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Motion sensitive network for
action recognition in control and
decision-making of autonomous
systems

Jialiang Gu*, Yang Yi and Qiang Li

Computer Science and Engineering, Sun Yat-sen University, Guangdong, China

Spatial-temporal modeling is crucial for action recognition in videos within the

field of artificial intelligence. However, robustly extracting motion information

remains a primary challenge due to temporal deformations of appearances

and variations in motion frequencies between di�erent actions. In order to

address these issues, we propose an innovative and e�ective method called the

Motion Sensitive Network (MSN), incorporating the theories of artificial neural

networks and key concepts of autonomous systemcontrol and decision-making.

Specifically, we employ an approach known as Spatial-Temporal Pyramid

Motion Extraction (STP-ME) module, adjusting convolution kernel sizes and

time intervals synchronously to gather motion information at di�erent temporal

scales, aligning with the learning and prediction characteristics of artificial

neural networks. Additionally, we introduce a new module called Variable Scale

Motion Excitation (DS-ME), utilizing a di�erential model to capture motion

information in resonance with the flexibility of autonomous system control.

Particularly, we employ a multi-scale deformable convolutional network to alter

the motion scale of the target object before computing temporal di�erences

across consecutive frames, providing theoretical support for the flexibility of

autonomous systems. Temporal modeling is a crucial step in understanding

environmental changes and actions within autonomous systems, and MSN,

by integrating the advantages of Artificial Neural Networks (ANN) in this task,

provides an e�ective framework for the future utilization of artificial neural

networks in autonomous systems. We evaluate our proposed method on three

challenging action recognition datasets (Kinetics-400, Something-Something

V1, and Something-Something V2). The results indicate an improvement in

accuracy ranging from 1.1% to 2.2% on the test set. When compared with

state-of-the-art (SOTA) methods, the proposed approach achieves a maximum

performance of 89.90%. In ablation experiments, the performance gain of this

module also shows an increase ranging from 2% to 5.3%. The introduced

Motion Sensitive Network (MSN) demonstrates significant potential in various

challenging scenarios, providing an initial exploration into integrating artificial

neural networks into the domain of autonomous systems.
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1 Introduction

With the rapid development of computer vision technology,

action recognition in videos (Sun et al., 2022) has become a

crucial challenge, finding applications in areas such as autonomous

driving and virtual reality. In this context, video action recognition

is not just an academic research field but a key component for

addressing real-world problems and enhancing the intelligence

of AI systems. Recently, action recognition methods based on

convolutional neural networks (CNNs) have gained significant

attention. Among them, 3D convolutional networks are renowned

for directly extracting spatiotemporal features from videos, but they

suffer from high computational costs, limiting their efficiency for

human action recognition. On the other hand, 2D convolutional

networks (Yao et al., 2022), especially two-stream networks, extract

motion information by capturing multimodal cues. However,

fusing multimodal information still poses challenges, and the

pre-computation of optical flow is computationally expensive

(Alayrac et al., 2022; Islam et al., 2023). In recent years, successful

approaches have emerged by extracting motion features from RGB

using embeddable modules within 2D convolutional networks,

achieving satisfactory performance at a lower cost (Wu et al., 2020).

Although these modules capture some motion features, they may

overlook spatial scale variations over time and inconsistent action

frequencies across different actions. This motivates us to propose a

novel approach aimed at handling spatiotemporal features in video

action recognition more comprehensively and efficiently.

This paper explores the utilization of artificial neural networks

(ANNs) in the context of spatial and temporal modeling,

contributing to the theoretical foundations and practical

applications of ANNs in autonomous system control and decision-

making. However, applications in the field of ubiquitous Human

Activity Recognition (HAR) have been relatively limited. To

address the issue of information loss during channel compression,

researchers have proposed a multi-frequency channel attention

framework based on Discrete Cosine Transform (DCT) to better

compress channels and utilize other frequency components (Xu

et al., 2023). On the other hand, Federated Learning (FL) shows

potential in HAR tasks, but the non-IID nature of sensor data poses

challenges for traditional FL methods. To tackle this, researchers

have introduced the ProtoHAR framework, which leverages global

prototypes and personalized training to address representation

and classifier issues in heterogeneous FL environments (Cheng

et al., 2023). Additionally, wearable sensor-based HAR has gained

significant attention, where the phenomenon of channel folding

in existing methods impairs model generalization. Researchers

have proposed a channel equalization method to balance feature

representation by reactivating suppressed channels (Huang et al.,

2022). These studies provide important references and guidance

for the development and practical applications in the HAR field.

In the realm of video-based action recognition (Zheng et al.,

2022a), complexities arise from the need to handle intricate data

distributions and extract both spatial and temporal information

concurrently. Distinguishing diverse action classes, addressing

scale changes, and accommodating inconsistent action frequency

require sophisticated spatial and temporal modeling (Cob-Parro

et al., 2024). For instance, discerning actions like "Running" from

“Walking” involves not only recognizing visual tempo differences

but also understanding spatial scale variations. Similarly, “Brush

Teeth” and “Apply Eye Makeup” have great differences in spatial

scale despite sharing high similarities in the temporal dimension

(Kulsoom et al., 2022). Learning the intention of human action

from such data in videos poses a great challenge (Zheng et al.,

2024). In certain scenarios, fine-grained recognition of actions

becomes crucial, requiring more detailed spatial and temporal

modeling. Learning the intent behind human behavior from

such data in videos poses a significant challenge. Additionally,

there are substantial challenges in the fusion of multimodal

information, especially when it involves additional modalities such

as optical flow. Existing methods face difficulties in effectively

integrating different modalities, and the computational cost of

pre-computing modalities like optical flow remains a bottleneck.

Similarly, modeling actions in long-term videos often encounters

challenges related to memory. Models may struggle to capture the

evolution of actions over long time spans and maintain consistent

understanding throughout the entire sequence. Imbalance and

scarcity of samples across different action categories in the

dataset present another problem, as the models may exhibit

bias when learning minority class actions, thereby affecting

overall performance. In some application scenarios, real-time

requirements for action recognition models are high. For example,

in autonomous driving systems, achieving high accuracy while

ensuring fast inference speed to adapt to real-time environments is

crucial (Lin and Xu, 2023). Meanwhile, action recognition models

are susceptible to adversarial attacks, where subtle perturbations to

the model inputs can lead to misclassification. Improving model

adversarial robustness and resilience remains a challenge (Chen

et al., 2019).

