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Understanding the intricate architecture of the brain through the lens of graph 
theory and advanced neuroimaging techniques has become increasingly 
pivotal in unraveling the complexities of neural networks. This bibliometric 
analysis explores the evolving landscape of brain research by focusing on 
the intersection of graph theoretical approaches, neuroanatomy, and diverse 
neuroimaging modalities. A systematic search strategy was used that resulted 
in the retrieval of a comprehensive dataset of articles and reviews. Using 
CiteSpace and VOSviewer, a detailed scientometric analysis was conducted that 
revealed emerging trends, key research clusters, and influential contributions 
within this multidisciplinary domain. Our review highlights the growing synergy 
between graph theory methodologies and neuroimaging modalities, reflecting 
the evolving paradigms shaping our understanding of brain networks. This 
study offers comprehensive insight into brain network research, emphasizing 
growth patterns, pivotal contributions, and global collaborative networks, thus 
serving as a valuable resource for researchers and institutions navigating this 
interdisciplinary landscape.
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1 Introduction

The unraveling of the brain’s intricate architecture stands as one of the most profound 
scientific endeavors, perpetually evolving to grasp the enigmatic complexity of the human 
brain (Tononi et al., 1994; Ramón Y Cajal, 1995; Bota et al., 2003). Understanding the brain’s 
organizational principles, connectivity patterns, and dynamic interplay between its 
components holds the key to comprehending cognition, behavior, and various neurological 
disorders (Bassett and Bullmore, 2009; Rubinov and Sporns, 2010; van den Heuvel and 
Hulshoff Pol, 2010).

Graph theory, a mathematical discipline that is concerned with the study of graphs or 
networks, has emerged as a foundational framework for modeling and analyzing the complex 
systems inherent in fields that include neuroscience (Ramnani et al., 2004; Bullmore and 
Bassett, 2011; Sporns, 2013a). Graph theory offers a systematic and quantitative means of 
characterizing the intricate structural and functional connectivity patterns that underlie neural 
circuits (Sporns, 2011; Sporns, 2013a). Graph theory facilitates a rigorous assessment of 
network properties, such as efficiency, resilience, and modularity, through the abstraction of 
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the brain’s architecture into a network comprised of nodes and edges 
(Bassett and Bullmore, 2006; Rubinov and Sporns, 2010; Stam, 2014; 
Ma et al., 2021; Zamani Esfahlani et al., 2021). Nodes within the brain 
network typically correspond to anatomically or functionally defined 
brain regions, and edges represent the connections between them. 
These connections that can be  derived from structural data (e.g., 
diffusion magnetic resonance imaging (MRI) tractography) or 
functional data (e.g., correlations in the function magnetic resonance 
imaging (fMRI) signal) encode a complex web of interactions that 
govern brain function (Watts and Strogatz, 1998).

Neuroimaging techniques provide a complementary path for 
probing the structure and function of the brain in vivo. These 
techniques encompass a spectrum of modalities, which range from 
traditional anatomical imaging methods that include structural MRI 
to advanced functional imaging methods such as resting-state fMRI 
and task-based fMRI (Ogawa et  al., 1990; Conturo et  al., 1999; 
Bandettini and Cox, 2000; Le Bihan and Johansen-Berg, 2012). 
Neuroimaging modalities yield rich datasets amenable to analysis 
within the framework of graph theory by capturing neural activity and 
connectivity patterns with high spatiotemporal resolution (Sporns 
et al., 2004; Hagmann et al., 2008; Honey et al., 2009).

The convergence of graph theory and neuroimaging has ushered 
in a transformative paradigm in the study of brain organization and 
function (Sporns, 2013b; Preti et  al., 2017). This interdisciplinary 
synergy enables researchers to conceptualize the brain as a complex 
network. With the application of graph theoretical techniques to 
neuroimaging data, researchers can uncover fundamental principles 
that govern brain network organization, such as the presence of highly 
connected “hub” regions and the modular organization of functional 
brain networks (Crossley et al., 2014; Preti et al., 2017). Pioneering 
studies by Bullmore and Sporns (2009) and Bullmore and Sporns 
(2012) have elucidated the economy of brain network organization 
and complex brain networks’ structural and functional systems, 
respectively. Further, this integrative approach provides insight into 
how alterations in brain network topology relate to cognitive 
processes, behavior, and neurological disorders, thus advancing our 
understanding of brain function in health and disease (Menon, 2011; 
Fornito et al., 2012; Rubinov and Bullmore, 2013; Uddin et al., 2013; 
Iturria-Medina et al., 2014; Fornito et al., 2015).

