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Introduction: Great knowledge was gained about the computational substrate

of the brain, but the way in which components and entities interact to perform

information processing still remains a secret. Complex and large-scale network

models have been developed to unveil processes at the ensemble level taking

place over a large range of timescales. They challenge any kind of simulation

platform, so that e�cient implementations need to be developed that gain from

focusing on a set of relevant models. With increasing network sizes imposed by

these models, low latency inter-node communication becomes a critical aspect.

This situation is even accentuated, if slow processes like learning should be

covered, that require faster than real-time simulation.

Methods: Therefore, this article presents two simulation frameworks, in which

network-on-chip simulators are interfacedwith the neuroscientific development

environment NEST. This combination yields network tra�c that is directly defined

by the relevant neural network models and used to steer the network-on-

chip simulations. As one of the outcomes, instructive statistics on network

latencies are obtained. Since time stamps of di�erent granularity are used by the

simulators, a conversion is required that can be exploited to emulate an intended

acceleration factor.

Results: By application of the frameworks to scaled versions of the cortical

microcircuit model—selected because of its unique properties as well as

challenging demands—performance curves, latency, and tra�c distributions

could be determined.

Discussion: The distinct characteristic of the second framework is its tree-

based source-address driven multicast support, which, in connection with the

torus topology, always led to the best results. Although currently biased by some

inherent assumptions of the network-on-chip simulators, the results suit well to

those of previous work dealing with node internals and suggesting accelerated

simulations to be in reach.

KEYWORDS

neuromorphic computing, network-on-chip simulator, multicast, co-simulation,

latency, spiking neural networks

1 Introduction

“Communication is the key”—this paradigm is quite ubiquitous nowadays. It does
particularly apply to the wealth of neuro-inspired computing applications, which receive
a lot of attention, currently. All of them are characterized by the use of decentralized
computing resources and memory. While this concept will challenge communication
facilities of the system in general, the situation is exacerbated by the high number
of synaptic connections in large-scale neuromorphic computing platforms dedicated to
theoretical neuroscience. Prior to design of the current generation of these systems, there
have thus been studies to assess the capabilities of their communication networks—often
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using particular specification languages. InMerolla et al. (2014), for
example, the multicast binary-tree network used in Neurogrid is
discussed and analyzed. For its design, a synthesis method based
on the high-level language Communicating Hardware Processes
(CHP) was applied. Rationales behind the communication
architecture used in BrainScaleS—featuring a combination of
spatial and temporal multiplexing—are presented and analyzed
in Schemmel et al. (2008) as well as in Fieres et al. (2008).
Details on the communication system of SpiNNaker are provided
in Furber et al. (2006) and in Plana et al. (2008), for example.
Conceptually, it is based on an associative multicast router, the
benefits of which are evaluated in Navaridas et al. (2012) using
an analytical approach, and in Lester and Richards (2008) using a
formal specification written in Concurrent Haskell. In Moradi et al.
(2018), the connectivity scheme of a DYNAPs architecture is backed
on analytical considerations regarding memory requirements,
while the components of the hierarchical routing network are
synthesized following the Communicating Hardware Processes
(CHP) formalism. As a last example, the online computation
of synaptic connectivity using (multidimensional) table-based
pseudo-random number generators within the IBM INC-3000
system is proposed in Heittmann et al. (2022) and examined
by a quantitative design-space exploration based on a high-level
synthesis (HDL) logic design methodology.

These approaches did a great job in optimizing the
communication facilities of the physical implementation in
many aspects. For the investigation of large-scale neural networks,
however, it is often desirable to run simulations as fast as possible,
e.g., to explore slow processes like structural plasticity and long-
term memory. In this study, we therefore put our focus on further
reductions in latencies. In this context, and with a certain set
of desired neuroscientific test cases in mind, trading flexibility
against improved latencies has thus been deemed an interesting
option. This adds another dimension to the initial paradigm,
since it calls for excellent communication between the different
research disciplines involved. Within the realm of computational
neuroscience, software tools with well-defined interfaces have
been developed to discover the interaction of neurons, synapses,
and neural networks. Such tools are ideal to specify and execute
the desired test cases to generate realistic traffic patterns that
need to be transferred over the connections of the envisaged
system. At the same time, a couple of network-on-chip (NoC)
simulation platforms exist that can provide statistical information
on such transfers and point to potential bottlenecks in possible
hardware implementations. With the reduction of communication
latencies in mind, it is now highly desirable to link these simulation
frameworks in such a way that they provide useful insights even for
non-domain experts.

Inspired by Lahdhiri et al. (2020) and Balaji et al. (2020), we
therefore created McAERsim as well as a patched version of the
NoC simulator Noxim (Catania et al., 2015) that accept spike traces
generated by the generic neuroscientific development environment
NEST (Gewaltig and Diesmann, 2007). In Lahdhiri et al. (2020), a
framework combining the system level simulator Sniper (Carlson
et al., 2011) with the NoC simulator Noxim is proposed to collect
statistics regarding network traffic as well as energy consumption
caused by application defined communication patterns. However,
the released version of Noxim expects a traffic table for this

purpose, which solely contains a packet injection rate for each
source / destination pair. This way, only first order statistics of
the individual communications are preserved. As opposed to that,
Noxim++, embedded in the design methodology SpiNeMap (Balaji
et al., 2020), is capable of communicating spike packets created
according to the output traces of CARLsim (Chou et al., 2018),
another application-level simulator for large-scale, biologically
detailed spiking neural networks. To allow for such communication
and to incorporate additional features, Noxim is extended within
this framework and consequently calledNoxim++. Its core purpose
within SpiNeMap is to provide energy and latency estimates for
different mappings of neuron clusters to hardware (SpiNePlacer)
that were algorithmically defined to reduce the number of spikes on
the global interconnect (SpiNeCluster). The computed key figures
are used as fitness function in an instance of the particle swarm
optimization (PSO; Eberhart and Kennedy, 1995). Since inter spike
interval distortion depends on latency, it is minimized as well by
this approach. McAERsim and the Noxim patch were developed
with similar goals like Noxim++ but interfacing with NEST rather
than with CARLsim by default.

Like CARLsim, NEST has a large user community—especially
in the field of computational neuroscience. Thus, certain sets of
neuroscientific test cases may be of special importance, as has been
outlined above. To pose a low threshold in examining potential
network traffic caused by them, we selected to connect NEST with
the network-on-chip simulators. At the same time, the network-
on-chip simulators are based on Noxim, because of its versatile
parameter options as well as its comparably simple and well-
organized code. The first aspect has been highlighted by a number
of NoC simulator comparisons, for example, in Gu (2011); Huynh
(2016); Khan et al. (2018); Lahdhiri et al. (2020); Lis et al. (2011),
while the second aspect has been stressed in Huynh (2016). A
simulation based comparison of different network simulators in
addition can be found in Khan et al. (2018).

While the Noxim patch basically is intended to enable the
required interfacing,1 McAERsim leans on the infrastructural and
organizational concepts of Noxim but may be considered a full re-
write to cover tree-based hardware multicast support for packets
encoded according to the address event representation (AER;
Mahowald, 1992). Multicast (Navaridas et al., 2012; Merolla et al.,
2014) as well as mixtures of unicast and broadcast routing (Moradi
et al., 2018; Heittmann et al., 2022) are preferred packet forwarding
schemes in large-scale neuroscientific simulation platforms. They
are of increasing importance for certain workloads in conventional
NoCs as well (Jerger et al., 2008; Krishna et al., 2011), but—
according to the same publications—most improvements in NoC
architectures only have been devoted to unicast traffic. In addition
to more complex routing decisions that need to account for
possible switching-level deadlocks (Konstantinou et al., 2021), for
example, this may be the reason, why multicast support in NoC
simulators is limited. Accordingly, in (Agarwal et al., 2009, Section
2.1), it is stated that hardware multicast support—as research
in progress—is not modeled inside the routers of Garnet. At
the time of writing, this simulator is shipped as one of two

1 In addition, it gathers further statistical data, features some data exports,

and adds support for torus shaped networks (currently only with XY routing).