In this paper, we propose a new approach called Motion

Sensitive Network (MSN) that addresses the challenge of efficiently

recognizing complex actions with varying spatial scales and visual

tempos. To achieve this, we introduce two new modules: the

Temporal Spatial Pyramid Motion Extraction (STP-ME) module

and the Deformable Scales Motion Excitation (DS-ME) module.

The STP-ME module extracts implicit motion information by

taking consecutive frames as input and using feature difference to

focus on the position and tempo of the action occurring between

frames. This information is incorporated into the single RGB frame

(Liu et al., 2021), allowing for better alignment of the temporal

and spatial dimensions at different scales. The DS-ME module

addresses irregular deformation of the action subject in space and

long-range feature alignment issues. It uses multiscale deformable

convolutions to model the complete action region (He and Tang,

2023), allowing for more accurate representation of different

motion splits. Additionally, to address numerical problems with

negative values, we use the absolute value of the feature. Overall,

our framework can be broken down into three steps: extracting

effective motion information in the early stage, giving higher

weight to motion features in the later stage, and doing numerical

processing to avoid harmful results during processing (Luo, 2023).

Our proposed MSN method effectively handles the challenges of

action recognition, improving on existing 2D and 3D CNN-based

methods. By leveraging ANNs in spatial and temporal modeling,

this work contributes to enhancing the theoretical foundations and
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practical applications of ANNs in autonomous system control and

decision-making.

The contributions of this paper can be summarized in the

following three aspects:

(1) The paper introduces a novel approach known as theMotion

Sensitive Network (MSN) for action recognition. This method

is characterized by its simplicity and effectiveness in accurately

estimating scale variations, thereby enhancing overall network

performance in action recognition tasks.

(2) The paper proposes a unique Time-Space Pyramid Motion

Extraction (STP-ME) module. This module leverages a

pyramid structure to extract multi-scale temporal features,

thereby fortifying the model’s robustness across diverse

action scenarios. The STP-ME module is designed to address

challenges associated with scale variations and capture motion

information across different time scales.

(3) The paper introduces the Variable Scale Motion Excitation

(DS-ME) module as an innovative solution to challenges

posed by unique and irregular motion patterns in dynamic

scenes. This module utilizes deformable scale convolutions to

adaptively modify the motion scale of target objects before

computing temporal differences on consecutive frames. This

approach aims to enhance the model’s ability to handle objects

with varying scales during motion.

The organizational structure of this paper is as follows: The

introduction (Section 1) sets the stage by presenting the

background, significance, and motivation for the research,

highlighting challenges in existing action recognition methods,

and outlining the contributions of the proposed Motion Sensitive

Network (MSN). Section 2, “Relevant Work,” conducts a

comprehensive review of existing literature, emphasizing prior

research onmotion sensitivity in action recognition and identifying

gaps in current approaches. The third section, “Method,” provides

a detailed exposition of the MSN architecture, elucidating its

design principles and showcasing its motion-sensitive modules.

Moving on to Section 4, “Experiment,” the paper delves into

the experimental setup, detailing the datasets used, metrics

employed for performance assessment, and the methodology for

training MSN, while Section 5, “Discussion,” critically analyzes

experimental results. This section interprets findings, assesses

MSN’s effectiveness in addressing motion sensitivity, and discusses

potential applications and limitations. Finally, in Section 6,

“Conclusion,” the paper synthesizes key discoveries, underscores

the contributions made by MSN, discusses broader implications

for the field of action recognition, and proposes avenues for

future research. This organized structure guides readers through a

coherent narrative (Han et al., 2022), facilitating a comprehensive

understanding of the research from problem introduction to

proposed solution, experimental validation, discussion, and

ultimate conclusion.

2 Related work

The realm of action recognition within computer vision has

undergone significant exploration (Zhang et al., 2022; Dai et al.,

2023; Wu et al., 2023), with convolutional neural networks (CNNs)

at the forefront of innovation (Xu et al., 2022). Two major

categories, two-stream CNNs and 3D CNNs, have shaped the

landscape. Next, we will delve into the theoretical foundations and

practical applications of artificial neural networks in the field of

autonomous system control and decision-making.

Simonyan and Zisserman (2014) proposed a multi-stream

network for action recognition, consisting of two separate

branches: a temporal convolutional network and a spatial

convolutional network. Both branches have the same architecture,

with the temporal stream learning motion features from stacked

optical flows and the spatial stream extracting spatial features

from still images (Wang et al., 2020). The two streams are

then fused to obtain the final classification result. However, this

approach has some drawbacks. Firstly, the computational cost

is relatively high, particularly due to the complexity of optical

flow computation. The stacking of optical flows may result in

expensive computational overhead, especially when dealing with

long video sequences or high frame-rate videos. Secondly, the

method’s reliance on optical flow makes it sensitive to video noise

and motion blur, impacting the reliability of accurately extracting

motion features. Additionally, the dependence on optical flow

introduces sensitivity to video noise and motion blur, affecting the

reliability of accurately extracting motion features. Moreover, the

challenge of modal fusion is also a concern, as effective fusion

requires careful design to ensure that features extracted from

both streams collaborate without interference. Lastly, the method

may have limitations in modeling spatiotemporal relationships,

especially in complex motion scenarios, such as non-rigid motion

or rapidly changing movements. This may result in constraints

on the comprehensive capture of complex spatiotemporal dynamic

relationships. Wang et al. (2016) proposed a Temporal Segment

Network (TSN) based on the two-stream CNN, which utilizes

a sparse time sampling strategy to randomly extract video

fragments after time-domain segmentation. TSN addresses the

insufficient modeling ability of long-range temporal structure

in two-stream CNNs. However, this approach may have some

potential limitations. Sparse temporal sampling strategies may

result in the loss of crucial temporal information during the

model training process, especially for modeling long-duration

actions, which may not be adequately captured. Furthermore,

this randomness in sampling may hinder the model’s ability to

effectively capture critical temporal patterns for specific types of

actions, thereby impacting its performance. Building on TSN,

Zhou et al. (2018) attempted to extract connections between video

frames of different scales by convolving video frames of different

lengths, performing multi-scale feature fusion, and obtaining

behavior recognition results. However, applying convolution to

video frames of different lengths may increase the computational

complexity of the model in handling information at different

scales, thereby impacting the training and inference efficiency

of the model. He et al. (2019) proposed a local and global

module to hierarchically model temporal information based on

action category granularity, while Li et al. (2020) proposed motion

excitation and multiple temporal aggregation modules to encode

short- and long-range motion effectively and efficiently, integrated

into standard ResNet blocks for temporal modeling. Wang et al.

