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Sepsis is a leading cause of death resulting from an uncontrolled inflammatory 
response to an infectious agent. Multiple organ injuries, including brain injuries, 
are common in sepsis. The underlying mechanism of sepsis-associated 
encephalopathy (SAE), which is associated with neuroinflammation, is not yet 
fully understood. Recent studies suggest that the release of interleukin-1β (IL-1β) 
following activation of microglial cells plays a crucial role in the development 
of long-lasting neuroinflammation after the initial sepsis episode. This review 
provides a comprehensive analysis of the recent literature on the molecular 
signaling pathways involved in microglial cell activation and interleukin-1β 
release. It also explores the physiological and pathophysiological role of IL-
1β in cognitive function, with a particular focus on its contribution to long-
lasting neuroinflammation after sepsis. The findings from this review may assist 
healthcare providers in developing novel interventions against SAE.
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1 Introduction

Sepsis is one of the leading causes of death worldwide and is characterized by multiple 
organ injuries resulting from dysregulated host response to infections (Liu et al., 2014; Singer 
et al., 2016). In addition to its high mortality rate, sepsis can also cause to long-lasting, even 
permanent, organ damages in septic survivors. It has been estimated that up to 40% of sepsis 
patients experience neurological and/or cognitive complications even after being discharged 
(Rudd et al., 2020; Fleischmann-Struzek et al., 2021; Sonneville et al., 2023). Some researchers 
prefer these prolonged and disabling forms of cognitive impairment in sepsis survivors as 
sepsis-associated encephalopathy (SAE) (Catarina et al., 2021). Although the exact underlying 
mechanism is not yet fully understood, it is widely accepted that neuroinflammation plays a 
significant role (Annane and Sharshar, 2015; Rengel et al., 2019; Pan et al., 2022; Sekino et al., 
2022). During the initial systemic inflammation of sepsis, a large amount of cytokines are 
released, which could enter the central nervous system (CNS) via circumventricular organ and 
choroid plexus devoid of a blood–brain barrier (Shimada and Hasegawa-Ishii, 2017). 
Additional, systemic inflammation can also disrupt the blood–brain barriers (Gao and 
Hernandes, 2021; Sekino et al., 2022; Zou et al., 2022). Once inside the CNS, these cytokines 
activate microglia, the innate immune cells in the brain, to produce more pro-inflammatory 
cytokines such as IL-1β, tumor necrosis factor-α (TNF-α), and interferon-γ (INF-γ) (Hoogland 
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et al., 2015; Zrzavy et al., 2019; Hu et al., 2023), ultimately resulting in 
long-lasting neuroinflammation that leads to neuron loss and 
cognitive impairment (Sekino et al., 2022; Hu et al., 2023). Among 
these pro-inflammatory cytokines, IL-1β is particularly important 
within the CNS after sepsis (Wang et al., 2012; Pozzi et al., 2018). 
Previous studies have shown that IL-1β, but not TNF-α or IL-6, is the 
exclusive cytokine within the CNS that has been verified to remain 
elevated for up to 70 days in rats survived neonatal sepsis but 
subsequently developed cognitive impairment (Lan et al., 2015; Liao 
et al., 2023). Furthermore, neurodevelopment of neonatal septic rats 
could be improved by directly antagonizing IL-1β (Zhang et al., 2022). 
This review summarizes recent advances in microglia activation-
induced excessive IL-1β release and the molecular signaling pathways 
involved in IL-1β-induced cognitive dysfunction among 
sepsis survivors.

2 Activation of microglia during sepsis

As the primary immune cell within the CNS, microglia are 
activated by the recognition of danger signals such as invading 
pathogens and cytokines during systemic inflammation. For instance, 
inflammatory cytokines like TNF-α, IL-1β and IL-6 activate microglia 
through their specific receptors (van Gool et al., 2010).

The nuclear factor kappa B (NF-κB) signaling pathway is a key 
signal pathway that modulates inflammatory responses. Studies have 
shown that the NF-κB signaling pathway is involved in the activation 
of microglia during sepsis (Mulero et  al., 2019; Zhao et  al., 2019; 
Nguyen et al., 2021; Wang H. et al., 2022). The NF-κB family consists 
of subunits p105/p50, p100/p52, p65/RelA, RelB, and c-Rel. These 
subunits reside in cytoplasm and bind with inhibitory IκB proteins to 
form an inactive complex (Mitchell et al., 2016; Mulero et al., 2019). 
The NF-κB signal can be activated through the canonical pathway or 
the noncanonical pathway. In the canonical pathway, inflammatory 
stimulation activates a complex containing NF-κB essential modulator 
(NEMO) and IκB kinases (IKK1/2). This complex phosphorylates IκB 
proteins that are bound to NF-κB in the cytoplasm, leading to the 
proteasomal degradation of IκBs. With the rapid degradation of IκBs, 
the p65:p50 heterodimer is released and translocates into nucleus, 
where it binds to κB site-containing DNA to enhance the transcription 
of target genes (Mitchell et  al., 2016; Mulero et  al., 2019). In the 
noncanonical pathway, signals such as the activation of TNF receptors 
by TNF-α or CD40 ligand, activate the NF-κB-inducing kinase (NIK) 
complex, which is identified as a mitogen-activated protein kinase 
(MAPK) kinase (Coope et al., 2002; Razani et al., 2011). NIK activates 
IKK1 through phosphorylation at Ser and Thr residues (Ling et al., 
1998; Razani et  al., 2011). The activated NIK/IKK1 complex 
phosphorylates inhibitor IκB and leads to the processing of precursor 
forms of NF-κB family members, particularly p100. p100 triggers IκB 
degradation and the release of the active p52 subunit, which forms 
active RelB:p52 heterodimers. These heterodimers then translocate 
into the nucleus and regulate specific gene transcription for immune 
responses (Ling et al., 1998; Coope et al., 2002; Mulero et al., 2019) 
(Figure 1).