Bibliometrics constitutes the analysis of published information 
and their associated metadata, such as abstracts, keywords, and 
citations. Bibliometrics aims to depict and elucidate relationships 
among these published works by employing statistical methods 
(Broadus, 1987; Hicks et  al., 2015). This approach hinges on the 
premise that the scholarly output within a research domain is 
encapsulated within its published literature (Ninkov et  al., 2022; 
Funada et  al., 2023; Miao et  al., 2023). The methodology of a 
bibliometric analysis encompasses diverse comprehensive techniques, 
including mathematical methods, network analyses, and clustering 
algorithms. These methodologies serve to scrutinize the overarching 
profiles of published works, thus presenting an objective and 
quantitative overview of the current status and evolving trends within 
various fields (Ying et al., 2023). In recent years, bibliometric analyses 
have gained widespread traction due to accessible software tools such 
as CiteSpace (Chaomei, 2006) and VOSviewer (van Eck and Waltman, 
2010). The availability of these tools, coupled with the exponential 
growth in published literature, has rendered bibliometric analysis 
instrumental in comprehensively assessing the development 

trajectories of numerous specialized research fields (Brandt et  al., 
2019; Akmal et  al., 2020; Hassan et  al., 2021; Ge et  al., 2022; Li 
et al., 2022).

In this study, we  perform exhaustive systematic searches and 
rigorous data curation to meticulously compile a comprehensive 
dataset comprised of a multitude of articles and reviews to 
effectively capture the evolutionary trends within this expansive 
multidimensional domain. The integration of advanced visualization 
and data mining methodologies signifies a pioneering approach 
within bibliometric analyses, particularly for the exploration of brain 
networks through the amalgamation of graph theory and diverse 
neuroimaging techniques (van den Heuvel and Hulshoff Pol, 2010). 
This intersection represents a relatively uncharted territory that holds 
immense promise for unveiling novel insight into the complex 
landscape of brain connectivity.

Our primary objective is the elucidation of the intellectual 
trajectory and unfolding trends within the realm of brain network 
investigations over several decades. Our secondary goals is to provide 
a comprehensive evaluation of the diverse research networks that span 
across countries, institutions, authors, and journals. This holistic 
assessment approach allows us to delve deeper into collaborative 
networks, investigate key research productivity metrics, and pinpoint 
pivotal gaps within this dynamic interdisciplinary domain.

Further, our study seeks to identify prospective pathways, thus 
paving the way for potential directions and advancements in this 
multifaceted field. By critically evaluating collaborative networks and 
productivity metrics, our intent is not only to outline existing 
achievements, but also to identify crucial gaps that require further 
exploration and investigation. This multifaceted approach aims to 
significantly contribute to the understanding of brain network 
research dynamics, enabling the field to effectively navigate and chart 
future trajectories.

2 Materials and methods

2.1 Data collection

The data for the bibliometric analysis were obtained from the 
Clarivate Analytics’ Web of Science Core Collection (WOSCC), which 
included SCI-EXPANDED, SSCI, AHCI, ESCI, CCR-EXPANDED, 
IC, and search literature with the time span from January 1, 1995 
through December 31, 2022. A bibliometric analysis of the retrieved 
documents was performed after searching in accordance with the 
abovementioned method. A total of 2,236 records, including 2,103 
articles and 133 reviews were collected, and the records were exported 
in the “plain text” and “tab delimited file” format. Every document 
record included the title, author, keywords, abstract, year, organization, 
citation, and other relevant information.