(2021) focused on capturing multi-scale temporal information
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for efficient action recognition, presenting a video-level motion

modeling framework with a proposed temporal difference module

for capturing short- and long-term temporal structure. However,

these methods may share some potential common drawbacks.

Firstly, approaches such as local and global modules based on

action category granularity, hierarchical networks from coarse to

fine, motion excitation, multiple temporal aggregation modules,

video-level motion modeling frameworks, and temporal offset

modules may require more complex network structures and

additional parameters to achieve layered modeling of temporal

information. This may lead to increased computational complexity,

heightened training difficulty, and an increased demand for

hardware resources. Secondly, these methods might necessitate

carefully designed hyperparameters and model structures to

adapt to different time scales and action categories. In practical

applications, this could require extensive parameter tuning and

model optimization, raising the method’s usage threshold and

operational difficulty. Additionally, these methods may encounter

memory issues when dealing with long temporal video sequences

in temporal modeling. The model might struggle to effectively

capture the evolution of actions over extended time ranges and

maintain consistent understanding throughout the entire sequence.

When handling long temporal videos, these methods might need

additional mechanisms to ensure the model’s effectiveness and

stability.

Another type of method attempts to learn spatio-temporal

features directly from RGB frames using 3D CNNs. The 3D

convolutional network for action recognition was introduced

by Yang et al. (2019), which uses a 3D convolution kernel to

perform 3D convolution on the input and directly extracts spatio-

temporal features along the spatial and temporal dimensions of the

video. Tran et al. (2018) constructed a C3D network framework

using 3D convolution and 3D pooling operations. Carreira and

Zisserman (2017) combined a two-stream network and a 3D CNN

to propose an I3D network framework based on the inception-

V1 model, using RGB and optical flow as inputs. Diba et al.

(2018) and others improved the I3D by using different scales

of convolution to build the TTL layer and using 3D-DenseNet

as the basic network to build the T3D network framework. Qiu

et al. (2019) and others proposed a P3D network, which uses 133

convolution and 311 convolutions instead of 333 convolutions to

greatly reduce the amount of computation. Nevertheless, directly

processing videos using 3D convolutional networks may result

in a larger number of parameters along the temporal dimension,

increasing the risk of overfitting. Tran D proposed a similar

structure called R(2+1)D. Our proposed method is inspired by

TDN and TEA with short- and long-range temporal modeling,

taking several continuous frames as input. Our work differs from

previous works in that we employ a strategy for long- and short-

range temporal modeling to better extract motion information.

Although our approach shares similarities with these works, we

focus on addressing the problem of spatio-temporal inconsistency

(Zheng et al., 2022b). In addition, in the field of autonomous

driving, integrating MSN into autonomous systems offers potential

advantages for enhancing the environment perception and decision

support of the vehicle system. By performing real-time analysis

of video and sensor data, MSN can perceive the surrounding

environment, accurately recognize the movements of other

vehicles, pedestrians, and obstacles, thereby providing autonomous

vehicles with richer environmental information. This enables

vehicles to more accurately predict the behavior of other traffic

participants, thereby improving overall driving safety. However,

this application also faces some challenges, especially in terms

of real-time requirements, particularly in autonomous driving

scenarios that require immediate decision-making. Accurate and

efficient action recognition is crucial for rapidly changing traffic

environments, making it imperative to address the reduction of

algorithm inference time. By incorporating short- and long-range

temporal modeling (Wu et al., 2021), our approach aims to enhance

the efficiency of action recognition methodologies, showcasing the

potential of artificial neural networks in the complex landscape of

autonomous system control and decision-making.

3 Method

The overall flowchart of the algorithm in this article is shown in

Figure 1:

3.1 MSN sports sensitive network

The MSN is a video-level framework that learns action models

using entire video information. To improve efficiency, we follow the

TSNTSN framework with a sparse and holistic sampling strategy

for each video. Our main contribution is to fully consider the

scale changes in the space-time dimension when obtaining implicit

action information through feature difference and inject this action

information into the network in two ways: element-wise addition of

the implicit action information extracted by the STP-ME module

to the keyframe-wise information extracted by the backbone, and

embedding the DS-ME module into the CNN block to increase

the processing weight of motion features adaptively. Its structural

diagram is shown in Figure 2.

In first stage, each video V is divided into T segments of

equal duration without overlapping. We randomly sample 5 frames

Ii = Ii
k−2

, Ii
k−1

, Ii
k
, Ii
k+1

, Ii
k+2

from each segment. We select the

third frame in as the keyframe and totally obtain T key frames

Ik = I1
k
, ..., IT

k
. These keyframes are separate fed into a 2D CNN

to extract keyframe-wise features F = [F1, F2, ..., FT]. Besides we

applied STP-ME module to extract motion information from the

whole 5 frames and supplied it to the original keyframe process

pipeline, so as to increase the amount of effective information input

and improve the feature’s representation power. Specifically, we

fuse the keyframe-wise feature and implicit motion 1 information

using the following Equation 1:

F′ = Fi + S(Ii) (1)

Where F′ denotes the fused feature for segment i, Fi is the

keyframe-wise feature, S denotes our STP-ME module, and it

extracts implicit motion information from adjacent frames Ii.
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FIGURE 1

Overall algorithm flowchart. The input section comprises video frames and an action label dataset, where video frames capture the spatiotemporal

information of actions, and the action label dataset is used to supervise the model learning process. Subsequently, video frames undergo processing

through ResNet and 2D CNN to extract advanced features and key frames, providing a robust foundation for subsequent modules. The STP-ME

module addresses the consistency of motion information across di�erent temporal scales using a pyramid structure. This structure enables the

module to adaptively handle motion information at di�erent temporal scales, enhancing the model’s robustness to scale variations. By applying the

pyramid structure to consecutive frames, the STP-ME module focuses on motion information at di�erent temporal scales, including modeling the

position and motion rhythm between frames at each pyramid level. The DS-ME module introduces deformable scale convolutions, adaptingively

modifying the motion scale of target objects to address unique and irregular motion patterns in dynamic scenes. Adopting multi-scale deformable

convolutions covers a broader range of motion, allowing the DS-ME module to intricately model the entire action region and improve modeling

accuracy for objects at di�erent scales, particularly when dealing with spatiotemporal inconsistency challenges. Within the overall network

architecture, the MSN Sports Sensitive Network’s two stages process di�erent levels of feature representations to comprehensively express action

information in the video. Finally, the model aggregates multi-category predictions at each time step through Temporal Aggregation, producing the

ultimate action classification results.