Considering the crucial role of the NF-κB signaling pathway in 
microglia activation, numerous studies have indeed explored the 
potential of attenuating microglia activation by targeting the NF-κB 
signaling pathway. Zhao et  al. demonstrated in mice that 

lipopolysaccharide (LPS) induced cognitive impairment and 
neuroinflammation occurred due to microglia activation via activation 
of the NF-kB signaling pathway. By pharmacological suppressing 
TLR-4/MyD88, they were able to abolish LPS-induced NF-κB 
activation and the release of pro-inflammatory cytokines, which in 
turn mitigated cognitive impairment (Zhao et al., 2019).

The nuclear erythroid 2-related factor 2 (Nrf2) is a transcription 
factor, which, under normal homeostatic conditions, is expressed with 
Kelch-like ECH-associated protein 1 (Keap1) in the cytoplasm. When 
stimulated by hazardous signals like oxidative or inflammatory stress, 
Nrf2 is released from Keap1 and translocates into the nucleus, where 
it binds to antioxidant response elements (AREs). This leads to the 
transcription of ARE genes involved in cellular defense and 
antioxidant responses, ultimately promoting cellular adaptation and 
survival under stress conditions (Saha et al., 2020). NF-κB is one of 
the downstream targets of Nrf2 that has been extensively studied. Nrf2 
restricts the degradation of IκBα, thereby indirectly inhibiting the 
nuclear translocation of NF-κB and blocking the activation of the 
NF-κB signaling pathway (Yerra et al., 2013; Chen et al., 2018; Saha 
et al., 2020; Yu et al., 2020). Previous studies have highlighted the 
neuroprotective role of Nrf2 in various conditions, such as traumatic 
and ischemic brain injury (Dong A. et al., 2018; Dong W. et al., 2018; 
Yang et al., 2018). Chen et al. further demonstrated thathydrogen gas 
improved neuronal injury or cognitive dysfunction in mice with SAE 
through the activation of the Nrf2 pathway (Chen et al., 2021).

Forkhead box C1 (Foxc1) is another transcription factor 
implicated in the defense processes against oxidative damage, 
inflammation, and apoptosis (Xia et al., 2019; Zhao et al., 2020). Wang 
et al. showed with a cecal ligation perforation (CLP) sepsis model that 
overexpression of Foxc1 suppressed microglia activation related to the 
NF-κB pathway by enhancing IκBα expression, stabilizing the IκBα/
p65 complex and reducing transcription driven by p65. This ultimately 
resulted in improved cognitive function in mice with SAE (Wang 
H. et al., 2022).

The Janus kinase/signal transducer and activator of transcription 
(JAK/STAT) signaling system is an essential cascade involved in cell 
proliferation, differentiation, and immune modulation (Xin et al., 
2020). Therefore, it is not surprising that JAK/STAT signaling pathway 
interacts with the NF-κB pathway, and these interactions regulate 
immune responses during sepsis (Cai et  al., 2015). Persistently 
activated JAK/STAT signaling is associated with prolonged 
inflammation and organ damage observed in sepsis (Cai et al., 2015; 
Wu et al., 2020; Xin et al., 2020). The complex interactions with other 
signaling pathways make the biological effects of JAK/STAT signaling 
more intricate. Septic cytokine-mediated activation of JAK/STAT3 
signaling enhances STAT3 binding to the telomerase reverse 
transcriptase (TERT) promoter and leads to increased TERT protein 
expression (Cai et al., 2015; Wu et al., 2020). TERT, the telomerase 
protein, provides neuroprotection against LPS-induced brain injury 
by converting microglial polarization from M1 to M2 phenotype (Xin 
et  al., 2020; Zhou et  al., 2021). Furthermore, JAK2/STAT3 also 
modulates inflammatory responses through the α7 nicotinic receptor 
(α7nAChR), suppressing NF-κB and cytokine production and 
improving survival in sepsis (Peña et al., 2010; Zhang et al., 2017).

The chemokine C-X-C motif ligand 13 (CXCL13) and its receptor 
CXCR5 also play important roles in various immune and 
inflammatory processes (Kazanietz et al., 2019). Activation of the 
CXCL13/CXCR5 axis in microglia results in p38MAPK/NF-κB signal 
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activation and promotes microglial polarization into the M1 
phenotype. Conversely, down-regulation of CXCR5 suppresses 
neuroinflammation caused by microglial activation and alleviates 
cognitive dysfunction in a mouse model of sepsis (Li et al., 2017; Shen 
et al., 2021).

Silent information regulator 1 (SIRT1), a deacetylase-dependent 
nicotinamide adenine dinucleotide (NAD), is a key regulator in 
energy metabolism and tissue survival (Houtkooper et al., 2012; Jiao 
and Gong, 2020). The SIRT1 protein, which mediates oxidative 
respiration and anti-inflammatory responses, directly inhibits NF-κB 
signaling and mitigates SAE (Kauppinen et al., 2013). Specifically, 
SIRT1 deacetylates the RelA/p65 complex at Lys310, inhibits the 
nuclear translocation of NF-κB, and leads to IκBα-dependent nuclear 
export of NF-κB (Yeung et al., 2004; Han et al., 2019; Tian et al., 2019; 
Yang et al., 2020).