2.2 Data analysis

VOSviewer 1.6.19 and CiteSpace 6.2.R5 were selected as the main 
bibliometric analysis tools to comprehensively analyze and summarize 
papers. To regulate the inclusion or exclusion of nodes in CiteSpace, 
the scale factor was adjusted to k = 25, the selection criteria was set to 
a top N = 50, and the time slice setting parameter was 2 years. Default 
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configurations were maintained for all of the other settings (Chaomei, 
2006). We  conducted a cluster analysis and burst detection of 
keywords in order to understand the evolution of hotspots and predict 
the trends. Cluster labels were extracted from keyword lists using the 
log-likelihood ratio algorithm (p < 0.001). We identified the classical 
literature in the field using a co-citation analysis of the literature. 
Based on the contributions of countries, authors, and institutions, the 
cooperative co-occurrence graphs were drawn to analyze the 
connections between the elements. The flow chart of the study design 
is shown in Figure 1.

3 Results

3.1 Analysis of publication trends

From a modest beginning in 1995, the field has witnessed 
remarkable and sustained growth in scholarly output. The publication 
count surged significantly in recent decades, thus indicating a pivotal 
turning point in the domain’s development. This acceleration 
continued unabated throughout the next decade, with each year 
consistently surpassing the previous one in terms of the number of 
articles published. The climax in 2021, with a record-breaking 308 
articles, underlines the growing importance of this multidisciplinary 
field. Although 2022 showed a slight reduction in publication 
numbers, it is essential to consider it within the context of the field’s 
overall trajectory (Figure 2).

3.2 Keyword analysis

3.2.1 Keyword network analysis
A total of 2,236 documents were examined, and a compilation of 

287 author-generated keywords offered insight into the prevailing 
themes and research directions within this field. VOSviewer was used 
to produce an overlay visualization based on the average publication 
year (Figure 3A) to delineate keyword co-occurrences. The top 10 
keywords, ranked by frequency, encapsulated the focal points of the 
current research endeavors: ‘graph theory,’ ‘functional connectivity,’ 
‘fMRI,’ ‘connectivity,’ ‘organization,’ ‘brain networks,’ ‘resting-state 
fMRI,’ ‘cortex,’ ‘small-world,’ and ‘MRI’ (Supplementary Table S1). This 
analysis illuminated the thematic emphasis and prevalent areas of 
exploration within brain network research, outlining the dominant 
concepts and directions that have garnered significant attention 
among researchers.

3.2.2 Keywords citation burst analysis
A burst analysis was performed to identify the keywords that 

exhibited the most dynamic evolution over time. The top three 
keywords that demonstrated the strongest burst strength were 
‘network analysis,’ ‘positron emission tomography,’ and ‘human brain.’ 
These keywords signified areas that have experienced significant 
surges in interest and focus within the literature.

Further, the keywords ‘significant difference’ and ‘machine 
learning’ displayed recent bursts, showing heightened activity 
specifically from 2020 to 2022 (Supplementary Table S2). This 

FIGURE 1

Flow chart of the study design. #1: [TS  =  (“Graph Theory” OR “Network Theory” OR “Network Analysis”) AND TS  =  (“brain” OR “Gray matter” OR “White 
matter” OR “Brain structure” OR “Brain anatomy” OR “brain connectivity” OR “Neural circuitry” OR “connectome”)]; #2: [TS  =  (“structural magnetic 
resonance imaging” OR “sMRI” OR “functional magnetic resonance imaging” OR “fMRI” OR “magnetic resonance spectroscopy” OR “MRS” OR 
“diffusion-tensor imaging” OR “DTI” OR “functional near-infrared spectroscopy” or “fNIRS” OR “single-photon emission computed tomography” OR 
“SPECT” OR “positron emission tomography” OR “PET”)]. WOSCC, web of science core collection.
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temporal analysis highlighted emerging areas of interest and reflected 
the evolving landscape within brain network research, indicating 
noteworthy shifts in attention and emphasis within the field during 
this period.

3.2.3 Keywords time zone map analysis
The time zone map for keywords visually depicts the temporal 

evolution of high-frequency keywords within the context of their 
appearance over time. This representation provides a clear 
visualization of the emergence periods of these keywords, enabling an 
understanding of their hotspots and potential future trends.

In this visualization, larger circles indicate keywords cited more 
frequently, reflecting heightened discussions and increased research 
activity around those specific terms. Supplementary Figure S1 shows 
a comprehensive overview of the prominence and temporal 
distribution of these keywords, serving as a valuable tool to identify 
the historical emergence and current significance of these terms 
within brain network research.