In the second stage, we embed the DS-ME module into the

CNN block and calculate the channel weight by multiscale cross-

segmentation difference. In this way, we could distinguish some

feature channels that contain different scales of motion information

and enhance these channels to make our net-work pay more

attention to the motion. We establish the channel enhance process

as follows (Equation 2):

F
′

= F + D(F)⊙ F (2)

WhereD represents our DS-MEmodule, F is the origin features

and F′ is the enhanced features. In the current implementation,

we only consider adjacent segment-level information for channel

weight calculation in each DS-MEmodule, Details will be described

in the following subsections.

3.2 STP-ME module

In a video, the action is reflected in the change of pixel value

between adjacent frames. We argue that modest variances across

adjacent frames respond well to the nature of the action. Many

previous works sample a single frame from a segment which

extracts appearance information instead of the motion information

contained in each segment. To tackle this problem, we propose the

STP-ME module shown in Figure 3.

In STP-ME module, we selected 5 frames in a segment

and extracted implicit motion information by feature difference.

Furthermore, the time interval often shows a positive correlation

with the variance of spatial scale. In specific, as the time interval

increases, the spatial scale also increases. Therefore, we aligned

the temporal dimension with the spatial dimension from the

perspective of scales and extracts implicit motion information from

adjacent frames by three steps. Then, make each step corresponds

to a different temporal spatial scale.

(1) In the first step, we set the time interval is 1 frame. For each

sampled frame Ii, we extract several feature differences and then

stack them along channel dimension (Equations 3–6):

F12 = conv1(I2)− conv1(I1) (3)

F23 = conv1(I3)− conv1(I2) (4)

F34 = conv1(I4)− conv1(I3) (5)

F45 = conv1(I5)− conv1(I4) (6)

Where Fij is feature difference between Ii and Ij, conv1 is a

convolution layer.

(2) At the second step, we set the time interval is 2 frames. We

select 3 featuremap contains I1, I3, I5 to extract themid step feature

and stack it (Equations 7, 8).

F13 = conv2(I3)− conv2(conv1(I1)) (7)
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FIGURE 2

Structure diagram of MSN Sports Sensitive Network. First, input samples containing video frames and corresponding action labels are provided to

supervise the model learning process. Proceeding to the First Stage, it is subdivided into Stage1, Stage2, STP-MEM, and Res_block. In Stage1 and

Stage2 of the First Stage, advanced feature representations are extracted from the input samples. The STP-MEM module in the First Stage enhances

the representation of motion information, adaptively handling motion information at di�erent temporal scales through a pyramid structure, thereby

improving the model’s robustness to scale variations. Meanwhile, the Res_block strengthens feature propagation through residual connections,

helping alleviate the vanishing gradient problem and making the model easier to train. Moving on to the Second Stage, which includes Stage3,

Stage4, Stage5, Bottleneck, CNN, DS-MEM, and BN. In each stage of the Second Stage, the model further processes features obtained from the First

Stage, gradually forming more abstract and high-level representations. The Bottleneck structure is employed for dimensionality reduction and

increased network depth to extract more expressive features. CNN and DS-MEM modules in this stage introduce deformable scale convolutions to

better model irregular and unique motion patterns, enhancing modeling accuracy for objects at di�erent scales. BN normalizes features, accelerating

convergence, and improving the training stability of the model. Finally, classification is performed through the Classify Head, providing predictions

for action categories. The entire flowchart integrates these key components organically, forming a motion-sensitive action recognition network with

powerful modeling capabilities for complex motion scenes.

F35 = conv2(I5)− conv2(conv1(I3)) (8)

(3) At the third step, we set the time interval is 4 frames. We

select 2 feature maps in last step [f1; f5] to extract the final step

feature (Equation 9).

F15 = cons3(conv2(conv1(I5)))− conv3
(

conv2 (conv1 (I1))
)

(9)

(4) Finally, we realize the consistency of each dimension by

up-sampling fu the above features, and fuse them by elementwise

addition (Equation 10).

F = concat(F12, F12, F12, F12)+ fu (concat (F12, F12)) + fu (F15)

(10)

The implicit motion information F is fused with the keyframe

features, so that the original frame-level representation is aware of

motion pattern and able to better describe a segment.

3.3 DS-ME module

The STP-ME module provides a powerful representation

for capturing spatial-temporal features, including local motion

information within a segment. However, it is essential to leverage

this motion information in the second stage to enhance action

recognition. While the channel attention strategy has been shown

to improve the importance of certain types of information, for

action recognition, we need to consider more details. We observe

that a complete action is comprised of different scales of motion

split and irregular deformations of the action subject in space.

To address these issues, we propose the DS-ME module, which

employs a multiscale convolution kernel to capture different scales

of motion splits and achieve more accurate channel attention

calculation. In addition, to smooth the irregular deformation of

the action subject, we devise a deformable CNN architecture, as

illustrated in Figure 4.

The proposed DS-ME module operates as follows. Firstly, we

compress the feature dimension by a ratio of r and split the feature

segmentation in the temporal dimension as follows (Equation 11):

[X1,X2 , ... ,Xt] = fsplit(Conv(Fin)) (11)
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FIGURE 3

Structure diagram of STP-ME module. The components Ii−2, Ii−1, Ii, Ii+1, and Ii+2 represent frames at the current time step and two preceding and two

succeeding time steps, respectively. These frames are introduced as inputs to the STP-ME module, capturing action information in the video at

di�erent time steps. Through these inputs, the STP-ME module aims to address the consistency of motion information across various time scales.

The primary task of the STP-ME module is to adaptively process motion information at di�erent time scales through a pyramid structure. By applying

the pyramid structure between consecutive frames, the module can focus on motion information at di�erent time scales, including modeling the

position and motion rhythm between frames. This design enables the STP-ME module to better capture motion information at di�erent time scales,

enhancing the overall model’s robustness to scale variations.