These studies have revealed the critical role of the NF-κB signaling 
pathway in microglial activation, neuroinflammation and cognitive 
impairment following sepsis. Moreover, they suggest that targeting the 
NF-κB signaling may be  a potential intervention for improving 
cognitive dysfunction induced by sepsis (Figure 1).

In summary, the activation of NF-κB plays a pivotal role in 
initiating the transcription of pro-inflammatory cytokines, such as 

IL-1β. This NF-κB pathway is a component of a larger inflammatory 
response encompassing the activation of other signaling pathways and 
the release of inflammatory mediators. It is imperative to comprehend 
the molecular events that connect NF-κB activation and to the release 
of IL-1β in order to understand the mechanisms that drive 
inflammation and to devise therapeutic strategies to manipulating 
these processes in diverse diseases.

3 M1 microglia as the primary source 
of brain IL-1β during sepsis

Microglia, the main type of resident macrophages in the CNS, 
play a crucial role in immunological surveillance. Equipped with an 
array of pattern recognition receptors (PRRs), they detect changes in 
cytokine and chemokine levels as well as identify infections and 
damages (Ransohoff and Perry, 2009; Cherry et al., 2014; Roh and 
Sohn, 2018; Wesselingh et al., 2019). Therefore, it is not surprising that 
microglia can be activated by septic cytokine storms reaching the 
brain, utilizing the aforementioned pathways and receptors (Yan et al., 
2022). Activation of microglia has been observed as early as 6 h 
following sepsis induced by CLP (Ye et al., 2019). Prolonged activation 

FIGURE 1

The NF-κB pathway in activation of microglia, inflammasomes formation and production of IL-1β. Stimulates like IL-1β, LPS, DAMPs trigger the 
canonical pathway, TNF-α and CD40 activate the noncanonical pathway, both pathways activate the NF-κB complex and causes nuclear transcription 
of NLRP3 and pro-IL-1β. NLRP3 assembles into inflammasome and activates caspase-1, finally leads to release of mature IL-1β. Many molecules in 
various signaling pathways can negatively regulate the NF-B pathway and inhibit the activation of microglia.
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of microglia following sepsis has been associated with SAE. Wang 
et al. and Lan KM et al. discovered that following exposure to LPS in 
newborn rats resulted in sustained activation of microglia until 
postnatal day 71, leading to severe cognitive dysfunction (Wang et al., 
2013; Lan et  al., 2015). Numerous studies have indicated that 
inflammation caused by activated microglia is the main contributor 
to cognitive impairment following sepsis (Goshen et al., 2007; Ye et al., 
2019; Zrzavy et al., 2019; Yan et al., 2022; Hu et al., 2023; Mordelt and 
de Witte, 2023). Neuroprotective benefits and reduced cognitive 
impairment induced by sepsis or surgery have been observed when 
microglia activation is prevented using the antibiotic minocycline 
(Michels et al., 2015; Tan et al., 2023). Unfortunately, minocycline 
failed to prevent postoperative cognitive dysfunction in a recent 
clinical trial, suggesting that the mechanisms underlying 
neuroinflammation-related brain dysfunction extend well beyond 
microglial activation (Takazawa et al., 2023).

Even in the context of microglial activation, there are two distinct 
phenotypes that can occur. Microglia can be activated and polarized 
into the M1 phenotype through the pathogen associated molecular 
patterns (PAMPs) and damage associated molecular patterns 
(DAMPs), which occurs via PRRs such as membrane Toll-like 
receptors (TLRs), Scavenger receptors (RAGE) and cytoplasmic 
Nod-like receptors (NLRs) and RIG-like receptors (RLRs) (Boche 
et al., 2013; Roh and Sohn, 2018; Hu et al., 2023). The M1 phenotype 
of microglia releases large amount of pro-inflammatory cytokines, 
including IL-1β, which induces inflammation to combat invading 
pathogens (Cherry et al., 2014; Wang et al., 2023). Morphologically, 
M1 phenotype microglia is characterized by larger amoeboid-like 
somata, with expression of Iba-1, CD68 and CD11b as the surface 
markers (Hoogland et  al., 2015; Orihuela et  al., 2016). Another 
activated phenotype of microglia is the M2 phenotype, which releases 
anti-inflammatory mediators and contributes to the resolution of 
inflammatory responses and tissue repair. The M2 phenotype 
microglia have a rod-like shape and express CD206 as a surface 
marker (Orihuela et al., 2016; Zhuang et al., 2020). Microglia play a 
crucial role in maintaining brain homeostasis through the balanced 
regulation of M1 and M2 phenotypes, as well as regulating immune 
response within the CNS. An imbalance in the M1/M2 ratio can have 
significant implications for neuroinflammation following sepsis 
(Orihuela et  al., 2016; Hu et  al., 2023; Wang et  al., 2023). As 
demonstrated in previous studies, excessive production of IL-1β 
following M1 activation may lead to sustained neuroinflammation, 
contributing to the progression of cognitive dysfunction in neonatal 
sepsis. Conversely, an overactive M2 response may suppress necessary 
immune responses, impairing the ability to eliminate pathogens or 
clear cellular debris.