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2024.1371103
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Robens et al. 10.3389/fnins.2024.1371103

build-in options for the interconnection network model within
the Ruby Memory System of gem5, a platform for computer-
architectures research. The simple network model, which is the
second and default option, assumes perfect hardware multicast
support (Martin et al., 2005; Agarwal et al., 2009) but abstracts
out detailed modeling of the switches’ microarchitecture. There
is a third simulator, Topaz, that can be interfaced with gem5
via the Ruby Memory System. According to (Abad et al., 2012,
Table I), it does provide tree-based multicast support. However,
its documentation (Abad, 2022) reveals that this capability relies
on routing masks, which confine possible network sizes to 8 × 8
nodes. If no hardware multicast support is available, respective
packets usually get broken into multiple unicast messages at the
network interface (Jerger et al., 2008; Lowe-Power, 2022) leading
to performance penalties. These examples show that there was
a need for a network-on-chip simulator like McAERsim with
hardware multicast support and a detailed microarchitectural
router model as reflected by the router pipeline model discussed in
later sections of this study. In conjunction with the Noxim patch, it
allows for a convenient design space exploration, using application
defined traffic as well as different network topologies and
casting schemes.

By extrapolation from the results we obtained with this
approach for the cortical microcircuit model (Potjans and
Diesmann, 2014) scaled to 33%, we assume that it can be used for
biological networks up to the scale of the full cortical microcircuit.
According to Heittmann et al. (2022), the cortical microcircuit
may be considered a unit cell of the cortical network in that
it reveals a distinct local structure with a significant fraction
of local synapses and an associated biological volume that is
representative for the ranges of local synapses established by a
neuron. This work may thus be considered a supplement to some
recent achievements reported earlier. In Kleijnen et al. (2022),
we presented a Python-based network simulator for large-scale
heterogeneous neural networks and applied it to the evaluation
of network traffic caused by the multiarea model (Schmidt et al.,
2018). This model is composed of 32 areas, which—loosely
speaking—may be considered special instances of the cortical
microcircuit with some extra connectivity. Latency is reported in
terms hops by the Python-based simulator, which is a reasonable
estimate for the spike delivery times as long as congestion does not
occur. Therefore, we conceived a hierarchical approach, in which
possible hot spots or bottlenecks are identified by our Python-
based simulator. Further analysis by cycle-accurate simulations
is then possible with the proposed framework. In addition, this
work relates to Trensch and Morrison (2022), which discusses
conception, implementation, and performance modeling of a so
called “Hybrid Neuromorphic Compute (HNC)” node. Specifically,
Trensch and Morrison (2022) focuses on efficient intra-node spike
delivery incorporating DRAM memory that is external to the
programmed system-on-chip (SoC) but forms a node together with
it. Supported by latency measurements, a performance model for
the HNC is defined and extended to mimic cluster operation. This
extension assumes a fixed inter-node transmission latency TCOM

but adds a small fraction α · TCOM per spike event on top to
account for a workload dependent latency increase. In Trensch and
Morrison (2022), TCOM is set to 500 ns, assuming a simulated time
step of 0.1ms, a simulation acceleration factor of 100, and an equal

distribution of the resulting time interval between computation and
communication tasks.

Applying the proposed framework, we will conduct some
complementary studies with respect to spike delivery. We will
evaluate to which extend inter-node communication can fulfill the
premise of TCOM = 500 ns. Lead by this aim, we will examine how
inter-node communication latencies depend on parameters like
network topology and casting type. Since these simulations have
not been performed for the full scale cortical microcircuit so far, we
will also observe how latencies vary due to different scaling factors
and network partitionings. In addition, we will present how the
network parameters can affect network loads and the homogeneity
of their distribution.

The remainder of this article is organized as follows. Section 2
provides short outlines on the involved simulators and discusses
the most important modifications that were necessary to embed
them into the frameworks. Furthermore, a router pipeline model
will be discussed in detail, which is at the heart of the tree-based
source-address driven multicast router of the newly conceived
simulator McAERsim. Prior to a discussion of the results obtained
by the execution of the frameworks, hardware environments, batch
processing, as well as parameter choices will be considered in
Section 3. Finally, Section 4 will classify the results with respect
to the aim of supporting the development of an accelerated large-
scale neuroscientific simulation platform. It will also reveal some
improvement potential encouraging some future work.

This study tries to enable the reader to easily reproduce
our results and to use our approach for further research and
development. The reader who is mainly interested in the results
may concentrate on the introduction, the results section, and the
discussion (last section).

2 Methods

To enable the desired co-simulations that have been outlined
in the introduction, we tried to keep the necessary modifications to
the source codes of the involved simulators as small as possible.2

However, since Noxim does not model tree-based hardware
multicast support, we created McAERsim, a network-on-chip
simulator with tree-based hardware multicast support for AER
encoded packets and the capability to stimulate a simulation based
on output files generated by NEST. An additional feature are
multi-radix routers that allow multiple processing elements to be
attached to a single router. The individual simulators as well as the
modifications applied to them will be discussed in the following
subsections in more detail.

2.1 NEST

The Neural Simulation Tool (NEST) is a simulator for
large, heterogeneous spiking neural networks emulating an

2 Source codes and simulation scripts used in this work are available

online at: https://github.com/mrobens/nenocsi-mcaersim/tree/nenocsi and

https://github.com/mrobens/nenocsi-mcaersim/tree/mcaersim. Please also

check the Supplementary material.
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FIGURE 1

Excerpt from the YAML file generated by the modified helpers.py
script of NEST’s cortical microcircuit model intended for the Noxim

based simulations.

electrophysiological experiment and its outcome. For this purpose,
NEST provides different neuron and synapse models, featuring
spike-timing dependent plasticity as well as short-term facilitation
and depression, for example. While the simulation kernel is written
in C++, there are three user interfaces, accepting commands
from different languages. Natively, NEST uses the simulation
language interpreter (SLI). In addition, there is a front-end for
the interpreted programming language Python (PyNEST), which
is currently rather popular. Finally, there is also support for PyNN
(Davison, 2008) targeting a simulator-independent description of
the neural simulation with Python commands. Problems of current
relevance to the computational neuroscience community are often
specified in terms of test cases, a couple of which have been
transferred into one of the languages that can be passed to NEST.
A popular example is the cortical microcircuit model (Potjans
and Diesmann, 2014), which is contained in the examples

subdirectory of PyNEST. The execution of this model is split into
phases, the last one being the evaluation phase. During this phase,
auxiliary functions defined in the file helpers.py are applied
to the simulation outputs for further processing. To generate the
YAML file that is used for data exchange between PyNEST and
the patched version of Noxim, intermediate results created by
these auxiliary functions can be reused. Therefore, three additional
functions have been defined and appended to this file. Figure 1
shows an excerpt from the file they generate and explains its simple
file format.

Note that a list has been used at the second hierarchy level so
that the chronological order of time stamps is preserved. It is also
worth mentioning that only one of the python scripts defining the
test case had to be modified, while the source files of the simulation
kernel were left unchanged. In fact, two versions of this YAML file
are generated. The first one is used for destination-address driven
casting types: unicast (UC) and local multicast (LMC), while the
second version is applied to the source-address driven casting type:
local multicast (LMC_SRC). They differ in the number of flits to
be transmitted, which is equal to the number of neurons in the
target node that need to be reached from spiking neurons of the
source node in the first case, and which is equal to the number

of spiking neurons within the source node that have connections
to the target node in the second case. McAERsim, on the other
hand, uses a couple of NEST output files directly. In addition, it
just requires a connectivity file. Keys at the top level of this YAML
file represent NEST’s neuron population IDs, while a key value
pair in a nested dictionary associates a source neuron ID with
all its destination neuron IDs. This connectivity file is created by
an alternative helpers.py contained in a second copy of the
examples directory.