Where [X1,X2, ...,Xt] is a set of split features in the temporal

dimension with a size of T, Conv is the channel-wise convolution,

and Fin is the input feature.

Next, these split features undergo three different scale

Deformable CNN (DCNN) operations, namely: (1) a 1 × 1

deformable CNN, (2) a 3 × 3 deformable CNN, and (3) a 5

× 5 deformable CNN. This operation is computed as follows

(Equations 12–14):

X1
t = DCNN1 (Xt) (12)
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FIGURE 4

Structure diagram of DS-ME module. The module takes an input tensor [N, T, C, H, W], where N is batch size, T is the number of time steps, and C is

the channel dimension. Initial processing involves 1 × 1 and 2D convolutions to adjust channels and extract spatial features, forming a robust

foundation for subsequent spatiotemporal modeling. The Temporal Split operation separates the temporal dimension into X(t) and X(t+1),

introducing temporal dynamics. These undergo independent 1x1 convolution, deformable convolution (DCNN) with 3x3 kernel, DCNN, and 5 × 5

convolution to intricately model spatiotemporal information, particularly addressing irregular motion patterns. Further operations, including

Concat&fabs, pooling, 1 × 1 convolution, 2D convolution, and Sigmoid, fuse and process features, achieving nuanced spatiotemporal modeling. This

enhances adaptability to diverse scales and irregular motions, ultimately improving action recognition. The output is a tensor [N, T, C, H, W],

representing motion excitation distribution per time step.

X2
t = DCNN2 (Xt) (13)

X3
t = DCNN3 (Xt) (14)

Where X1
t ,X

2
t ,X

3
t are the deformable features from Xt . After

that, we could fused X1
t ,X

2
t ,X

3
t and calculate feature difference

between consecutive segments as follows (Equation 15):

Xdiff = (X1
t+1 + X2

t+1 + X3
t+1)− (X1

t + X2
t + X3

t ) (15)

where Xdiff is the segment-wise feature difference. To avoid the

loss of information caused by negative numbers after subtraction,

we add an additional absolute value operation fabs and then

perform the maximum value pooling operation fpooling as follows

(Equation 16):

Wraw = fpooling

(
∣

∣

∣

∣

Xdi
f

f ′

∣

∣

∣

∣

)

(16)

where Wraw is the raw weight. To obtain the channel attention

weight, we upgrade the channel dimension with a 1x1 convolution

conv and activate it using the sigmoid function Wraw as follows

(Equation 17):

W = Fsig(conv (Wraw)) (17)

Finally, we enhance the video-level representation through

a channel attention operation and combine it with the original

feature map via a residual connection.

The MSN framework is based on sparse sampling of TSN and

operates on a sequence of frames uniformly distributed over the

entire video. The framework employs a two-stage motion modeling

mechanism that focuses on capturing motion information at

different space-time scales. The STP-ME module is inserted in the

early stages for fine and low-level motion extraction, while the DS-

MEmodule is used in the latter stages to further strengthen the role

of action information in the network. We use a ResNet backbone

for the MSN instantiation. Similar to V4D, we use the first two

stages of ResNet (also known as the early stage) for implicit motion
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information extraction within each segment using the STP-ME

module. The latter three stages of ResNet (also known as the later

stage) are embedded with the DS-MEmodule for channel attention

by capturing different scales of motion splits across segments. To

fuse motion information with spatial information in the early stage,

we add residual connections between the STP-ME module and

the main network for Stage 1 and Stage 2. To enhance the action

feature, we embed the DS-ME module to the CNN block and add a

channel attention mechanism in each residual block of Stages 3-5.

The pseudocode of the algorithm in this paper is shown in

Algorithm 1:

1: Input: Training data D from Kinetics-400,

Something-Something V1, Something-Something V2

datasets

2: Initialize: MSN model parameters 2 randomly

3: Set learning rate η, batch size B

4: for each training epoch do

5: for each mini-batch B in D do

6: Sample video clips C from B

7: Extract spatial features Xs and temporal

features Xt from C

8: Compute motion stream features Xm using optical

flow or other motion extraction methods

9: Generate spatiotemporal proposals using STP-ME:

Pstp = STP_ME(Xs,Xt)

10: Generate discriminative spatiotemporal

proposals using DS-ME: Pds = DS_ME(Xs,Xt)

11: Fuse spatiotemporal proposals using MSN:

Xfuse = MSN(Pstp ,Pds,Xm)

12: Perform action recognition using the fused

features: Ypred = Action_Recognition(Xfuse)

13: Compute loss L using ground truth labels Ygt

14: Update MSN parameters using backpropagation:

2 = 2 − η ∂L
∂2

15: end for

16: Evaluate model on validation set for metrics:

Accuracy, Precision, Recall

17: end for

Algorithm 1. MSN training process.

4 Experiment

The experimental flow chart of this article is shown in Figure 5:

4.1 Lab environment

• Hardware environment:

This experiment utilized a high-performance computing

server that offers excellent computational and storage

capabilities, providing robust support for research on motion-

sensitive network action recognition. The server is equipped

with an Intel Xeon E5-2690 v4 @ 2.60GHz CPU, a high-

performance multi-core processor that delivers substantial

computational power suitable for deep learning tasks. With

512GB of RAM, the server ensures abundant memory

resources for model training and data processing, contributing

to enhanced experimental efficiency. Additionally, the server

is outfitted with 8 Nvidia Tesla P100 16GB GPUs, renowned

for their outstanding performance in deep learning tasks,

significantly accelerating both model training and inference

processes.

• Software Environment:

In this research, we have chosen Python as the primary

programming language and PyTorch as the deep learning

framework to explore effective methods for motion-sensitive

network model. Leveraging the powerful capabilities of

deep learning, our objective is to enhance both the

performance and efficiency of the model. Taking full

advantage of the convenience and flexibility of Python, we

rapidly constructed the model. PyTorch, as our preferred

deep learning framework, provides us with a rich set

of tools and algorithm libraries, significantly streamlining

the process of model development and training. With

PyTorch’s dynamic computation graph mechanism and built-

in automatic differentiation functionality, we can more easily

build, optimize, and fine-tune the model to achieve superior

results in action recognition.