4 Activation of inflammasome and 
release of IL-1β

Inflammasomes are multiprotein complex modulating the 
inflammatory response and host defense against pathogens (Broz 
and Dixit, 2016). The inflammasome comprises several subunits, 
including nucleotide-binding oligomerization domain leucine-rich-
repeat-containing pyrin 3 (NLRP3), the adaptor apoptosis-
associated speck-like protein containing a caspase recruitment 
domain (ASC), and the effector molecule pro-caspase-1 (Paerewijck 

and Lamkanfi, 2022). Inflammasomes are assembled when 
microglia are stimulated by a variety of stimuli, such as PAMPs 
(viral, bacterial, or fungal pathogens) and DAMPs (extracellular 
ATP, mtDNA, ROS, etc.) (Broz and Dixit, 2016; Paerewijck and 
Lamkanfi, 2022). Upon autoproteolytic activation inside the 
complex, pro-caspase-1 is hydrolyzed into active caspase-1, which 
then processes pro-IL-1β and pro-IL-18 into their mature, active 
forms (Broz and Dixit, 2016; Paerewijck and Lamkanfi, 2022) 
(Figure 1). Active caspase-1 also cleaves gasdermin D (GSDMD) 
and triggers pyroptosis, resulting in release of mature IL-1β (Shi 
et  al., 2017). It has been found that activated microglia, not 
astrocytes, are the sole source of NLRP3 inflammasome in CNS of 
rodents (Gustin et al., 2015; Moraes et al., 2023). Numerous studies 
have demonstrated that NLRP3-induced IL-1β release is the main 
cause of the brain dysfunction following sepsis (Sui et al., 2016; Xie 
et al., 2020; Yan et al., 2022). Pharmacological inhibition of NLRP3 
not only reduces the expression of IL-1β, but also alleviates 
cognition impairment after sepsis (Sui et al., 2016; Xie et al., 2020; 
Li et al., 2022; Sekino et al., 2022; Moraes et al., 2023).

5 Effect of IL-1β on learning and 
memory

As a pro-inflammatory cytokine, IL-1β is involved in 
inflammation and the host’s defensive response. Once it binds with 
its receptor (IL-1R), IL-1β can increase the expression of adhesion 
factors and facilitate the chemotaxis of leukocytes to infection sites, 
intensifying the cascade of immune reaction (Weber et al., 2010). 
Aside from regulating immune responses, IL-1β in the CNS is also 
associated with learning and memory. The hippocampus is a critical 
structure located in the medial temporal lobe of the brain, playing 
a central role in learning and memory formation. It is particularly 
involved in the consolidation of short-term memory into long-term 
memory, as well as spatial memory and navigation. Both IL-1β and 
IL-1R are expressed in the hippocampus under normal physiological 
conditions (Huang and Sheng, 2010). Previous studies have 
demonstrated that a physiological level of IL-1β is necessary for 
memory formation, especially for hippocampus-dependent 
memory (Goshen et al., 2007; Yirmiya and Goshen, 2010; Wang 
et al., 2012). Disruption of IL-1 signaling through either the use of 
IL-1R antagonist (IL-1ra) or genetic deletion of IL-1R (IL-1rKO) 
impairs hippocampus-dependent memory (Avital et  al., 2003; 
Goshen et al., 2007). Additionally, a physiological level of IL-1β is 
also essential for high-frequency stimulation-induced long-term 
potentiation (LTP) and normal hippocampal development (Goshen 
et al., 2007). Treatment with IL-1rKO or IL-1ra can impair memory 
formation and the maintenance of LTP (Schneider et  al., 1998; 
Weber et  al., 2010). On the contrary, excessive IL-1β produced 
detrimental effect on hippocampus-dependent memory formation 
and LTP maintenance. However, this effect can be  reversed by 
blocking IL-1β signaling with IL-1ra, which improves cognitive 
function (Goshen et al., 2007; Weber et al., 2010). In summary, 
current data suggests that the effect of IL-1β on memory follows a 
U-shaped pattern: physiological level of IL-1β is necessary for 
memory formation and a slight increase in IL-1β can improve 
memory function. However, deviations from physiological range of 
IL-1β levels, whether through inhibition of IL-1β signaling or 

https://doi.org/10.3389/fnins.2024.1370406
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhu et al. 10.3389/fnins.2024.1370406

Frontiers in Neuroscience 05 frontiersin.org

excessive IL-1β expression, lead to impaired memory formation and 
consolidation (Goshen et al., 2007; Weber et al., 2010).

6 IL-1β impairs cognitive function after 
sepsis

In addition to serving as pivotal pro-inflammatory cytokine 
in the innate immune response, IL-1β also plays a critical role in 
the pathogenesis of a variety of CNS diseases associated with 
cognitive impairment, such as epilepsy, stroke, schizophrenia, and 
autism (Iori et  al., 2016; Krakowiak et  al., 2017; Tsai, 2017). 
Research has provided evidence demonstrating that elevated 
expression of IL-1β can impair synaptic formation and function, 
thereby interfering normal neuronal communication and 
disrupting cognitive function.

6.1 Synapse formation

Synapse formation and maintenance encompass a series of 
sequential events that commence with the differentiation of neural 
precursor cells, followed by axonal migration and guidance, 
axonal and dendritic branch formation, and the maturation of 
synaptic circuits (Taverna et al., 2014; Harris and Littleton, 2015; 
Kay, 2016; Ulloa et al., 2018). At each stage, an elevated level of 
IL-1β has the potential to disrupt the establishment of 
functional synapses.