3.3 Analysis of co-citation references

3.3.1 Cluster network of research
An analysis of the co-citation references revealed a rich landscape 

comprised of 23 distinct clusters that emphasized significant 
modularity (Q = 0.6946) and high silhouette scores (S = 0.879). These 
metrics underscored the reliability and distinctiveness of the identified 
clusters, with further scrutiny focused on 15 of these clusters for 
visualization within the co-citation references network (Figure 4). For 
detailed insights into each cluster’s thematic context, comprehensive 
descriptions are provided in Supplementary Table S3.

Each cluster exhibited a particularly high silhouette score 
indicative of a well-defined and distinct research focus within its 
domain. This comprehensive clustering analysis not only reinforced 

the reliability of the identified thematic clusters, but also offered a 
nuanced understanding of the diverse research avenues prevalent 
within brain network investigations.

3.3.2 Co-cited references timeline map
The timeline map of the co-cited references was constructed by 

labeling the clusters using noun terms extracted from keywords. 
The arrangement of the node centers along the horizontal axis from 
left to right signifies the initial publication year of the cited 
documents, capturing the temporal evolution of the literature. This 
layout offered insights into the temporal characteristics and 
evolutionary trends of the referenced literature (Figure 5).

Certain study topics within the timeline map exhibited shorter 
durations, such as cluster (#12) that focuses on sequence learning. 
Conversely, other clusters, namely (#0) functional constipation and 
(#1) brain parcellation, continued to demonstrate ongoing activity, 
highlighting persistent research hotspots within this field. This 
visualization enables the identification of both transient and 
enduring research trends, providing a comprehensive temporal 
perspective on the evolution of cited literature and highlighting 
focal areas of ongoing interest and investigation within brain 
network research.

3.3.3 Most cited references and high centrality 
papers

We meticulously identified the top 10 most cited references within 
the field, representing pivotal works that offer substantial insights into 
the subject matter. The comprehensive list of these references is 
presented in Table 1, signifying their significant contributions to the 
field’s advancement. One study has garnered exceptional attention and 
recognition: ‘Complex Network Measures of Brain Connectivity: Uses 
and Interpretations’ authored by Rubinov and Sporns (2010), and it 
stands out as the most frequently cited reference, having amassed an 
impressive citation count of 201.

FIGURE 2

Number of annual research publications and growth trends from 1995 to 2022.
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Among these top references, three papers exhibited higher 
centrality, indicating their substantial influence on the field’s trajectory 
(Supplementary Table S4). These included ‘A Network Analysis of the 
Default Mode Hypothesis’ by Greicius et al. (2003), offering evidence 
for the cohesive existence of the default mode network; a 
comprehensive review by McIntosh (1999), elucidating neural systems 
and their correlation with cognition; and a clinical trial conducted by 
McIntosh et al. (1996), revealing changes in limbic and prefrontal 
functional interactions. These papers, distinguished by their higher 
centrality, underscore their profound impact and influential 
contributions within the domain of brain network research.

3.4 Analysis of co-authorship networks

A network analysis of the co-cited authors revealed substantial 
modularity and silhouette scores (Q = 5,004; S = 0.7459), as depicted 
in Supplementary Figure S2. Among the clusters identified, Cluster #0, 
titled ‘Diffusion Tensor Imaging,’ emerged as the most significant and 
central cluster, emphasizing its pivotal role within the network. 
Supplementary Table S5 provides detailed descriptions for each 
cluster, offering comprehensive insights into their thematic focus 
and significance.

The top three most cited authors within this network were 
Rubinov M (n = 1,101 citations), Bullmore ET (n = 995), and Sporns 
O (n = 734), showcasing their significant contributions to the field. 
Further, the top three authors with the strongest betweenness 
centrality, indicating their pivotal role in connecting different 
segments of the network, were Friston KJ (0.08), Horwitz (0.07), and 
Raichle ME (0.05), as outlined in Supplementary Table S6. McIntosh 
AR emerged as the author with the strongest burst strength, indicating 
a notable surge in citations and an active contribution from 1995 to 
2010, detailed in Supplementary Table S7.