2.2 Patched version of Noxim

Noxim is a network-on-chip (NoC) simulator based on
SystemC that supports direct and indirect wired network topologies
as well as wireless connections (Catania et al., 2015). The former
consist of interconnected tiles, i.e., processing elements and/or
routers, that are specified in plain SystemC, so that cycle-accurate
simulations are possible. Wireless communications are enabled
by the addition of hubs and channels that make use of the
Transaction Level Model (TLM) library of SystemC and allow for
the specification of transaction delays this way. As a simulation
outcome, statistics on network traffic and energy consumption are
collected and displayed.

The bulk of simulations is controlled by a single configuration
file, config.yaml, while a second configuration file,
power.yaml, contributes the parameters necessary for the
energy estimates (cf. Figure 2). They are determined either based
on measurements or based on extraction results from register
transfer level (RTL) implementations. During the initial design
space exploration, these parameters are usually unknown, so
that there is less user interaction with power.yaml. By editing
the configuration file config.yaml, however, or by passing
equivalent command line arguments to Noxim, not only the
network topology can be selected, but also different sizes, the
number of virtual channels, a deterministic or adaptive routing
scheme, a selection strategy, the traffic pattern, wireless network
parameters, as well as further simulation parameters can be set.

In the released version of Noxim, trace-based traffic can
only be specified by packet injection rates for source/destination
pairs, i.e., by statistical means. In general, however, traffic is
launched into the network by the processing elements—or, more
precisely, from the canShot(Packet& packet)-method that
is called from the SystemC method process txProcess()

within ProcessingElement.cpp. During each clock cycle, a
comparison to a random number is performed in this method,
which decides on the packet emission. This makes it simple to
add a case in which a packet is launched based on its time stamp
rather than the outcome of this random experiment. For this
purpose, an additional class called GlobalNestTrace has been
created, the core attribute of which associates source node IDs with
traffic queues.3 Supported by the format of the YAML file that

3 A tra�c queue is a C++ std::queue with entries of type NestTraceComm.

This is a struct that contains relevant parameters of a spike communication,

i.e., source and destination node, the number of flits sent and in total as well

as the NEST time stamp converted to simulation cycles.
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FIGURE 2

Configuration and result files involved in a co-simulation of NEST

and a patched version of Noxim. File names are partially

abbreviated—usually, they encode topology, size and the number of

neurons per node as well.

is used for data exchange between NEST and Noxim (Figure 1),
reading these data into memory is simple as well and results in a
population-wise sequential mapping of neurons to the processing
elements. Since time stamps of a NEST simulation are recorded
in milliseconds, whereas they are specified in picoseconds in
Noxim, an appropriate multiplier has to be used for the conversion
during this step. This multiplier is stored in the global variable
nest_time_multiplier and can be varied to mimic different
acceleration factors.

Moreover, the destination-address driven casting types unicast
(UC) and local multicast (LMC) as well as the source-address
driven local multicast type (LMC_SRC) had to be introduced.
As already discussed with respect to the YAML file in Section
2.1, they differ in their packet length and organization. In case
of UC and LMC_SRC, single-flit packets are possible, raising the
demand for an additional flit type, FLIT_TYPE_HEADTAIL,
which has besides been implemented. The casting types take
effect in the canShot method that is a member of the class
GlobalNestTrace and that is called from the canShot

method of a processing element in case of a simulation that is based
on NEST time stamps.

Our results in Kleijnen et al. (2022) pointed to some advantages
of torus shaped networks in comparison with standard mesh
networks. Considering randomly connected neural networks, for
example, the variability of network loads in torus shaped networks
has been observed to be much less than in standard mesh networks.
To exploit these characteristics and to foster the hierarchical
simulation approach outlined in the introduction, the Noxim
patch introduces support for torus shaped networks as well. While
deadlocks can not occur in mesh networks using XY routing, it
is well-known that this does not apply to torus shaped networks
(Mirza-Aghatabar et al., 2007). In the latter case, at least two virtual
channels are required for a systematic exclusion of deadlocks.
However, the minimum number of virtual channels suffices only,
if packets are allowed to change virtual channels during turns. In
Noxim, usually a packet stays within the same virtual channel once
it has been assigned to it. As a workaround, we thus use four virtual
channels for the torus shaped network and assign one of them to
a packet depending on the wrap-around connections it will take.
In addition, the routing algorithm itself needs to be aware of the
additional connections and make appropriate use of them, so that
an adaptation of the XY routing algorithm had to be devised that
is invoked by XY_TORUS in the file config.yaml or on the
command line.

Finally, the aggregation of statistical data in Stats.h/.cpp
and GlobalStats.h/.cpp has been extended to enable the
creation of the plots shown in Section 3. Basically, this called for
a transfer of all transmission delays (latencies) into a single vector.
Furthermore, some means for data export had to be conceived, so
that this vector as well as the matrix of routed flits can be exported
as comma separated value (CSV) file.

The whole workflow for a co-simulation involving NEST
and the patched version of Noxim is illustrated in Figure 2.
The Python scripts that are fed into PyNEST are those of the
pynest/examples/Potjans_2014 subdirectory of NEST,
except for the modifications to helpers.py that have been
discussed in Section 2.1 and some minor modifications to
network.py as well as sim_params.py to call the respective
functions. Steered by these inputs, PyNEST generates some data
files as well as two portable network graphics (PNG) files by default.
Due to the modifications, it creates the two YAML files adhering to
the file format of Figure 1 in addition. Depending on the casting
scheme that shall be applied, one of these files together with the
configuration files config.yaml and power.yaml can be used
to invoke Noxim, display a summary on overall network statistics,
compose the vector of transmission delays, and export the latter
together with the matrix of routed flits as CSV files. The multitude
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of files marked as “Result Files” in Figure 2 is the outcome of a Bash
script that exploits the command line interface of Noxim to step the
global parameter nest_time_multiplier through different
values and parse the overall statistics by sed.

Choices to set the simulation parameters were rather limited
in the course of this procedure. With respect to NEST—or more
precisely, its cortical microcircuit model—they were first kept at
their default settings. This results in the number of neurons and
in the number of synapses per neuron being scaled down both to
10%, which is the recommended size for first experiments using a
standard desktop PC.With regard to the patched version of Noxim,
they were set with the premise of maintaining consistency between
the simulations. Based on the preceding scaling considerations,
the dimensions of the NoC are determined, once the number of
neurons per computation node NpN is defined. According to the
findings in Heittmann et al. (2022) and Trensch and Morrison
(2022),NpN = 256 was deemed a reasonable number. The network
size was thus fixed to 6 × 6 tiles. To use a common width and
to be able to accommodate addresses for the full scale cortical
microcircuit later on, the flit size has been set to 32 bit. Buffers
uniformly were assigned a depth of 8. According to Seitanidis et al.
(2014), this value at least needs to agree with the flow-control
round-trip latency, i.e., it needs to exceed the pipeline stage count
by 2. If this condition is not fulfilled, throughput degradation
occurs. In Peh and Dally (2001), this phenomenon is explained
by increased buffer idle times, which reduce the effective amount
of buffering. The number of virtual channels is stipulated by the
implementation of torus shaped networks. However, according
to the simulation results presented in Dally (1992) for the 16-
ary 2-cube, most of the throughput gain in this setup is realized
with four virtual channels, which supports this selection. Wireless
connections have not been considered, so that related parameters
do not need to be modified.