6.1.1 Differentiation of neural precursor cell
Neurogenesis plays a crucial role in memory function. Neural 

precursor cells (NPCs) can differentiate into neurons, astrocytes, 
and oligodendrocytes (Lazutkin et al., 2019). Sustained expression 
of IL-1β inhibits neurogenesis and triggers apoptosis in NPCs (Wang 
et  al., 2007; Lin Q. et  al., 2019). IL-1β activates stress-activated 
protein kinase/c-Jun N-terminal kinase (SAPK/JNK), which 
phosphorylates and cleaves the Notch receptor. This results in the 
release and translocation of the Notch intracellular domain (NICD) 
into nucleus (Lin Q. et  al., 2019). Once NICD binds to DNA, it 
promotes the expression of Hes1 and Hes5 genes, which induce 
NPCs to differentiate into glial cells. At the same time, IL-1β 
suppresses the expression of Mash1 and Ngn1 genes, thereby 
inhibiting NPCs from differentiating into neurons (Kageyama et al., 
2008; Teng et al., 2009; Lin Q. et al., 2019). By inhibiting the IL-1β 
or SAPK/JNK signaling pathway, neurogenesis in NPCs can 
be restored and excessive gliogenesis can be prevented (Wang et al., 
2007; Lin Q. et al., 2019).

6.1.2 Synapse structure
To establish a sophisticated network, neurons extend their 

axonal and dendritic processes to connect with other neurons. Once 
inter-neuron contact is established, neurons undergo structural 
change to form new synapse. Synaptophysin (SYN) and post-
synaptic density-95 (PSD-95), located in the pre-and post-synaptic 
membranes respectively, are commonly used molecular markers for 
evaluating synapse morphology (Dore and Malinow, 2021; Zhang 
and Augustine, 2021). Studies have demonstrated that microglia 

regulated formation and development of synapses. Stimulation with 
LPS increases the release of IL-1β and reduces production of IL-10 
and TGF-α in activated microglia, leading to a decrease in the 
number of synapses between neurons as measured by SYN/PSD-95 
colocalized puncta (Mishra et al., 2012; Lim et al., 2013; Hu et al., 
2023). Additionally, excessive IL-1β suppresses the function of 
interleukin-1 receptor accessory protein like 1 (IL1RAPL1), which 
normally activates JNK and phosphorylates PSD-95. Suppressed 
IL1RAPL1 results in mis-location of PSD-95  in post-synaptic 
membranes and impair synaptic function (Pavlowsky et al., 2010; 
Pozzi et al., 2018).

Oligodendrocytes wrap around the axon to form myelinated 
axons and Ranvier nodes, increasing axonal conduction velocity. 
The differentiation and maturation of oligodendrocyte progenitor 
cells (OPCs) are essential for axonal remyelination. IL-1β also 
inhibits the normal differentiation of OPCs in postnatal sepsis rats 
(Ohtomo et al., 2018). Myelin basic protein (MBP), 2′, 3′-cyclic-
nucleotide 3-phosphodiesterase (CNPase), and proteolipid (PLP) 
are well-recognized protein markers for mature myelination, and 
their expression can be significantly suppressed by IL-1β, resulting 
in axonal hypomyelination (Xie et  al., 2016; Zhou et  al., 2021). 
Furthermore, neurofilament proteins neurofilament-68(NFL), 
neurofilament-160(NFM), and neurofilament-200(NFH) play a 
vital role in providing structural support to neurons, as well as 
determining axonal diameter and conduction velocity. IL-1β can 
inhibit these neurofilament proteins by activating the p38MAPK 
pathway and suppressing FYN/MEK/ERK phosphorylation (Xie 
et  al., 2016; Zhou et  al., 2021). This leads to hypomyelination, 
destruction of myelin sheaths, and damage to Ranvier nodes, 
resulting in small axon diameter and abnormal axon morphology 
(Wang et  al., 2013; Xie et  al., 2016; Han et  al., 2017; Zhou 
et al., 2021).

In addition, IL-1β inhibits the formation of dendrites and 
dendritic spines. Sustained elevations of IL-1β in the hippocampus 
lead to a decrease in the complexity of dendritic trees, including 
reduced branch length, dendritic spine density, and dendritic 
branch density (Liu et al., 2018; Lin L. et al., 2019). Methyl CpG 
binding protein 2 (MeCP2) is a transcriptional regulator involved 
in controlling spine morphogenesis and plasticity. IL-1β-induced 
up-regulation of MeCP2, through the activation of the PI3K/AKT/
mTOR signaling pathway, decreases the expression of PSD-95 and 
spine density (Chao et al., 2007; Cheng and Qiu, 2014; Tomasoni 
et al., 2017; Pozzi et al., 2018). Brain-derived neurotrophic factor 
(BDNF), a member of the neurotrophin family, is known to play a 
vital role in plasticity, neuronal survival, synaptic development, 
dendritic branching, and long-term potentiation (LTP) (Wang 
C. S. et al., 2022). When BDNF binds to its high-affinity receptor 
TrkB, it activates cAMP Response Element-Binding Protein (CREB) 
via the PI3K/Akt signaling pathway and promotes the transcription 
of Arc and Homer1. Arc and Homer1 facilitate the organization of 
filamentous actin (F-actin) and remodeling of spines, which are 
crucial processes for structural alterations of spines and stabilization 
of the potentiation effect (Tong et al., 2012; Giacobbo et al., 2019; 
Eriksen and Bramham, 2022). IL-1β disrupts cytoskeletal alterations 
and reduces the density of mature spines through the 
aforementioned p38MAPK signaling pathway (Tong et al., 2012; 
Herrera et al., 2019) (Figure 2A).
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6.2 Neurotransmitter and receptor