Further, an analysis of the collaborative network of citing authors 
delineated influential cooperative groups, prominently led by Gong 
QY, He Y, Lei D, Suo XL, and Shu N (Figure 3B). These authors played 
instrumental roles within the network, significantly contributing to 
collaborative efforts and advancing research in the field, showcasing 
the importance of collaborative endeavors in shaping the landscape of 
brain network research.

3.5 Analysis of co-cited journals

An analysis of the co-cited journals highlighted the top three 
most cited publications: Neuroimage (n = 2,146 citations), Human 

FIGURE 3

(A) Network of co-occurring author keywords; (B) Network of cooperation between authors; (C) Network of cooperation between countries/regions; 
(D) Network of cooperation between institutions. The size of a node is proportional to the frequency of its occurrence. The color of the node 
corresponds to the average year of publication.
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FIGURE 4

Co-citation references network and corresponding clustering visualization. A node represents a cited reference. The size of a node is proportional to 
its citation.

FIGURE 5

Timeline visualization of co-citation references network. A node represents a cited reference. For each cluster, nodes are organized by their year of 
publication on horizontal lines. The color of lines indicate the time of links between nodes or between clusters.
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Brain Mapping (n  = 1787), and the Journal of Neuroscience 
(n  = 1,657), demonstrating their significant influence within 
neuroimaging and neuroscience research. These journals have 
served as pivotal platforms for disseminating cutting-edge research 
in the field.

Further, the top three journals with the highest centrality, 
signifying their critical role in connecting various segments of the 
network, were Experimental Brain Research (0.05), Archives of 
Neurology (0.04), and Alzheimer Disease and Associated Disorders 
(0.04), as detailed in Supplementary Table S6. These journals have 
played instrumental roles in fostering the exchange and dissemination 

of neuroimaging and brain graph analysis research, contributing 
significantly to the field’s advancement.

It is worthy to note that NeuroReport emerged as the journal with 
the strongest burst, signaling a substantial increase in citations and 
continued activity from 1995 to 2012. Further, recent surges were 
observed in Scientific Reports, Nature Communications, Network 
Neuroscience, Frontiers in Aging Neuroscience, and Dialogues in 
Clinical Neuroscience, as indicated in Supplementary Table S8. These 
journals represent recent avenues of prominence, offering potential 
outlets for researchers engaged in neuroimaging and graph analysis to 
consider for their publications.

TABLE 1 The top 10 most cited references.

Number of 
citations in the 
network / 
literature 
(October 2023)

Year Title Source DOI Cluster ID

201/10585 2010

Complex network 

measures of brain 

connectivity: uses and 

interpretations

Neuroimage 10.1016/j.neuroimage.2009.10.003 #2

161/11712 2009

Complex brain networks: 

graph theoretical analysis 

of structural and 

functional systems

Nat Rev Neurosci 10.1038/nrn2575 #2

132/6835 2012

Spurious but systematic 

correlations in functional 

connectivity MRI networks 

arise from subject motion

Neuroimage 10.1016/j.neuroimage.2011.10.018 #5

124/3393 2013

BrainNet Viewer: a 

network visualization tool 

for human brain 

connectomics

Plos One 10.1371/journal.pone.0068910 #5

111/1082 2015

GRETNA: a graph 

theoretical network 

analysis toolbox for 

imaging connectomics

Front hum Neurosci 10.3389/fnhum.2015.00386 #3

95/3171 2012
The economy of brain 

network organization
Nat Rev Neurosci 10.1038/nrn3214 #2

75/4520 2008

Mapping the structural 

core of human cerebral 

cortex

Plos Biol 10.1371/journal.pbio.0060159 #2

75/2904 2009

Cortical hubs revealed by 

intrinsic functional 

connectivity: mapping, 

assessment of stability, and 

relation to Alzheimer’s 

disease

J Neurosci 10.1523/JNEUROSCI.5062-08.2009 #2

74/1956 2013
Network hubs in the 

human brain
Trends Cogn Sci 10.1016/j.tics.2013.09.012 #5

73/2379 2012

The influence of head 

motion on intrinsic 

functional connectivity 

MRI

Neuroimage 10.1016/j.neuroimage.2011.07.044 #5
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3.6 Analysis of countries and institutes 
cooperation

Figures 3C,D illustrate the cooperative networks among countries 
and institutions, respectively. Our analysis encompassed 41 countries 
or regions. The top three countries that contributed the most papers 
were the United States (873 papers, 39.04%), the People’s Republic of 
China (812 papers, 36.31%), and England (212 papers, 9.48%). In 
terms of citations, the United States was the most cited country (n = 
62,156), followed by England (n = 25,325) and the People’s Republic 
of China (n = 22,970), as detailed in Supplementary Table S8.