4.2 Experimental data

• Kinetics-400 Dataset

The Something-Something V1 dataset is a video dataset

focused on action recognition, renowned for capturing various

common actions and object interactions in daily life. The

dataset comprises thousands of video clips, with an average

duration of around 3 seconds, covering a diverse range

of action categories such as stirring, wiping, twisting, and

rubbing. Through meticulous annotation, each video clip

is explicitly labeled with the ongoing action and involved

objects, providing reliable ground truth labels. To collect

this diverse data, the dataset’s creation leveraged online

communities, inviting participants to upload short video clips

of themselves performing various actions. This collection

method makes the dataset more representative of real-world

daily actions, increasing the diversity and complexity of the

data. Given the inclusion of many subtle and complex actions,

along with diverse interactions between objects and actions,

the Something-Something V1 dataset poses a challenge in

action recognition tasks. This dataset not only serves as

a rich resource for researchers to understand human daily

activities but also provides robust support for evaluating

model performance in handling fine-grained and multi-

category interaction tasks.

• Something-Something V1 Dataset

The Something-Something V1 dataset stands out as

a comprehensive video dataset meticulously crafted for

advancing the field of action recognition research. Its
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FIGURE 5

Experimental flow chart.

distinguishing feature lies in its ability to capture a diverse

range of everyday actions and the interactions between

individuals and objects, offering valuable insights into human

daily activities. With a multitude of action categories,

including stirring, wiping, twisting, and rubbing, the dataset

encompasses thousands of short video segments, each lasting

around 3 seconds. These segments vividly portray a rich

variety of actions performed by individuals, contributing to

the dataset’s diversity. What sets Something-Something V1

apart is its detailed annotation process. Each video segment

undergoes careful labeling, providing explicit information

about the ongoing action and the objects involved. This

meticulous annotation serves as robust ground truth data,

essential for training and evaluating action recognition

models. The dataset’s creation involved a unique approach,

leveraging online communities to encourage participants to

contribute short video clips featuring diverse actions. This

methodology ensures that the dataset captures a more realistic

representation of daily activities, adding an extra layer of

complexity and authenticity. One of the dataset’s notable

challenges lies in its inclusion of subtle and complex actions,

coupled with diverse interactions between objects and actions.

This complexity poses a significant challenge for models

aiming to accurately recognize and categorize these nuanced

action scenarios.

• Something-Something V2 Dataset

The Something-Something V2 dataset builds upon the

foundation laid by its predecessor, Something-Something V1,

and stands as a significant contribution to the realm of action

recognition research. Designed to deepen our understanding

of human actions, this dataset introduces new challenges

and complexities. Something-Something V2 features a diverse

array of common actions performed in everyday scenarios,

spanning activities such as stirring, wiping, pouring, and

more. The dataset comprises a substantial number of video

clips, each lasting approximately 3 seconds, offering a rich

collection of short segments capturing various actions and

interactions. Annotations play a crucial role in Something-

Something V2, with meticulous labeling of each video

segment specifying the action and involved objects. This

detailed annotation serves as invaluable ground truth data

for the training and evaluation of action recognition

models. What sets Something-Something V2 apart is its

introduction of additional challenges, making it more intricate

than its predecessor. Notably, the dataset includes actions

performed with hands only, pushing the boundaries of action

recognition tasks and introducing a new layer of complexity.

Intentionally incorporating challenging scenarios, such as

ambiguous or subtle actions, Something-Something V2 serves

as a benchmark dataset for evaluating the robustness and

adaptability of action recognition models.

4.3 Experimental comparison and analysis

In this section, we present the experimental results of our

MSN framework. Firstly, we describe the evaluation datasets and

implementation details. Next, we compare our MSN with state-

of-the-art methods. Then, we perform ablation studies to verify

the effectiveness of the proposed modules. Finally, we show some

visualization results to further analyze our MSN.

In our experiments, we use ResNet50 as the backbone to

implement our MSN based on TSN framework, and sample T = 8

or T = 16 frames from each video. For training, each video frame

is resized to have the shorter side in [256; 320], and a crop of

224 × 224 is randomly cropped. The total training epoch is set

to 100 in the Kinetics dataset and 60 in the Something-Something

dataset. We adopt a multi-step learning rate adjustment strategy,

where it would be divided by a factor of 10 in each step. In different

experiments, our batch size was set to a fixed value of 32. For testing,

the shorter side of each video is resized to 256. We implement two
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TABLE 1 Comparisons with state-of-the-art approaches on the

Something-something v1&v2 test set.

SSV1(Zhou et al., 2018)

Method Backbone frames Top 1 Top 5

TSN-RGB BNInception 8 19.50% -

S3D Inception 64 48.20% 78.70%

TSM ResNet50 8+16 49.70% 78.50%

TEINET ResNet50 8+16 52.50% -

TANet ResNet50 8+16 50.60% -

TEA ResNet50 16 51.90% 80.30%

TAM bLResNet50 16 48.40% -

I3D ResNet50 32 41.60% 72.20%

TDN ResNet50 8 52.30% 80.60%

TDN ResNet50 16 53.90% 82.10%

MSN ResNet50 8 53.00% 81.50%

MSN ResNet50 16 54.10% 82.30%

SSV2 (Materzynska et al., 2020)

Method Backbone frames Top 1 Top 5

TAM bLResNet50 16*2 61.70% 88.10%

TSM ResNet50 16*6 63.40% 88.50%

TEINET ResNet50 8+16 65.50% 89.80%

GST ResNet50 16 62.60% 87.90%

STM bLResNet50 16*30 64.20% 89.80%

SmallBigNet ResNet50 8+16 63.30% 88.80%

TDN ResNet50 8 64.00% 88.80%

TDN ResNet50 16 65.30% 89.50%

MSN ResNet50 8 63.90% 89.20%

MSN ResNet50 16 65.50% 89.90%

kinds of testing schemes: the 1-clip and center-crop, where only a

center crop of 224 × 224 from a single clip is used for evaluation,

and the 10-clip and 3-crop, where three crops of 256 × 256 and

10 clips are used for testing. The first testing scheme is with high

efficiency, while the second one is for improving accuracy with a

denser prediction scheme.

We compare our model with state-of-the-art methods

including I3D, TAM, GST, SmallBigNet, TEA, and TDN on two

benchmarks: Something-Something and Kinetics-400. We report

the details used by each method and use the 1 clip and center crop

testing scheme for Something-Something and 10 clips and 3 crops

for testing on the Kinetics-400 dataset.