6.2.1 Glutamatergic system
Glutamate is one of the excitatory neurotransmitters in CNS. It is 

primarily synthesized in glial cells as glutamine and transported into 
neurons, where it is converted into glutamate by glutaminase, and 
stored in secretory vesicles. Following stimulation, the vesicles merge 
with the cellular membrane, allowing glutamate to be released into the 
synaptic space (Marmiroli and Cavaletti, 2012). Once it binds to its 
receptors, primarily the N-methyl-D-aspartate receptor (NMDAR) or 
the alpha-amino-3-hydroxy-5-methylisoxazole-4-propinonic acid 
receptor (AMPAR), glutamate induces calcium influx, activates 
intracellular kinases and phosphatases, and facilitate synaptic 
transmission. These processes are involved in various neuronal 
activities, including neuronal maturation, synaptogenesis, learning, 
and memory (Marmiroli and Cavaletti, 2012). The suppression of the 
glutamatergic system has been associated with cognitive dysfunction. 
Pro-inflammatory cytokine IL-1β inhibits glutamate release in 
presynaptic terminals and impairs memory consolidation by 
activating p38MAPK, inhibiting ERK phosphorylation and calcium 
influx (Kelly et al., 2003; Gonzalez et al., 2013; Machado et al., 2015; 
Chakraborty et al., 2023). It has been observed that excessive IL-1β 
also suppresses the function and expression of glutamatergic receptors 
in sepsis models. The reconsolidation of memories following 
contextual fear memory reactivation was impaired as IL-1β reduces 
surface expression of AMPA receptor subunit GluA1 and decreased 
its phosphorylation at Serine 831/845 (Machado et  al., 2018). 
Additionally, IL-1β inhibits the expression of the NR2A and NR2B 
NMDAR subunits. This effect can be reversed by inhibiting IL-1β 
signaling with IL-1ra or by activating NMDAR with an agonist (Di 
Filippo et al., 2013; Taoro-González et al., 2019) (Figure 2B).

Other studies have shown that IL-1β can produce opposite effects 
on the glutamatergic system in different CNS diseases and chronic 
pain (Dong et al., 2017; Qiu et al., 2020; Choi et al., 2021). Activated 
microglia and excessive IL-1β can enhance glutamate release, increase 
NMDAR expression, and result in significant calcium inflow, leading 
to excitotoxicity and oxidative stress damage (Mishra et al., 2012; 
Dong et al., 2017; Qiu et al., 2020). To accurately determine the impact 
of IL-1β on the glutamatergic system in various neuroinflammatory 
diseases, more detailed and disease-specific research is required.

6.2.2 Cholinergic system
Another crucial system involved in cognitive functions is the 

cholinergic signaling system. In neurons, the choline acetyltransferase 
enzyme converts acetyl-CoA and choline into acetylcholine (ACh). 
ACh is stored in vesicles and released into the synaptic cleft in 
response to specific stimuli. ACh activates heterotrimeric G proteins, 
resulting in the gating of cation channels and the activation of 
downstream signaling pathway through binding to muscarinic 
(mAChRs) or nicotinic ACh receptors (nAChRs) (Maurer and 
Williams, 2017). ACh is degraded by the enzyme acetylcholinesterase 
(AChE) into choline and acetic acid and then re-uptaken by neurons. 
Studies have demonstrated that cholinergic transmission through 
M1-type mAChRs and 7nAChRs activates calcium influx, leading to 
increased stability of F-actin and dendritic spines, thereby modifying 
synaptic plasticity and stabilizing LTP (Maurer and Williams, 2017; 
Solari and Hangya, 2018). Elevated levels of IL-1β in the CNS impair 

cognition by upregulating AChE expression and activity, as well as 
suppressing ACh synthesis and release (Main et al., 1993; Li et al., 
2000; Zhang et al., 2014). Inhibiting AChE can raise ACh levels in the 
CNS, thereby improving cognitive function in mice exposed to LPS 
(Liu et al., 2018). The cholinergic anti-inflammatory pathway, which 
is activated by increased ACh binding to 7nAChR, activates both 
STAT3/Jak2 and Nrf2 signaling pathways to prevent NF-κB-induced 
release of proinflammatory cytokines. This pathway is another 
mechanism responsible for the observed protective effect of AChE 
inhibitors on cognitive function (Peña et al., 2010; Zhang et al., 2017; 
Liu et al., 2018; Benfante et al., 2021) (Figure 2B).