2.3 Router pipelines

The workflow presented in the previous subsection tries to
meet the expectation of modest changes to the source codes of
the involved simulators while it implements the required features.
Consequently, the router model of Noxim is kept untouched. It
adheres to the typical virtual channel router model with separable
allocation outlined in Dimitrakopoulos et al. (2013); Peh and Dally
(2001), for example, so that the header flit of a packet proceeds
through all the states shown in Figure 3B, while body and tail flits
inherit the routing information as well as the virtual channel from
the header flit of a packet and skip through respective states.

Since routing computation (RT) can be performed in parallel
to the buffer write (BW) operation, traditionally this leads to a five
stage router pipeline (Agarwal et al., 2009, Figure 9). Following the
simple analytical model of Seitanidis et al. (2014) or the parametric
router delay equations of Peh and Dally (2001), the number of
pipeline stages in this configuration is close to optimum with
respect to latency. However, there have been numerous approaches
to shorten this pipeline. In Kumar et al. (2007), it could be reduced
to two stages using advanced bundles and pipeline bypassing, for
example. Because the cycle spent during line traversal is usually
not counted, it is referred to as single-cycle pipeline in the named

publication, which is illustrated in Figure 4. Accordingly, it is stated
in Lowe-Power (2022) that Garnet2.0 uses a state-of-the-art 1-cycle
pipeline, in which buffer write (BW), routing computation (RT),
switch arbitration (SA), virtual channel allocation (VA), as well as
switch traversal (ST) all happen in one cycle, while line traversal
(LT) takes place in the following cycle. Noxim follows a similar
concept4 but implements BW in one cycle, while RC, SA, VA, ST,
and LT all are performed in a second cycle.

Some assumptions that are inherent to the traditional five stage
router pipeline of a conventional unicast router or improvements
thereof, like in Figure 4, do no longer apply for source-address
driven multicast routers designed for large-scale networks. The
routing computation, for example, is usually performed on-the-
fly in a unicast router, while it may be split over several cycles in
a multicast router. McAERsim therefore uses a different pipeline
model that has been derived from a simplified version of the
source-address driven multicast router block diagram proposed
in Zamarreno-Ramos et al. (2013), which is shown in Figure 5.
The simplification is that no cache is used, which, in turn, allows
for the substitution of the output arbiters by simple multiplexers
composing a switch. A quote from (Heittmann et al., 2022, p. 8)
underpins this decision: “in case of the microcircuit and a chosen
micro-cluster size of 256 neurons, practically every incoming spike
needs to be projected to at least one neuron in every micro-cluster.”
This means that there is a large number of flows potentially leading
to frequent cache misses. At the same time, the implied clustering
does allow for a routing table minimization by taking advantage
of the “don’t care” states in ternary content addressable memory
(TCAM) as discussed in Mundy et al. (2016), for example. Thus,
a compact TCAM size is preserved and reasonable access times
are ensured. While address lookups within one cycle are therefore
presumed, the TCAM—as an implementation detail—is abstracted
away from the source code ofMcAERsim. Rather, a C++ std::map is
used. The address retrieved from the respective memory structure
is then applied to access static random access memory (SRAM)
as in Fritsch et al. (2015), which in turn contains a digital word
with bit positions encoding activity of the different outputs as in
Zamarreno-Ramos et al. (2013).5 If the combination of TCAM
and SRAM forms a shared connection memory,6 only one input
can be granted access to this memory per clock cycle, so that
a need for arbitration between the inputs arises. Consequently,
output activation as read from the shared memory always relates

4 Note that the sequence of commands in the source code of Noxim

agrees more to the output-first virtual channel allocator of (Dimitrakopoulos

et al., 2013, Figure 18B) than to the input-first virtual channel allocator of

(Dimitrakopoulos et al., 2013, Figure 18A), whichmay intuitively be associated

with Figure 3B.

5 For the ease of implementation, a C++ std::set with Integer data type

is used instead of a bit-vector to represent the digital word, while a C++

std::vector of this data type represents the whole SRAM in McAERsim.

6 With regard to the amount of required resources, this may be necessary

in order to prepare for more advanced routing algorithms or emergency

re-routing, as discussed in Lester and Richards (2008). For dimension

ordered XY routing, source addresses delivered to the inputs of a router are

contained in disjoint sets, so that a shared connection memory may not

be mandatory. Then, however, arbitration would be shifted to a later stage,

where performance may be traded against implementation complexity.
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FIGURE 3

Canonical architectures according to Dimitrakopoulos et al. (2013); Peh and Dally (2001) of (A) a wormhole router and (B) a virtual channel router

with separable allocation. The latter cycles through the following states: bu�er write (BW), routing computation (RC), virtual channel allocation (VA),

switch arbitration (SA), and switch traversal (ST). VA and SA are a�ected by credits reflecting the bu�er status of the destination. The design of the

router pipelines, shown in the gray boxes, assumes that destination decoding and routing computation are prepared in the previous router

(lookahead routing computation—LRC). © 2013 IEEE. Reprinted, with permission, from Dimitrakopoulos, G., Kalligeros, E., and Galanopoulos, K.

“Merged Switch Allocation and Traversal in Network-on-Chip Switches,” IEEE Transactions on Computers, Vol. 62, No. 10, pp. 2001–2012, Oct. 2013.

doi: 10.1109/TC.2012.116.

to a single input, which waives the demand for separate output
allocation. The switch, or the multiplexers replacing the output
arbiters in Figure 5 as one of its possible implementations, can then
be traversed according to these settings. Finally, the AER events
are sent along the lines that are connected to the active outputs.
Assuming that the inputs are buffered, these considerations lead
to the pipeline model depicted in Figure 6. In this model, a
distinct pipeline stage is allotted to each of the components
discussed before.

Cases in which input buffers of target nodes are unavailable
prevent AER events from line traversal. A back-pressure
mechanism similar to Plana et al. (2008) is then used to freeze most
of the pipeline stages. However, the line traversal stage keeps trying
to transmit the AER packet and re-enables the other stalled stages
upon success.

2.4 McAERsim

McAERsim is a network-on-chip (NoC) simulator based on
SystemC that provides source-address driven tree-based multicast

FIGURE 4

Single-cycle pipeline of Kumar et al. (2007). The states within this

pipeline are bu�er write (BW), switch arbitration and virtual channel

allocation (SA+VA), bu�er read (BR), switch setup (SS), switch

traversal (ST), and line traversal (LT). The advanced bundle proceeds

through some of these states one cycle earlier and performs a

control setup at the next router. © 2007 IEEE. Reprinted, with

permission, from Kumar, A., Kundu, P., Singh, A. P., Peh, L.-S., and

Jha, N. K. “A 4.6Tbits/s 3.6GHz Single-cycle NoC Router with a

Novel Switch Allocator in 65nm CMOS,” in IEEE Proceedings of the

2007 25th International Conference on Computer Design, Lake

Tahoe, CA, USA, Oct. 7–10, 2007, pp. 63–70. doi:

10.1109/ICCD.2007.4601881.
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FIGURE 5

Source-address driven multicast router block diagram of Zamarreno-Ramos et al. (2013). Connections are labeled by source/destination pairs using

the following abbreviations: w, west; n, north; e, east; s, south; c, core (local processing element). © 2012 IEEE. Reprinted, with permission, from

Zamarreno-Ramos, C., Linares-Barranco, A., Serrano-Gotarredona, T., and Linares-Barranco, B. “Multicasting Mesh AER: A Scalable Assembly

Approach for Reconfigurable Neuromorphic Structured AER Systems. Application to ConvNets,” IEEE Transactions on Biomedical Circuits and

Systems, Vol. 7, No. 1, pp. 82–102, Feb. 2013. doi: 10.1109/TBCAS.2012.2195725.