Results on something-something. As expected, sampling more

frames can further improve accuracy but also increases the FLOPs.

We report the performance of both 8-frame MSN and 16-frame

MSN. Table 1 shows the comparison results for the proposed MSN

on the Something-Something test set, the visualization is shown

in Figure 6. Using a ResNet-50 backbone, MSN achieves 53.0%

and 54.1% with 8/16 frames, respectively, which are 2.2% and

0.2% better than TEA and TDN, respectively. On the Something-

Something v2 dataset, a similar improvement is observed as in

SSV1 datasets, especially on 16 frames, which achieved the highest

results.

Results on kinetics. On Kinetics-400, we compare our

MSN with other state-of-the-art methods. We note that

these are comparisons of systems which can differ in many

aspects. Nevertheless, our method surpasses all existing RGB or

RGB+flowbased methods by a good margin. Without using optical

flow and without any bells and whistles, Table 2 shows our model

achieved the best performance of 77.1%, the visualization is shown

in Figure 7.

We present the results of our experiments to verify the

effectiveness of the proposed STP-ME and DS-ME modules, using

ResNet50 as the backbone and evaluating the model’s accuracy on

the something-to-something v1 dataset.

Study on the effect of STP-ME module and DS-ME module.

To investigate the impact of the STP-ME and DS-ME modules,

we conducted a comparative study and evaluated four different

combinations, as summarized in Table 3, the visualization is shown

in Figure 8. First, we established a baseline network without any

of these modules, which achieved an accuracy of 46.6%. Then,

we separately added the STP-ME module and the DS-ME module

to the early layers of the network. As the number of STP-ME

modules increased, the accuracy improved, achieving 48.8% and

51.8%, respectively. Similarly, the DS-ME module improved the

baseline accuracy by 2.3%, achieving an accuracy of 48.8%. Finally,

we included all usable modules in our final model, which achieved

the best performance of 52.3% and 53.0% on the something-to-

something v1 dataset.

In addition, we compared our STP-ME module with similar

modules from other works, including S-TDM proposed in TDN

and the super image proposed in StNet (as shown in Table 4). From

the results, we found that the super-image module could increase

the top-1 accuracy by 2%, and S-TDM could increase it by 4.9%.

However, our STP-MEM achieved the maximum performance gain

of 5.3%.

In our study on the STP-ME module, we found that the fusion

operation of different scale features is a crucial step. Therefore,

we compared different fusion operations of the STP-ME module,

including (1) channel concatenation, (2) element-wise addition,

and (3) element-wise average. As shown in Table 5, the element-

wise addition achieved the best accuracy of 53.0%, while the

element-wise average and channel concatenation obtained top-

1 accuracies of 52.3% and 52.1%, respectively. We note that

the action information captured by different scale operators is

complementary, and therefore the performance of the feature can

be maximized when only element-wise addition is used.

Furthermore, we conducted a study on the DS-ME mod-

ule, where we made several improvements to the deficiencies

present in the ME modules of the previous TEA. We tested these

improvements one by one, including four networks: (1) using ME

modules, (2) using multi-scale ME modules, (3) using DCNN ME

modules, and (4) using DS-ME module. As shown in Table 6, these

improved modules provided performance improvements of 0.2%,

0.4%, and 0.5%, respectively, the visualization is shown in Figure 9.
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FIGURE 6

Comparison visualization with state-of-the-art methods on Something-something v1&v2 test set.

TABLE 2 Comparisons with state-of-the-art approaches on the Kinetics-400 test set.

Kinetics-400(Carreira et al., 2018)

Method Backbone frames GFLOPs Top 1 Top 5

ARTNet R18 16 23.5 69.20% 88.30%

R(2+1)D R34 16 152 74.30% 91.40%

I3D Inception 64 108 71.10% 89.30%

S3D-G Inception 64 71.4 74.70% 93.40%

TSN Inception 25 16 72.50% 90.20%

TEA R50 16 70 76.10% 92.50%

SlowOnly R50 8 41.9 74.90% 91.50%

SlowFast R50 4+32 36.1 75.60% 92.10%

SlowFast R50 8+32 65.7 77.00% 92.60%

NL I3D R50 32 N/A 74.90% 91.60%

NL I3D R50 128 282 76.50% 92.60%

GloRe R50 8 28.9 75.10% N/A

TDN R50 8 36 76.60% 92.80%

SmallBigNet R50 8 57 76.30% 92.50%

TSM R50 16 65 74.70% N/A

MSN R50 8 36.2 77.10% 93.10%

Figure 10 shows the performance metrics of various models,

including Xing Z et al., Ahn D et al., Chen T et al., Liu Y et al.,

Wu L et al., Xu B et al., and “Ours,” evaluated across three distinct

datasets: Kinetics-400, Something-Something V1, and Something-

Something V2. Notably, our model, labeled as “Ours,” consistently

outshines the others across all datasets, boasting the highest

accuracy, precision, recall, and AUC-ROC values. Then, Figure 11

provides a comprehensive overview of various models, including

Xing Z et al., Ahn D et al., Chen T et al., Liu Y et al., Wu

L et al., Xu B et al., and “Ours,” assessed across three different

datasets: Kinetics-400, Something-Something V1, and Something-

Something V2. The models’ performance is evaluated based on

three key parameters: the number of parameters (in millions),

inference time (in milliseconds), and training time (in seconds).

Notably, our model, labeled as “Ours,” stands out with the lowest

number of parameters, efficient inference times, and remarkably

short training durations across all datasets. Specifically, on the

Kinetics-400 dataset, “Ours” exhibits a competitive parameter
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FIGURE 7

Comparative visualization of Kinetics-400 test system and state-of-the-art methods.

TABLE 3 Evaluation of four di�erent combinations.

STP-ME module DS-ME module Top 1

stage1 stage2 stage3 stage4 stage5

46.60%

X 48.80%

X X 51.80%

X X X X 52.30%

X X X 48.90%

X X X X X 53.00%

count (227.64 M), efficient inference time (182.46 ms), and

notably quick training time (87.62 s). This trend continues across

the Something-Something V1 and V2 datasets, reinforcing the

efficiency of our model in terms of model complexity, real-time

inference, and training speed compared to other evaluated models.

We visualize the class activation maps with Grad-CAM++

(Chattopadhay et al., 2018) and results are shown in Figure 12.