6.2.3 GABAergic system
Gamma-aminobutyric acid (GABA) is the principal inhibitory 

neurotransmitter in the brain. Glutamate is converted to GABA by the 
enzyme glutamic acid decarboxylase. GABA is then converted to 
succinic semialdehyde by GABA-transaminase, which is ultimately 
converted to succinate by the enzyme succinic semialdehyde 
dehydrogenase (Sears and Hewett, 2021). GABA is released into the 
synaptic cleft from presynaptic vesicles and binds to postsynaptic 
receptors allowing chloride to enter the neuron and causing 
postsynaptic hyperpolarization. The GABAergic system plays a 
significant role in regulating synaptic plasticity, learning, and memory 
(Sakimoto et al., 2021; Sears and Hewett, 2021). Dysfunction of the 
GABAergic system, particularly with reduced GABA system function, 
leads to cognitive impairment (Prévot and Sibille, 2021). In the 
hippocampal CA1 subfield, activation of the alpha5 subtype of GABAA 
receptors (alpha5GABAA) primarily produces tonic inhibitory 
conductance (Sakimoto et al., 2021). Increased alpha5GABAA activity 
impairs memory performance (Martin et al., 2009, 2010).

IL-1β increases GABA levels in the brain by inhibiting reuptake 
and enhancing GABA release from activated glial cells (Wu et al., 
2007; Lee et al., 2010). Additionally, IL-1β upregulates the expression 
of alpha5GABAA receptors on the surface of proximal dendrites. 
Activation of IL-1β leads to phosphorylation of the 2/3 subunits of 
GABAA receptors at Ser-408-409 through the p38MAPK and 
PI3K-Akt signaling pathways, resulting in the translocation of 
intracellular receptors to the neuronal membrane, and an increase in 
tonic inhibitory conductance (Serantes et al., 2006; Luscher et al., 
2011; Wang et al., 2012; Prévot and Sibille, 2021).

IL-1β also disrupts the excitatory-to-inhibitory GABA switch during 
early CNS development in the context of neonatal sepsis. The balance 
between the chloride importer Na+-K+-2Cl-cotransporter (NKCC1) and 
the chloride exporter K+-Cl− cotransporter (KCC1) determines the 
direction of chloride ion flow across the cellular membrane, which in turn 
determines the depolarization or hyperpolarization of the neuron 
following GABA stimulation. In the early postnatal stage, NKCC1 is the 
primary chloride transporter, leading to the accumulation of high 
chloride concentration inside the neuron and mediating the depolarizing 
effects of GABA (Peerboom et al., 2023). As the CNS matures, KCC2 
becomes the dominant chloride transporter, resulting in a decrease in 
intracellular chloride ion concentration. This causes chloride influx 
following GABA activation, which further hyperpolarizes the neuron 
(Peerboom et  al., 2023). The excitatory-to-inhibitory (E/I) switch in 
GABA function during CNS development is essential for cell proliferation, 
differentiation, early network wiring, synapse development, and neural 
plasticity (Deidda et al., 2015a; Virtanen et al., 2021; Peerboom et al., 
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2023). Our recent research has shown that increased IL-1β in the 
hippocampus, caused by severe inflammation, upregulates KCC2 
expression during early CNS development, accelerating the GABA E/I 
switch and causing long-lasting cognitive dysfunction. Specific 
knockdowns of IL-1β or KCC2 expression can reverse this severe 
inflammation-induced cognitive impairment (Zhang et  al., 2022). 
Interestingly, others have reported the opposite effect of IL-1β on the 

GABA E/I switch, where overexpression of IL-1β following maternal 
immune activation (MIA) leads to increased expression of the NKCC1 
transporter and delayed GABA E/I switch in offspring. The defected 
GABA E/I switch has been associated with CNS diseases such as epilepsy 
(Corradini et al., 2018). Furthermore, IL-1β-mediated E/I switch defects 
was also involved in other neurodevelopmental disorders, including 
Down syndrome and autism spectrum disorders (ASD) (Tyzio et al., 

FIGURE 2

The effect of IL-1β on neuron development and synapse formation. Excessive IL-1β suppresses the formation of dendrites and dendritic spines, which 
results in a reduction of the complexity of dendrites and the density of spines. It also inhibits the expression of myelination protein, resulting in axonal 
hypomyelination (A). IL-1β suppresses expression of receptors and release of excitatory neurotransmitters, culminating in inhibition of the 
glutamatergic system and cholinergic system (B). IL-1β increases the expression of the GABA receptor and the release of GABA. IL-1β interferes with 
chloride homeostasis by changing NKCC1/KCC2, which delays the E/I switch (C).
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2014; Deidda et al., 2015b; Inui et al., 2015). Inhibiting IL-1β signaling can 
be improve cognitive impairment in certain disorders (Figure 2C).

6.3 LTP

Long-term potentiation (LTP) is a process where synaptic 
efficacy is enhanced following high-frequency stimulation. It is 
considered as the cellular foundation for memory and learning 
(Dringenberg, 2020). Excitatory neurotransmitters activate 
postsynaptic NMDAR, resulting in the influx of calcium into the 
postsynaptic compartment. This calcium influx triggers a series of 
events, including the translocation of actin and its regulators to the 
dendritic spine. The translocation of actin to the spine is followed 
by the translocation of AMPA receptors (AMPARs), actin-binding 
proteins, and kinases, ultimately leading to the expansion of the 
dendritic spine (Bosch et  al., 2014). AMPARs are ionotropic 
transmembrane receptors for glutamate that facilitate rapid synaptic 
transmission in the central nervous system (Armstrong et al., 2006). 
The translocation of these components to the synapse is essential 
for synaptic plasticity (Hanley, 2018). Furthermore, an increase in 
postsynaptic Ca2+ concentration promotes Ca2+/calmodulin-
dependent protein kinase II (CaMKII) to phosphorylate various 
substrates, including the transcription factors CREB, GluA, and 
GluN2A/2B, as well as the synaptic scaffolding protein Homer and 
PSD-95. These substrates can be phosphorylated to activate multiple 
downstream signaling pathways and expedite the synaptic 
consolidation process (Hayashi, 2021).