FIGURE 6

McAERsim’s source-address driven tree-based multicast router

pipeline consisting of five stages: Bu�er write (BW), input arbitration

(IA), address look-up (AL), (active) output look-up (OL), and switch

traversal (ST). Finally, line traversal (LT) is performed.

support for AER packets in direct wired network topologies. It
has been implemented in analogy to Noxim but focusses on AER
packets, tree-based dimension ordered XY multicast routing, and
network traffic that is externally generated, in particular by NEST.
Just like Noxim, it features cycle-accurate simulations of networks
consisting of interconnected tiles, i.e., processing elements and
routers. However, unlike Noxim, it admits multiple processing
elements per tile, which calls for higher-radix routers. In principle,
it can provide similar statistics on network traffic and energy
consumption as simulation output. Yet, lacking a detailed RTL

implementation, the configuration file power.yaml currently is
initialized to zero, so that our emphasis will be on network statistics.

The source-address driven multicast router model discussed
in the second part of the previous subsection is at the core
of McAERsim’s simulation engine implementation, in which
arbitration is done in a round robin fashion. In addition,
several concepts and organizational aspects of Noxim have been
reused. Examples are the Configuration Manager as well as the
plug-in mechanism. In McAERsim, however, the latter enables
the inclusion of different strategies for assigning neurons to
computational nodes rather than the extension of available routing
algorithms and selection strategies. In a similar vein, several
components have been simplified, modified, or dropped to better
match the address event representation (AER). At the same time,
new features have been included, like support for multiple local
processing elements, i.e., high-radix routers, as well as those that
have already been discussed for the Noxim patch.

According to the router pipeline model of Section 2.3, transfer
of AER packets is determined by the content of the shared
connection memory, i.e., the TCAM and the SRAMmodules. Prior
to a simulation, their entries need to be populated. To simplify their
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initialization, a class called GlobalRoutingTable has been
created. It reads a YAML file, with two nested dictionaries and lists
as values at the lower level. Keys at the top level identify the node
to which the entries at the lower level belong. Keys at the lower
level correspond to source neuron IDs. The associated list finally
identifies the outputs, to which the AER event has to be forwarded.
During configuration, a router receives a pointer to the global
routing table and extracts its local routing table based on its node
ID. Then, by iterating over the entries of the local routing table,
the TCAM and SRAM data structures get populated. The YAML
file containing the global routing table is generated by an auxiliary
binary called RTparser from NEST’s connectivity file, which has
been covered in Section 2.1. In fact, this binary has to perform two
tasks in sequence to complete the conversion. First, it has to map
neuron IDs to tile IDs. Based on this assignment and guided by a
routing algorithm, it then needs to compute the required output
activations at the source tile as well as all intermediate tiles, so
that AER events from the source neuron can be transferred to
all its target neurons. For these purposes, the binary additionally
requires the file population_nodeids.dat from NEST’s
default outputs of the cortical microcircuit model as well as
its own configuration file parser_config.yaml. Currently,
only sequential mapping and dimension ordered XY routing
are implemented. Options within parser_config.yaml are
therefore limited to the number of neurons per processing element,
the network dimensions, the number of processing elements per
tile, the topology, and the desired output file name. Selectable
topologies are TOPOLOGY_MESH and TOPOLOGY_TORUS.

McAERsim itself provides more flexibility with respect to
neuron mapping and routing. Obviously, custom routing tables
can be provided that follow a different (deterministic) routing
strategy. In addition, there is the possibility to apply file based
neuron assignment rather than sequential neuron mapping. The
configuration file used in this case has a structure similar to the
routing table. Keys at a top-level dictionary identify a processing
element by its global ID. A key at an embedded dictionary
then contains NEST’s spike recorder file name that provides the
AER events (source neuron IDs and time stamps). A processing
element, however, usually only hosts a subset of these neurons.
The list that is used as associated value at the second hierarchy
level therefore contains the minimum and the maximum source
neuron IDs taken into account. The choice of different neuron
assignment strategies is enabled by the same plug-in mechanism
that is used by Noxim for different routing and selection strategies,
so that it can be easily extended. To pick one option, the
global variables gnat_method and gnat_string have to be
set accordingly, either via the configuration file config.yaml
or by the respective command line arguments. The parameters
determined this way, i.e., the spike recorder file names as well as
the minimum and maximum source neuron IDs to be considered,
take effect during the instantiation of the network initializing
the local event queues of the processing elements. Such queues
then contain AER events associated with the respective processing
elements in chronological order and are queried by the canShot
method to launch network traffic. It should be noted, however,
that the AER events are still based on NEST’s time stamps
recorded in milliseconds. As explained in Section 2.2 for the Noxim
patch, a conversion is needed for comparison with McAERsim’s
simulation time that is specified in picoseconds. The global variable

FIGURE 7

Configuration and result files involved in a co-simulation of NEST

and McAERsim. File names are partially abbreviated—usually, they

encode topology, size and the number of neurons per node as well.

nest_time_multiplier is defined for this purpose and can
be varied to mimic an acceleration factor with respect to biological
real time.

Steps and data necessary for a co-simulation between NEST
and McAERsim are summarized in Figure 7. As in Section 2.2, the
workflow starts with slightly modified Python scripts originating
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from the pynest/examples/Potjans_2014 subdirectory of
NEST. Executing run_microcircuit.py, PyNEST generates
the default output files of the cortical microcircuit model
as well as a file containing plain connectivity information
(Nest_MC_Conn.yaml). In addition to the connectivity data,
McAERsim and RTparser this time require some of the default
output files, directly. Steered by parameters in its configuration file
parser_config.yaml, RTparser composes a global routing
table for McAERsim based on the connectivity information as well
as the file population_nodeids.dat. The latter is required
for the neuron to nodemapping and has to be passed toMcAERsim
as well. Then, using the global routing table as well as AER events
defined by NEST’s spike recorder output files, a network simulation
can be run by McAERsim to create the desired output statistics. As
in Section 2.2, this simulation is controlled by parameters specified
in the file config.yaml. Statistics on power consumption are
already included in the command line outputs but currently default
to zero. Once the contributions of different components have been
assessed from RTL implementations or measurements, they may be
entered into to the templates provided in power.yaml to yield
realistic results.

Some care should be exercised to keep the parameters in
parser_config.yaml and in config.yaml consistent. As
for the co-simulation between NEST and Noxim in Section
2.2, a couple of parameters can not be selected freely but are
predetermined or obey to some recommended values, e.g., to
ensure comparability. This applies to the number of neurons per
node, the network size, the buffer depth, and the address length
of an AER event. Such events consist of single-flit packets, so that
virtual channels have not been implemented, yet.

To step through different values of the global parameter
nest_time_multiplier, a Bash script has been used that
exploits the command line interface of McAERsim. Parsing overall
statistics by sed, this yields the different result files shown in
Figure 7.

3 Results

Data files obtained with the workflows presented in the
previous section and by following the simulation setups outlined
in subsequent subsections have been uploaded to Zenodo, see
Robens (2024). In addition to the results from the network-on-chip
simulations, also results from PyNEST simulations have been made
available. For more details, please refer to the metadata of the data
record.