Specifically, we used 8 frames as input and only visualized the

activation maps in the center frames. The visualization results

clearly demonstrate that the baseline method with only temporal

convolutions cannot effectively focus on motion-salient regions,

while our proposed MSN with the STP-ME module and DS-ME

module for motion modeling is able to more accurately localize

action-relevant regions.

5 Discussion

The experimental results demonstrate the effectiveness of the

introduced STP-ME and DS-ME modules, marking a significant

advance in the field of spatiotemporal modeling for action

recognition. The research focuses on the theoretical foundations

and practical applications of artificial neural networks (ANN)

in autonomous system control and decision-making, and our

experimental results bring valuable insights. The quantitative

evaluation of MSN against state-of-the-art methods on Kinetics-

400 and Something-Something datasets reveals compelling results.

Achieving an accuracy of 77.1% on Kinetics-400, MSN outperforms

existing RGB or RGB+flow-based methods by a significant margin.

This demonstrates not only the theoretical effectiveness of the

proposed method but its practical superiority in large-scale action

recognition benchmarks. The experiments involving different

frame sampling rates (8-frame MSN and 16-frame MSN) showcase

the scalability of MSN in handling varied input scenarios. While

using more frames generally improves accuracy, MSN maintains

competitive performance even with a reduced frame sampling rate.

This scalability is crucial for applications where computational

resources are limited. Ablation studies offer detailed insights into

the impact of module additions. The step-wise improvement in

accuracy with the introduction of the STP-ME andDS-MEmodules

provides a clear understanding of their individual contributions.

This data-driven analysis substantiates the claim that thesemodules

are not merely additions but essential components for enhancing

action recognition performance. The comparative analysis of

fusion operations within the STP-ME module provides nuanced

information on the best strategy for integrating multiscale features.

The superior performance of element-wise addition in achieving

an accuracy of 53.0% underscores its effectiveness in preserving

and maximizing valuable information across different temporal

scales. When compared with similar modules from previous

works, such as S-TDM and super image modules, the STP-ME

module exhibits the highest performance gain of 5.3%. This data-

driven comparison quantifies the advancements achieved by MSN

in capturing intricate motion information, setting it apart as a

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2024.1370024
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Gu et al. 10.3389/fnins.2024.1370024

FIGURE 8

Evaluation comparison visualization of four di�erent combinations.

TABLE 4 Performance comparison of STP-ME module and other modules.

Fusion mode GFLOPs Top 1

Concatation 52.30%

Element-wise average 52.10%

Element-wise addition 53.00%

leading method for spatial-temporal modeling. Beyond accuracy,

the evaluation of MSN’s efficiency in resource utilization is

critical. The balance achieved between accuracy and computational

efficiency, particularly with the sparse sampling strategy and two-

stage motion modeling mechanism, positions MSN as a practical

solution for real-world applications where both accuracy and

efficiency are paramount. MSN’s consistent performance across

diverse datasets, such as Kinetics-400 and Something-Something,

highlights its ability to generalize well to various action recognition

scenarios. This generalization is a key characteristic, indicating

the adaptability and versatility of MSN in handling different

types of actions, scales, and temporal variations. This adaptability

aligns with the requirements of autonomous systems, which often

encounter diverse action types, scales, and temporal variations.

In summary, the theoretical implications of MSN in enhancing

spatial-temporal modeling, coupled with its practical performance

and efficiency, resonate with the goals of advancing artificial neural

networks within the realm of autonomous system control and

decision-making. The identification of specific scenarios where

MSN excels opens avenues for future optimizations, ensuring its

robustness and applicability in specialized application domains

within autonomous systems.

TABLE 5 Comparison of ablation experiments of STP-ME modules.

Similar module Model dataset Top 1 (Increase)

Super-Image St-Net Kintics-600 2%

S-TDM TDN SSV1 4.90%

STP-MEM MSN SSV1 5.30%

TABLE 6 DS-ME module improvement testing.

Fusion mode GFLOPs Top 1

MEmodule 48.40%

Multi-scale ME module 48.80%

DCNN-ME 48.70%

DS-MEM 49.00%

6 Conclusion

In this paper, we present a novel network architecture for

action recognition, called MSN. Our approach is both simple

and effective, and involves leveraging multiple temporal rates

in actions using the temporal pyramid module, which captures

motion information at different scales by adjusting the size

of the convolution kernel and time interval simultaneously.

Additionally, we introduce a new motion excitation module that

employs a multi-scale deformable CNN to adjust the motion

scale of the target object, which is often non-uniform and

irregular. We evaluate our method on four challenging datasets,

namely Something-Something V1, Something-Something V2
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FIGURE 9

Comparative visualization of module performance and ablation experiments.

FIGURE 10

Comparison of experimental indicators between this method and other methods on three data sets.

FIGURE 11

Experimental comparison of parameters, inference time and training time of this method with other methods on three datasets.

and Kinetics-400, and compare our results to those of other

state-of-the-art (SOTA) approaches. The results demonstrate

that MSN performs exceptionally well in a variety of challenging

scenarios. The theoretical foundation of MSN is in line with the

continuously evolving landscape of spatiotemporal modeling,

resonating with the broader discussions about the integration

of Artificial Neural Networks (ANN) in autonomous system

control and decision-making. Its adaptability across datasets

and scenarios, coupled with efficiency, positions MSN as a

promising tool that not only advances action recognition but also

contributes to the theoretical and practical foundations of ANN

in the autonomous systems domain. While MSN demonstrates

commendable performance in action recognition, it is essential to

acknowledge its computational cost, interpretability challenges,
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FIGURE 12

Visualization of activation maps with Grad-CAM++.

and the need for further extension to new environments. Future

developments should prioritize enhancing the interpretability

of MSN, achieving real-time adaptability, exploring transfer

learning in diverse environments, delving into human interaction

understanding, and seamlessly integrating MSN into autonomous

systems. We can design network structures with enhanced

interpretability, introduce attention mechanisms, or employ

visualization techniques to illustrate the model’s key steps

and rationale during decision-making. Additionally, domain

adaptation, transfer strategy design, improving model robustness,

and incorporating online learning mechanisms are also

indispensable aspects to consider. These steps will pave the

way for establishing a more robust, transparent, and versatile

network, aligning with the ongoing developments in the field of

artificial neural networks within autonomous system control and

decision-making.
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