Moreover, our dataset encompassed 322 institutions. Beijing 
Normal University emerged as the institution with the highest number 
of publications (n  = 114), followed by Capital Medical University 
(n = 85) and the Chinese Academy of Sciences (n = 80). In terms of 
citations, Beijing Normal University secured the second position 
(n = 8,853), with the University of Cambridge leading the citations 
(n = 15,643), as depicted in Supplementary Table S9.

4 Discussion

Our study used an exhaustive bibliometric analysis to provide a 
comprehensive overview of brain network research dynamics. 
We highlighted the transformative synergy between graph theory and 
neuroimaging techniques, revealing diverse research clusters and 
showcasing the influential roles of countries, institutions, authors, and 
journals. Our findings underscored the multidimensional nature of 
contemporary investigations and the collaborative networks that drive 
advancements in this dynamic field.

The integration of graph theory methodologies with advanced 
neuroimaging techniques represents a pivotal advancement in 
neuroscience, fundamentally transforming our understanding of 
brain networks (Hagmann et al., 2008; Park and Friston, 2013; Bassett 
and Bullmore, 2017; Breakspear, 2017). Graph theory offers a robust 
mathematical framework for modeling complex relationships within 
brain networks, providing insight into their organizational principles 
(Watts and Strogatz, 1998; Bullmore and Sporns, 2009). When paired 
with cutting-edge neuroimaging modalities, such as fMRI and 
diffusion tensor imaging (DTI), this integration empowers researchers 
to visualize, analyze, and comprehend the brain’s intricate connectivity 
patterns in vivo (Biswal et al., 2010; Bullmore and Bassett, 2011; Deco 
et  al., 2011; Le Bihan and Johansen-Berg, 2012; Sporns, 2013b). 
Studies by van den Heuvel and Sporns (2013) showcase how graph-
based analyses unveil topological properties, small-world 
architectures, and decipher critical network hubs for information 
processing (Hagmann et al., 2008). He and Evans (2010) and Bullmore 
and Sporns (2012) emphasized that this integration transcends 
traditional neuroanatomical boundaries, fostering a holistic network-
centric perspective. Such transformative integration, as outlined by 
researchers, has reshaped our understanding and shed light on how 
dynamic interactions between brain regions underpin cognitive 
processes, behavior, and neurological disorders (Bressler and Menon, 
2010; Menon, 2011; Fornito et al., 2015; Bassett and Sporns, 2017).

Our comprehensive analysis unveiled dynamic trends and 
distinctive clusters that delineated the multifaceted landscape of brain 
network research. Among the identified clusters, sustained areas, such 
as functional connectivity and specific brain parcellation, emerged as 

enduring focal points. This was substantiated by their consistent 
activity and extensive exploration over time. For instance, functional 
constipation, that exhibited sustained prominence, signified its pivotal 
role in understanding the brain’s functional dynamics, garnering 
ongoing interest and exploration (Duan et al., 2021; Liu et al., 2021; 
Peihong et al., 2021; Yu et al., 2023). Conversely, emerging clusters, 
including sequence learning, showcased the field’s adaptability by 
embracing novel areas of investigation. Sequence learning’s recent 
surge in scholarly attention implies its potential for unraveling the 
brain’s cognitive mechanisms, and it is an evolving area of interest that 
will likely bring future breakthroughs (Yeo et al., 2011; Watanabe et al., 
2019). These sustained and emerging clusters not only signify the 
depth and breadth of research in established domains, but also hint at 
the field’s receptiveness to novel methodologies, fostering continuous 
innovation and exploration within brain network investigations.