3.1 Simulations with default settings

Development and initial simulation runs were conducted in
a virtual machine running Ubuntu 20.04.2 LTS with 1.8GB of
swap space and 4GB of assigned DRAM. For batch processing,
i.e., to execute the Bash scripts examining network traffic caused
by the cortical microcircuit scaled to 10%, the virtual machine
was transferred to a server at which it was assigned 8GB of
DRAM. As explained in the descriptions of the workflows that
are illustrated in Figures 2, 7, first the output files of the PyNEST
simulations were generated. Since default settings were applied,

NEST run a pre-simulation covering 0.5 s of biological real time.
The actual simulation extended over 1 s of biological real time
and created the desired files. While stepping through the different
values of the global variable nest_time_multiplier was
controlled by the Bash scripts, several runs were initiated for
different casting types and different topologies. Destination-address
driven unicast (UC) and local multicast (LMC) were considered as
well as source-address driven multicast (MC) and local multicast
(LMC_SRC). All of them were applied to a mesh network and
to a torus network. Most simulations followed the workflow of
Figure 2, except for the simulations involving multicast routing
that followed the workflow of Figure 7. Important parameter
settings have already been discussed at the ends of Sections
2.2 and 2.4, while packet sizes were determined by the casting
types as explained in Section 2.1. Due to the pre-simulation
run by NEST, nevertheless it should be mentioned that time
stamps within NEST’s spike recorder files exhibit an offset of
500ms, whereas those in the YAML files used for data exchange
between NEST and Noxim do not. McAERsim automatically does
account for this offset, if the global variable nest_t_presim is
set to the appropriate value—specified in milliseconds. Different
simulation phases can be observed in Noxim and McAERsim as
well. Conventionally, 1,000 reset cycles are executed first. Both
simulators then suspend the computation of statistics for a number
of cycles stored in the global variable stats_warm_up_time.
Finally, the actual simulation is performed over a number of cycles
as contained in the global variable simulation_time. Because
of the simulation setup applied, there is no settling behavior, so
that stats_warm_up_time was set to zero. To ensure that
all packets can reach their destinations within the simulation
time—at least in the case of a non-saturated network—, a guard
interval was provided and simulation_time was set to 1.4 ×

109 cycles. However, for simulations emulating an acceleration
factor, simulation_time was scaled in the same manner as
the global variable nest_time_multiplier. The cycle time
itself is specified in picoseconds and saved in the global variable
clock_period_ps. It is set to 1,000 by default and was not
altered for the simulations.7

During the execution of the Bash scripts, command line outputs
of single simulation runs were redirected into text files termed
acc_001.txt to acc_500.txt in Figures 2, 7. They contain
aggregated statistics for the whole network and were parsed by the
command line tool sed to extract the maximum delay for each
acceleration factor. It should be mentioned that delay is the time
interval between intended emission and reception of a header flit
in Noxim. These information then were appended to a file referred
to as delay_vs_acc.txt in the figures. By joint evaluation of
individual delay_vs_acc.txt files for different casting types,
Figures 8A, C were created. Figure 8A presents results for the mesh
topology, while Figure 8C contains results for the torus topology.

They are comparable to “latency vs. injection load curves” that
are conventionally applied to characterize network performance.
The spike pattern, however, is application defined an does not

7 This corresponds to a router running at 1GHz, which seems reasonable

with respect to an application specific implementation. To examine a router

design designated for an FPGA, the clock frequency should be reduced, i.e.,

clock_period_ps should be increased.
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A B

C D

FIGURE 8

Maximum latency in a network simulation steered by tra�c generated from the scaled microcircuit model of NEST (default scaling factor 10%) run

over 1 s of biological real time. (A) 6× 6 mesh network including all casting types. (B) Magnified view for the 6× 6 mesh network including only

source-address driven casting types. (C) 6× 6 torus network including all casting types. (D) Magnified view for the 6× 6 torus network including only

source-address driven casting types.

change. Rather, the intervals between the spikes are scaled by the
given factors to mimic an accelerated neuroscientific simulation.
With respect to a fixed amount of cycles within the network-
on-chip simulators, this can imply an increased traffic injection.
As outlined in the introduction in relation to the Hybrid
Neuromorphic Compute node of Trensch and Morrison (2022),
the maximum admissible inter-node transmission latency is 500 ns,
if an acceleration factor of 100 is intended for the neuroscientific
simulation. Despite the strong scaling applied to the neuroscientific
test case, none of the destination-address driven casting types
(UC or LMC) can meet this requirement, as can be seen from
Figures 8A, C. Up to the onset of saturation at an emulated
acceleration factor larger than 50 in both network topologies, the
maximum latency for unicast is 4, 906 ns, whereas it is 4, 898 ns for
local multicast. However, a comparison of Figures 8A, C shows that
the torus topology can sustain its performance at higher emulated
acceleration factors than the mesh topology. Both source-address
driven casting types (LMC_SRC and MC), on the other hand,
stay below the threshold of 500 ns. Figures 8B, D therefore show
magnified views of their behavior. Up to an acceleration factor of
200, the maximum latency in case of source-address driven local
multicast is 272 ns in both topologies. For larger acceleration factors

up to 500, it stays at this value in case of the torus topology but
raises slightly up to 301 ns in case of the mesh topology. If multicast
routing is applied, no saturation effects occur and the maximum
latency stays at 74 ns in case of the mesh topology, whereas it stays
at an even lower value of 54 ns in case of the torus topology. These
plots are useful to monitor network saturation and to rule out
casting schemes that can not meet a maximum target latency of
500 ns.

For acceleration factors below network saturation, it is also
interesting to examine additional statistical key figures rather than
just the maximum delay. Even though the latter is most critical in
many cases, depending on the synchronizationmechanism applied,
overall simulation performance may depend on these attributes as
well. Figures 9A, B therefore show boxplots of network latencies
that were exported from the network-on-chip simulators for the
mesh topology and the torus topology, respectively, while an
acceleration factor of 50 was emulated.

In these plots, only outlier levels are depicted, while counts at
the respective levels have no graphical representation. Insets zoom
into the network latencies of source-address driven casting types,
since they are much smaller than those of the destination-address
driven casting types.
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A

B

FIGURE 9

Boxplots showing latency results for di�erent casting types: unicast (UC), destination-address driven local multicast (LMC), source-address driven

local multicast (LMC_SRC), and multicast (MC). (A) Results for the 6× 6 mesh network. (B) Results for the 6× 6 torus network. To gain the results in

these plots, an acceleration factor of 50 has been emulated, but as may be concluded from Figure 8, similar results can be obtained for smaller

acceleration factors. The inset shows a magnified view of the results for the source-address driven casting schemes.

Although some differences are apparent, the destination-
address driven casting types reveal rather similar statistical behavior
with respect to their latencies. For these casting types, a large
fraction of values is much smaller than themaximumdelay value, as
indicated by the individual third quartiles. Accordingly, the mean
latency in these cases is almost an order of magnitude smaller than
themaximum latency. By comparison to themaximumdelay values
stated in the previous paragraph, this can be verified with the aid of
Table 1.

While the median and mean latency values of the source-
address driven casting types are not too far apart, the distributions
of their latency values differ, which is especially true for the behavior
of their outliers. As a consequence, the maximum delay value in the
mesh topology is 3.7 times higher in case of source-address driven
local multicast than in case of multicast, while this factor even raises
to 5 in the torus topology. A final observation from Table 1 is that

TABLE 1 Global average delay values using an emulated acceleration

factor of 50.

Mesh Torus

UC 484.8 ns 484.4 ns

LMC 489.0 ns 482.8 ns

LMC_SRC 41.6 ns 39.5 ns

MC 27.8 ns 24.5 ns

mean latency values for all casting types fall below the threshold of
500 ns.

Differences and similarities between the casting types, that have
been discussed with respect to latencies, are also reflected by the
spatial distribution of routing activity within the network in some
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manner. Accordingly, Figure 10 shows heatmaps of routed flits
exported from the network-on-chip simulators for the different
casting types and topologies observed at an emulated acceleration
factor of 50.

