-beat; NS, not significant; RMSSD, root mean square of the successive differences;

SDNN, standard deviation of NN interval; SDSD, standard deviation of successive RR interval differences; VLF, very low frequency.
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A B

FIGURE 3

Performance of machine learning classification. (A) Performance of each machine learning algorithm is presented. Error bars indicate standard

deviations of 5-fold cross-validation. (B) Shapley Additive Explanations (SHAP) values extracted from light gradient boosting machines are presented.

ADA, adaptive boosting; AUC, area under the curve; DT, decision tree; ET, extra trees; GBC, gradient boosting classifier; HF, high frequency; LF, low

frequency; LightGBM, light gradient boosting machine; NN, normal beat-to-beat; RMSSD, root mean square of the successive di�erences; SDNN,

standard deviation of NN interval; SDSD, standard deviation of successive RR interval di�erences; VLF, very low frequency.

TABLE 2 Details in performance of machine learning classification.

Model AUC Accuracy Recall Precision

Light gradient boosting machine 0.983 (0.964) 0.961 (0.940) 0.866 (0.849) 0.910 (0.784)

CatBoost 0.975 (0.969) 0.953 (0.958) 0.836 (0.867) 0.891 (0.872)

Gradient boosting classifier 0.956 (0.967) 0.950 (0.951) 0.836 (0.832) 0.882 (0.859)

Adaptive boost 0.959 (0.918) 0.948 (0.940) 0.779 (0.849) 0.917 (0.789)

Decision tree 0.857 (0.886) 0.930 (0.935) 0.746 (0.815) 0.835 (0.802)

Random forest 0.967 (0.963) 0.930 (0.940) 0.685 (0.780) 0.885 (0.847)

Extra trees 0.962 (0.945) 0.925 (0.935) 0.643 (0.727) 0.901 (0.830)

Values present performance using overall parameters per se [460 epochs in left frontal lobe epilepsy (FLE) vs. 91 epochs in right FLE]; values in parentheses indicate the performance of each

classifier after upsampling (460 epochs in left FLE vs. 460 epochs in right FLE).

the light gradient boosting machine was the most accurate, with

an AUC value of 0.983 and classification accuracy of 0.961. Among

the algorithms applied in AutoML methods, CatBoost, gradient

boosting classifier, adaptive boost, decision tree, random forest,

and extra trees also achieved a high classification accuracy of

more than 0.900.

4 Discussion

In this study, we compared HRV parameters derived from

preictal period data to investigate the applicability of the HRV

parameters to classify the laterality of seizure foci in patients

with FLE. We found that most HRV parameters differed between

the left and right FLE groups. The groups were classified with a

high accuracy using machine learning algorithms with the HRV

parameters as input features.

Since the neural activity in the seizure focus is enhanced during

the transition from the interictal to the ictal period in epilepsy (Jirsa

et al., 2014), sympathetic and parasympathetic activities during

the preictal period would be increased in epilepsy with seizure

focus on the right and left, respectively. Considering the presence

of hemispheric laterality in the modulation of the sympathetic

and parasympathetic activities (Oppenheimer et al., 1992; Yoon

et al., 1997; Kim et al., 2014, 2021; Phillips et al., 2020), HRV

parameters reflecting sympathovagal balance (Rajendra Acharya

et al., 2006) can be surrogate markers to determine the laterality

of seizure foci. Based on the aforementioned notion, our findings

of increased LF/HF ratio and decreased HF power in the right

FLE group relative to the left FLE group suggest that FLE patients

with seizure foci on the right had increased sympathetic activity

during the preictal period and those in the left FLE group suggest

the opposite.

There are several lines of evidence indicating that frequency

domain HRV parameters could be useful surrogate markers for

determining the laterality of seizure foci in TLE (Yoon et al., 1997;

Dono et al., 2020). Our findings of the tendency of HRV parameters

according to the laterality of seizure foci in FLE were consistent

with those in TLE reported previously. CAN is composed of a

wide range of areas and is known to regulate autonomic function

through functional connectivity between major components such

as the brainstem, the insular cortex of the temporal lobe, and the

anterior cingulate cortex of the frontal lobe (Benarroch, 1993). Our

results suggest that in the context of autonomic function control

through CAN, determining seizure foci laterality in FLE patients is

possible through HRV parameters, as in TLE.
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Indeed, several machine learning algorithms using HRV

parameters acquired during the preictal period without other

clinical information could classify the laterality of seizure foci with

a high accuracy of over 0.900. These findings imply that HRV

parameters may be useful surrogate markers for discriminating

the laterality in FLE. Given that the ECG data acquisition

period was short (i.e., 1 min), HRV parameter-based laterality

determination can be a convenient and effective tool in a

clinical setting.

The present study had several limitations. First, the sample

sizes in the left and right FLE groups were unbalanced, with a

relatively small number of epilepsy patients analyzed. Therefore,

to avoid biased classification performance, we applied an up-

sampling technique, which is one of the methods developed

and widely used to minimize the impact of results due to

imbalance problems. We found that high classification accuracy,

over 0.900, was preserved in all algorithms using up-sampled

data; therefore, we believe our results were unlikely to be affected

by the data imbalance issue. Second, we could not externally

validate the accuracy of machine learning models. Therefore,

the generalizability of the accuracy of the differential diagnosis

between left and right FLE might be limited, although internal

validation has been statistically performed. Third, since frontal lobe

encompasses a wide range of regions, the impact on autonomic

function can vary by seizure onset zone within specific region of

frontal lobe. Further studies in large populations could verify the

applicability of determining the laterality of seizure onset zone

using HRV parameters according to regions within the frontal

lobe. Finally, HRV parameters derived from 1 min recordings

may be limited in their ability to serve as a sufficient indicator of

autonomous function. However, there are several lines of evidence

that HRV parameters derived from short-term recordings were

not different from those from 5 min recordings (Pecchia et al.,

2018; Moya-Ramon et al., 2022). Therefore, we considered that

HRV parameters, derived from 1 min in our study, could serve

as appropriate indices for timely forecasting the laterality of

seizure onset during real-time monitoring. Moreover, integrated

pattern of multiple HRV parameters would be more valuable

as a predictor than the independent contribution of individual

HRV parameters.

5 Conclusion

Using HRV parameters, we explored surrogate markers for

differentiating the laterality of seizure foci in FLE patients. Our

findings show that machine learning algorithms using HRV

parameters could determine the laterality of seizure foci in FLE

with a high accuracy of more than 90%. Our results provide

insights into the differentiating autonomic states during the preictal

period according to the laterality of the seizure onset zone in

FLE patients, and HRV parameter-based laterality determination

models can be convenient and effective tools in the clinical

setting. Furthermore, given the recent advances in application

of wearable devices using photoplethysmography signals for

healthcare systems (Loh et al., 2022), the laterality of the seizure

onset zone in FLE could be determined by using wearable or simple

portable devices.
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