Further, recent advancements in neuroimaging technology have 
propelled the integration of machine learning methodologies into 
brain network analyses. Graph neural networks, for example, have 
demonstrated remarkable efficacy in capturing the intricate 
connectivity patterns within functional brain networks (Li et  al., 
2021). These networks offer a powerful framework for modeling brain 
dynamics by leveraging graph structures to represent complex 
relationships between brain regions. In our analysis, keywords such as 
“machine learning” and “deep learning” emerged (Figure  3A; 
Supplementary Figure S1; Supplementary Table S2), reaffirming the 
growing relevance of these methodologies in the realm of brain 
network research. This convergence of graph theory and machine 
learning holds significant promise for unraveling the intricacies of 
brain connectivity, paving the way for innovative approaches to 
understanding brain function and dysfunction.

The vibrant collaborative networks that span countries, 
institutions, authors, and journals underscore the dynamic interplay 
that molds brain network research. The strategic collaborations 
between countries such as the United States, the People’s Republic of 
China, and England signify a global alliance driving advancements in 
this field, highlighting the significance of international partnerships 
in accelerating research progress. Key institutions, such as the Beijing 
Normal University and the University of Cambridge, play pivotal 
roles, demonstrating their influential contributions in steering 
research trajectories and fostering cross-disciplinary investigations. 
Influential authors, exemplified by Rubinov and Bullmore (2013), not 
only spearhead collaborative networks, but they also contribute 
seminal works that shape the discourse within the field. Further, 
foundational references like Rubinov and Sporns (2010) work on 
complex network measures of brain connectivity stand as pillars in the 
field, amassing high citations and significantly influencing subsequent 
research directions. Esteemed journals, including Neuroimage, 
Human Brain Mapping, and the Journal of Neuroscience, serve as vital 
platforms for disseminating cutting-edge research, further solidifying 
their roles in propelling brain network investigations. These 
collaborative efforts, spanning diverse domains within brain network 
research, underscore the synergistic nature of collective contributions, 
affirming interdisciplinary growth and evolution within this 
dynamic field.

While our study provided valuable insights, certain limitations 
and gaps warrant consideration for future research endeavors. One 
notable limitation lies in the reliance on published literature, 
potentially overlooking unpublished or emerging research that could 
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offer novel perspectives. The time span of our study may not have fully 
captured the most recent developments in the field. In addition, the 
scope of our analysis might have inadvertently omitted niche research 
or specific methodologies that could contribute substantially to the 
broader understanding of brain networks. Addressing these 
limitations could enrich future analyses and provide a more 
comprehensive view of the evolving landscape in this field.

4.1 Future directions

Moving forward, the findings of this study suggested several 
promising paths for future investigations in brain network research. 
First, delving deeper into the functional implications of sustained 
clusters could unveil underlying mechanisms that drive brain 
functionality. Second, the exploration of emergent clusters is an 
exciting opportunity to uncover novel cognitive mechanisms. Further, 
the incorporation of interdisciplinary approaches that amalgamate 
graph theory with emerging neuroimaging techniques might offer 
fresh insight into brain connectivity. In addition, investigating the 
impact of neurological disorders on brain networks and exploring 
methodologies to characterize alterations in these conditions could 
pave the way for diagnostic and therapeutic advancements. Future 
studies could focus on fostering international collaborations to 
facilitate data sharing and standardization, fostering a more unified 
understanding of brain network dynamics across diverse populations. 
These proposed directions aim to bridge existing gaps, stimulate 
innovation, and further unravel the complexities of brain networks.

5 Conclusion

In summary, our comprehensive bibliometric analysis offers 
multifaceted insights into the intricate dynamics of brain network 
research. By elucidating evolving trends, collaborative networks, and 
key research clusters, our study underscored the transformative 
integration of graph theory with neuroimaging techniques, reshaping 
our understanding of brain connectivity. The sustained and emerging 
clusters identified revealed lasting areas of interest and indicated paths 
for future exploration, while collaborative networks among countries, 
institutions, authors, and journals highlighted the combined endeavors 
that can propel progress in this vibrant field. Importantly, the findings 
of this study serve as a foundation for future investigations, offering a 
panoramic view of brain network research dynamics. The implications 
of this study lie in its potential to guide future research directions, foster 

interdisciplinary collaborations, and inspire innovative methodologies, 
thus contributing significantly to unraveling the complexities of brain 
networks and advancing our understanding of cognitive processes, 
behaviors, and neurological disorders.
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