It should bementioned that routed flits in Noxim are only those
forwarded to other network nodes and do not include the ones
delivered to the local processing elements. McAERsim adapts to
this definition but contains a comment in the source code enabling
a simple change. At a first glance and in correspondence with
the latencies, the number of routed flits is roughly an order of
magnitude higher for the destination-address driven casting types
than for the source-address driven casting types. Also, in all but
the multicast cases, there are distinct hot spots close to the centers
of the node arrangements. Consequently, few nodes carry a heavy
load, while several nodes carry a light load, which parallels the
observations regarding the latency variations. As opposed to that,
network loading is much more uniform in the multicast cases.
Comparing Figure 10A with Figure 10B, it becomes apparent that
the number of routed flits in the hot spot areas is reduced by torus-
shaped networks, while more transfers occur at the boundaries.
Prevalently, this can be noticed to the west and to the east.
Most likely, this is due to sequential mapping, which may cause
populations to be split between nodes at opposite borders spaced
one row apart. Communication is intense within a population,
so that many packets are transferred through the center of the
network in case of the mesh topology, while they take the wrap-
around connections in case of the torus topology. In addition to the
communication within a population, there is also communication
between the populations. Because fewer packets are required in
case of multicast routing, this may be the reason why an increased
number of packets can also be observed at the south nodes of the
torus topology in this case.

Additionally, Figure 11 provides some insights into the routing
paths lengths for the different casting types within the two
topologies.

Those were not included in the outputs of the network-on-
chip simulations, but thanks to the deterministic XY routing they
can be calculated from the outputs of the NEST simulations
available at Robens (2024) by Python scripts. For unicast (UC),
destination-address driven local multicast (LMC), and source-
address driven local multicast (LMC_SRC), all routing paths
lengths information is included in the histograms, while only
maximum paths lengths were considered in case of multicast (MC)
routing. Results for the casting types in Figures 11A, C support
the statement in the previous paragraph that communication is
intense within a population, i.e., close to the source node. However,
especially the maximum paths lengths results for multicast (MC)
in Figures 11B, D underpin the verbatim citation from Heittmann
et al. (2022) in Section 2.3 regarding the properties of the
cortical microcircuit model, which implies that packets need to
be transferred over the whole network in many cases. As has to
be anticipated, a comparison of Figures 11A, B with Figures 11C,
D reveals that the maximum number of hops is reduced by the
torus topology.

The results on latency as well as the number of
routed flits indicate the clear advantages that source-
address driven multicast routing provides with respect
to network traffic generated by NEST. In the following

subsections, our contemplations are therefore limited to this
casting type.

3.2 Simulations with multiple processing
elements per tile

The excerpt of the YAML file used for data exchange between
NEST and Noxim in Figure 1 points to a bursty nature of
communication for the destination-address driven casting types,
which was also observed from the simulations. Many packets
get scheduled during a time step and need to be transferred
through the network interface. Such queueingmay add a significant
contribution to the overall latency resulting in a potential
bottleneck. The same issue with respect to the network interface
controller (NIC) in case of unicast routing was also reported in
(Jerger et al., 2008, p. 230). To improve this situation, a high-radix
router connecting to a higher number of network interfaces may
be applied. In a simple case, more and less powerful processing
elements are used and associated with a tile, which host a smaller
number of neurons. During the implementation of McAERsim,
support for multiple processing elements per tile therefore has been
taken into account.

Figure 12 presents the results of a simulation with similar
conditions like in the multicast cases of Figures 8–10, for which a
sequential assignment of four processing elements per tile had been
performed.

A row in the heatmaps of Figure 12 thus corresponds to two
consecutive rows in the heatmaps of Figure 10. The diameter of
the network is reduced this way, as are the maximum latencies
shown in Figure 12A. From the boxplots of Figure 12B it may be
concluded, that the same does apply to the delay distributions. In
a physical realization, however, a larger switch will be required for
a high-radix router. Thus, a higher latency of the switch traversal
stage in the router pipeline needs to be expected. Accordingly, it
may be necessary to increase the cycle duration. As a consequence,
advantages gained by a higher number of processing elements per
tile carefully need to be traded against the disadvantages caused by
a higher router complexity.

3.3 Simulations with reduced scaling factor

Experiments showed that co-simulations on the cortical
microcircuit model can be run up to a scale of 17% with the
server setup of the virtual machine as described at the beginning
of Subsection 3.1. It was possible to extend the swap space of
this virtual machine to 25GB and to assign 16GB of DRAM.
Since memory had been increased roughly by a factor of 4 by
these measures, we expected a co-simulation at a scale of 33% to
be feasible. As confirmed by Figure 13, this simulation completed
successfully.

Owing to the modified scaling, the number of neurons was
increased by a factor of 3.3, so that the size of the network had to
be increased approximately by a factor of 1.8 in each dimension.
Accordingly, an arrangement of 11 × 10 tiles was used as can be
seen from the heatmaps of Figures 13C, F. Because of the increased
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A

B

FIGURE 10

Number of routed flits for di�erent casting types: unicast (UC), destination-address driven local multicast (LMC), source-address driven local multicast

(LMC_SRC), and multicast (MC). (A) Results for the 6× 6 mesh network. (B) Results for the 6× 6 torus network. To gain the results in these plots, an

acceleration factor of 50 has been emulated, but as may be concluded from Figure 8, similar results can be obtained for smaller acceleration factors.

network dimensions, the maximum latency rose to 134 in case
of the mesh topology and 100 or 101, respectively, in case of the
torus topology. For different acceleration factors with respect to
biological real time, this is shown in Figures 13A, D. Accordingly,
the latency variation was increased by a factor roughly equal to the
size of the network in one dimension as may be deduced from the
interquartile ranges in Figures 13B, E, which were determined for
an emulated acceleration factor of 50. Global average delay values
went up slightly less than proportional and varied from 46.5 to 46.7
cycles in case of the mesh topology and from 39.5 to 39.7 cycles
in case of the torus topology. Apart from the network dimensions,
also the number of routed flits notably changed in the heatmaps
of Figures 13C, F. However, the distribution of network load is
still comparable to the multicast cases of Figure 10 and rather
homogeneous as compared to the other casting types.

4 Discussion

In an attempt to reduce inter-node communication latencies
by focusing on network traffic that is generated according to
neuroscientific test cases directly, two simulation frameworks were
proposed, in which network-on-chip simulators are interfaced
with the neuroscientific development environment NEST. These
setups were inspired by the design methodology SpiNeMap (Balaji
et al., 2020), but beside of an interface to a different spiking
neural network simulator, they add a couple of features to the
constituent network-on-chip simulator Noxim. These features
include gathering of further statistical data, data exports, as well as
support for torus shaped networks and single-flit packets.

Presumably, these frameworks can be applied to biological
network models up to the scale of the cortical microcircuit
model, which sometimes is referred to as unit cell of the cortical
network due to its distinct local structure. The frameworks may
thus be considered a complement to the Python-based network
simulator for large-scale heterogeneous neural networks presented
in Kleijnen et al. (2022). For example, they may be applied
to a distinct region of the multiarea model, that has been
identified as potential bottleneck by the Python-based simulator,
to provide more details on latencies—stimulating a hierarchical
simulation approach. However, the cortical microcircuit itself may
be considered challenging and consequently has been applied for
benchmarking studies (van Albada et al., 2018). Therefore, it
was selected as target application for the simulation experiments
that have been conducted for different casting types and network
topologies. The selection of a casting type is not supported in the
released version of Noxim, but rather unicast routing is inherently
assumed. However, fostered by the address event representation
(AER), source-address driven and destination-address driven local
multicast could be emulated by an appropriate packet organization.
Multicast support in network-on-chip simulators, on the other
hand, was argued to be scarce, at least for networks of sizes beyond
those covered by routing masks. Therefore, a re-implementation
of Noxim—called McAERsim—has been created around a source-
address driven tree-based multicast router pipeline model for
single-flit AER packets. In addition, support formultiple processing
elements per tile was taken into account to address potential
interface congestion.