In the CNS, dendritic spines, which resemble tiny mushrooms-
like protrusions on dendrites, generally serve as the sites for the 
formation of excitatory synapses (Bosch and Hayashi, 2012; Bosch 
et al., 2014). In summary, the formation and maintenance of LTP, a 
key mechanism in learning and memory, depend on the normal 
structure and function of synapses, particularly at the sites of dendritic 
spines in the CNS (Choi and Kaang, 2023). Therefore, it is unsurprising 
to find that excessive expression of IL-1β in CNS affects the 
development of the synapse’s axon, dendrite, and dendritic spine as 
well as its cholinergic, glutamatergic, and GABAergic neurotransmitter 
systems, thereby inhibiting long-term potentiation (LTP) and 
impairing cognition (Bosch et al., 2014; Hayashi, 2021). The specific 
mechanisms by which IL-1β affects LTP are not fully understood and 
should be investigated within a disease-specific context.

7 Feed-forward loop in 
neuroinflammation

The sustained elevation of IL-1β levels in the CNS after a single 
dose of LPS treatment raises another important and interesting 
question: what is the underlying mechanism for prolonged microglia 
activation and IL-1β release after transient systemic inflammation? In 
the context of neuroinflammation, researchers have identified a feed-
forward loop between neurons and microglia (Terrando et al., 2010; 
Lan et  al., 2015). They have discovered that the IL-1 receptor 
antagonist (IL-1ra) not only decreases IL-1β-induced long-lasting 
cognitive impairments but also suppresses microglia activation and 
IL-1β production (Terrando et al., 2010; Wang et al., 2013; Lan et al., 

2015). In the absence of pathogen or PAMPs, microglia are activated 
by DAMPs, which are only produced by dying cells (Lehnardt, 2010; 
Ransohoff and Brown, 2012). Together, they have concluded that 
IL-1β-mediated neuroinflammation caused neuronal death, which 
then released DAMPs to activate microglia and release more IL-1β, 
creating a feed-forward loop that leads to chronic neuroinflammation 
and long-term cognitive dysfunction (Terrando et al., 2010; Wang 
et al., 2013; Lan et al., 2015).

Endogenous DAMPs are molecules that promote inflammation 
and passively leak out of dying cells when membranes rupture. 
Numerous cell death processes, including necrosis/necroptosis, 
pyroptosis, and ferroptosis, are connected to the release of DAMPs 
(Murao et al., 2021). All these different types of cell death have been 
reported in the pathological development of sepsis and cognitive 
dysfunction associated with sepsis (Fu et al., 2019; Zhou et al., 2019; 
Chu et al., 2022; Liao et al., 2022; Wang J. et al., 2022; Liao et al., 
2023). Our recent research showed that necrostatin-1 and xenon 
were protective against sepsis-induced brain injury by preventing 
necroptosis. Necroptosis was activated via receptor interacting 
protein 1/3 (RIP1/3), which contributed to impaired 
neurodevelopment in neonatal sepsis survivors (Liao et al., 2022, 
2023). The NLRP3/caspase-1 pathway-induced pyroptosis has also 
been linked to cognitive impairment following sepsis. Inhibiting 
pyroptosis by inhibiting NLRP3 and caspase-1 expression has 
shown protective effects on cognitive impairment following sepsis 
in newborn rats (Fu et al., 2019; Zhou et al., 2019). According to 
Wang (Wang J. et al., 2022) and Chu (Chu et al., 2022), ferroptosis 
contributed to cognitive dysfunction following SAE via the Nrf2/
ferroptosis-related protein (GPX4) signaling pathway. In 
conclusion, all these types of cell death that release DAMPs may 
create a feed-forward loop that eventually results in chronic 
neuroinflammation and cognitive impairment after sepsis. To break 
the feed-forward cycle, future research should focus on the 
molecular mechanisms linking cell death and persistent 
neuroinflammation. It should also investigate possible therapeutic 
interventions for sepsis-related cognitive impairment (Figure 3).

8 Conclusion

Significant advancements have been made in the past two decades 
regarding our understanding of the correlation between 
neuroinflammation and post-septic cognitive impairment. This review 
encompasses an examination of the diverse effects of IL-1β generated 
following microglial activation on cognitive impairment, as well as 
delves into the underlying molecular mechanisms behind microglia 
activation, the influence of IL-1β on synapse development, and the 
impact of impairment on synaptic function. Furthermore, we explore 
the feed-forward loop mechanism, which relies on different types of 
cell death and releases endogenous DAMPs to activate the innate 
immune system and create persistent neuroinflammation. Researchers 
have conducted experimented utilizing several approaches based on 
these mechanisms, yielding encouraging results. Given the intricate 
interplay among these processes, a multifaceted approach should 
be employed in future preclinical and clinical trials to target various 
pathways in order to prevent or treat cognitive impairment 
following sepsis.
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FIGURE 3

The feed-forward loop in chronic neuroinflammation. Elevated IL-1β induces neuronal death, such as necroptosis, pyroptosis and ferroptosis, leading 
to the release of DAMPs, which in turn activate microglia and result in more IL-1β release and chronic neuroinflammation.
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