The simulation experiments yielded three kinds of result
display. In analogy to conventional “latency vs. injection load”
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A B

C D

FIGURE 11

Histograms of (maximum) routing paths lengths within 6× 6 mesh and torus networks. (A) Routing paths lengths in the mesh network for unicast

(UC), destination-address driven local multicast (LMC), and source-address driven local multicast (LMC_SRC) routing. (B) Maximum routing paths

lengths in the mesh network for multicast (MC) routing. (C) Routing paths lengths in the torus network for unicast (UC), destination-address driven

local multicast (LMC), and source-address driven local multicast (LMC_SRC) routing. (D) Maximum routing paths lengths in the torus network for

multicast (MC) routing. These results were not included in the outputs of the network-on-chip simulators. However, since deterministic XY routing

has been applied during the network-on-chip simulations, they could be determined from the outputs of the NEST simulations by Python scripts.

A B C

FIGURE 12

Latency results as well as number of routed flits for 3× 3 mesh and torus networks. (A) Maximum latencies in the 3× 3 networks. (B) Boxplots

showing latency results for both 3× 3 networks. (C) Number of routed flits in both 3× 3 networks. To gain the results in (B, C), an acceleration factor

of 50 has been emulated, but as may be concluded from (A), similar results can be obtained for smaller acceleration factors.
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A B C

D E F

FIGURE 13

Latency results as well as number of routed flits for 11× 10 mesh and torus networks. (A) Maximum latencies in the 11× 10 mesh network. (B)

Boxplot showing latency results for the 11× 10 mesh network. (C) Number of routed flits in the 11× 10 mesh network. (D) Maximum latencies in the

11× 10 torus network. (E) Boxplot showing latency results for the 11× 10 torus network. (F) Number of routed flits in the 11× 10 torus network. To

gain the results in (B, C, E, F), an acceleration factor of 50 has been emulated, but as may be concluded from (A, D), similar results can be obtained

for smaller acceleration factors.

FIGURE 14

Switching-level deadlock in wormhole routing for multi-flit packets according to Merolla et al. (2014). In the mesh network of (A) both packets, ①

and ②, acquire a grant in one direction but fail to acquire the grant in the other direction, so that progress stalls. This situation does not occur in the

multicast binary-tree network of Neurogrid as shown in (B), since arbitration precedes branching, when the latter is restricted to the downward

phase. © 2014 IEEE. Reprinted, with permission, from Merolla, P., Arthur, J., Alvarez, R., Bussat, J.-M., and Boahen, K. “A Multicast Tree Router for

Multichip Neuromorphic Systems,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 61, No. 3, pp. 820–833, Mar. 2014. doi:

10.1109/TCSI.2013.2284184.

curves, “maximum latency vs. acceleration factor” curves were
created to assess network performance. The requirement of time
stamp conversion between the simulators as well as the command
line interfaces of the NoC simulators were exploited to emulate
different acceleration factors with respect to biological real time

and step through them by the aid of a Bash script. These plots
could be used to rule out the destination-address driven casting
types since their maximum latencies exceeded the desired threshold
value of TCOM = 500 ns almost by an order of magnitude
even in a considerably scaled version of the cortical microcircuit

Frontiers inNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnins.2024.1371103
https://doi.org/10.1109/TCSI.2013.2284184
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Robens et al. 10.3389/fnins.2024.1371103

and were affected by network saturation at higher acceleration
factors. In addition, boxplots were generated, which provide more
insights into the distributions of delays. Finally, heatmaps of routed
flits were drawn, indicating the spatial distribution of network
load. Both representations are in favor of multicast routing in
a torus topology, because this combination leads to rather even
distributions of network load and latencies, while it results in the
smallest maximum delays.

The reduction of downscaling in the experiments by a factor
of three caused the latencies to increase little more than the square
root of this. If the same trend continues up to the full scale of the
cortical microcircuit, the inter-node transmission latency stays well
below a few hundred cycles. Under the premises of the simulations,
thus, the threshold value of TCOM = 500 ns would not be exceeded.

Using a higher-radix router to enable four processing elements
per tile, the mesh size was reduced from 6 × 6 tiles to 3 ×

3 tiles in a further experiment. However, since arbitration is
performed between the inputs in McAERsim, the probability of
collisions rises, which renders the size reduction less effective with
respect to a latency improvement. Accordingly, the maximum
delays were reduced by smaller factors than could be expected
from the network size reduction. In addition, internal latencies
of a higher-radix router tend to be larger, so that longer clock
cycles might be required, which leads to a further penalty. As
argued, in McAERsim support for multiple processor elements
per tile is ineffective with respect to its initial purpose, because
it does not alleviate interface congestion, but rather shifts it
from the network interface to the interface of the connection
memory. Yet, it might serve for this purpose in Noxim and can
be exploited to reduce the network size. Furthermore, it allows
for network configurations vaguely reminiscent of SpiNNaker’s
communication subsystem as detailed in Furber et al. (2006) and
Plana et al. (2008)—lacking however several aspects like default and
emergency re-routing.

As promoted by the address event representation (AER),
McAERsim does rely on single-flit packets in order to convey
information on spike events. With respect to its router
implementation, this is essential in two ways: first, no special
precautions for deadlock avoidance within the torus topology
have been taken. Such had to be conceived for the Noxim patch,
but in case of single-flit packets, channel allocations are released
immediately after traversal by the header flit, so that no cyclic
dependencies can arise. Second, and for the same reason, no
measures to avoid switching-level deadlocks were devised. The
latter can in principle occur in meshes, if multicast routing is
applied, which was noted in Merolla et al. (2014) and is illustrated
in Figure 14A (This situation is avoided by the sequence of actions
in the multicast binary-tree network of Neurogrid as shown in
Figure 14B.). According to Konstantinou et al. (2021), however,
the forwarding of single-flit packets in each multicast router is—by
construction—deadlock free. In this context, it is important to
distinguish flits, used for flow control, and phits, i.e., the number
of bits transferred in parallel within one cycle. As pointed out
in the description of the example application in (Moradi et al.,
2018, Section V), parallel input/output ports were realized through
direct wire/pin connections on their board. In this case, both
terms match. Usually, however, I/O pins are precious, so that
the AER packets need to be (partially) serialized. According to
Furber et al. (2006), SpiNNaker therefore uses 8-wire inter-chip

links transferring 2-of-7 non-return-to-zero codes. Similarly, in
Zamarreno-Ramos et al. (2013), an extension to their AER links
via Rocket I/O serial interfaces with 8 b / 10 b encoding is presented
that uses stop/resume messages for flow control. Since the number
of phits is larger than the number of flits in these cases, either
different clock speeds prior and after de-/serialization need to be
used, or additional cycles need to be spend for these purposes. In
the latter case, however, the duration of line traversal would be
extended, which in turn increases the mandatory buffer depth,
as was discussed in connection with the flow-control round-trip
latency at the end of Section 2.2. Modeling this effect should be
easily possible by making use of the Transaction Level Model
(TLM) library of SystemC but is devoted to some future work. For
the time being, parallel I/O as demonstrated by Moradi et al. (2018)
will be assumed.

The proposed simulation frameworks, thus, are really useful
to examine network performance based on application generated
traffic. Neuroscientific test cases conveniently can be run in an
embedded version of NEST to steer the simulations. At the same
time, the constituent network-on-chip simulators feature plenty
of options to modify important network parameters and observe
the effects they have on characteristic key figures. To help direct
the development of accelerator units intended for large-scale
neuroscientific simulations, inter-node communication latency is
of particular importance. The detailed analysis of a possible node-
internal realization in Trensch and Morrison (2022) assessed that
acceleration factors with respect to biological real time in the
order of 10–50 may be possible, while it sets a limit of TCOM =

500 ns on the inter-node communication latency for this purpose.
Observing the results on maximum latencies that we obtained
from the cortical microcircuit model at different scaling factors and
extrapolating from them, these acceleration factors, indeed, seem
to be within reach. So far, however, these results are biased by some
assumptions that are inherent to the network-on-chip simulators,
parallel inter-node links being the most striking one. Therefore,
it will be interesting to experiment with the clock speed and to
address the additional delay imposed by de-/serialization in a small
extension to McAERsim in some future work.
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