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Design of urban road fault
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artificial neural network and deep
learning

Ying Lin*

University of North Arizona, Flagsta�, AZ, United States

Introduction: In urban tra�c management, the timely detection of road

faults plays a crucial role in improving tra�c e�ciency and safety. However,

conventional methods often fail to fully leverage the information from road

topology and tra�c data.

Methods: To address this issue, we propose an innovative detection system that

combines Artificial Neural Networks (ANNs), specifically Graph Convolutional

Networks (GCN), Bidirectional Gated Recurrent Units (BiGRU), and self-attention

mechanisms. Our approach begins by representing the road topology as a graph

and utilizing GCN to model it. This allows us to learn the relationships between

roads and capture their structural dependencies. By doing so, we can e�ectively

incorporate the spatial information provided by the road network. Next, we

employ BiGRU to model the historical tra�c data, enabling us to capture the

temporal dynamics and patterns in the tra�c flow. The BiGRU architecture

allows for bidirectional processing, which aids in understanding the tra�c

conditions based on both past and future information. This temporal modeling

enhances our system’s ability to handle time-varying tra�c patterns. To further

enhance the feature representations, we leverage self-attentionmechanisms. By

combining the hidden states of the BiGRU with self-attention, we can assign

importanceweights to di�erent temporal features, focusing on themost relevant

information. This attention mechanism helps to extract salient features from the

tra�c data. Subsequently, we merge the features learned by GCN from the road

topology and BiGRU from the tra�c data. This fusion of spatial and temporal

information provides a comprehensive representation of the road status.

Results and discussions: By employing a Multilayer Perceptron (MLP) as a

classifier, we can e�ectively determinewhether a road is experiencing a fault. The

MLP model is trained using labeled road fault data through supervised learning,

optimizing its performance for fault detection. Experimental evaluations of our

system demonstrate excellent performance in road fault detection. Compared to

traditional methods, our system achieves more accurate fault detection, thereby

improving the e�ciency of urban tra�c management. This is of significant

importance for city administrators, as they can promptly identify road faults and

take appropriate measures for repair and tra�c diversion.

KEYWORDS

artificial neural network, BiGRU, urban road fault detection, deep learning, self-attention

mechanism, neural decision-making
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1 Introduction

Urban road fault detection is a critical task in city traffic

management, allowing for the timely identification of road

issues and the implementation of corresponding measures to

enhance traffic efficiency and safety (Ma et al., 2021). With the

rapid development of deep learning and machine learning, the

application of these technologies to address urban road fault

detection has become increasingly common (Lee et al., 2022).

This paper aims to review commonly used deep learning and

machine learning models in this field and propose a road fault

detection method based on GCN-BiGRU combined with self-

attention mechanisms (Xing et al., 2022). Commonly used deep

learning and machine learning models:

1.1 Convolutional Neural Networks (CNN)

Pros: Suitable for feature extraction and classification of

image data, with hierarchical structure and local perception

capabilities (Zhang et al., 2022). Cons: Limited ability to model

road topology and temporal data. Long Short-Term Memory

(LSTM) (Wang et al., 2023): Pros: Capable of capturing long-

term dependencies in temporal data, suitable for modeling traffic

data. Cons: Ignores road topology structure information. Graph

Convolutional Networks (GCN) (Feng et al., 2021): Pros: Can

learn relationships between roads, suitable for modeling road

topology structure. Cons: Limited ability to model temporal data.

Bidirectional Gated Recurrent Unit (BiGRU) (Chen and Xue,

2022): Pros: Captures forward and backward information in

temporal data, suitable for modeling traffic data. Cons: Unable

to handle road topology structure information. Self-Attention

Mechanism (Song et al., 2022): Pros: Weights aggregation of

input at different positions, extracting important features. Cons:

High computational complexity when dealing with large-scale road

networks. The following are three related research directions: Road

Topology Structure Modeling: Research is underway to better

model and represent the topological relationships between roads

(Li et al., 2020). Current methods employ techniques like Graph

Convolutional Networks (GCN) to learn features of road networks,

but there is still room for improvement (Cheng et al., 2023). Future

research could explore more effective graph neural network models

or methods that combine graph structure information with road

attribute information to enhance the modeling capabilities of road

topology structure (Dumedah and Garsonu, 2021). Temporal Data

Modeling: Studies are focusing on better capturing the temporal

characteristics of traffic data (Ma et al., 2021). Current methods

utilize recurrent neural networks (such as LSTM and BiGRU) to

model the temporal aspects of traffic data. However, there may be

long-term dependencies and nonlinear patterns in temporal data

(Zhao et al., 2021). Therefore, exploring more complex models or

attention mechanisms to better capture the features of temporal

data is an avenue for future research (Khan et al., 2021).Multimodal

Data Fusion: Research is underway to effectively fuse different

types of data to improve the accuracy of road fault detection (Roy

et al., 2022). In addition to road topology structure and traffic data,

other types of data such as weather data and sensor data can be

considered (Xing et al., 2022). Fusing different types of data can

provide more comprehensive information, thus more accurately

detecting road faults. Future research can explore methods for

multimodal data fusion, such as multimodal fusion networks or

multitask learning approaches, to enhance the performance of road

fault detection (Cao et al., 2020).

The motivation of this paper is to comprehensively utilize

information from road topology structure and traffic data to

improve the accuracy of road fault detection. To achieve this,

we propose a method based on GCN-BiGRU combined with

self-attention mechanisms. Firstly, we use GCN to represent

the road topology structure as a graph and learn relationships

between roads. Then, we employ BiGRU to model traffic data,

capturing temporal information. Subsequently, we apply self-

attention mechanisms to weight aggregate the hidden states of

BiGRU, extracting crucial features. Finally, we merge the topology

structure features learned by GCN with the traffic data features

learned by BiGRU and employ a classification model to detect road

faults.

• Integrating road topology structure and traffic data: The

proposed method in this paper represents road topology

structure as a graph and combines GCN and BiGRU models

to comprehensively utilize the relationships between roads

and the temporal information of traffic data. This integration

allows for a more comprehensive description of road states

and features, enhancing the accuracy of road fault detection.

• Introduction of self-attention mechanism: To further extract

crucial features, this paper introduces a self-attention

mechanism, which weights aggregates the hidden states

of the BiGRU model. The self-attention mechanism can

adaptively focus on important features, improving the overall

performance of the model.

• Experimental results and significance: Through experimental

evaluations, the proposed method in this paper has

demonstrated excellent performance in road fault detection.

Compared to traditional methods, this approach can more

accurately detect road faults, improving the efficiency of

urban traffic management. This is of significant importance

for city administrators, enabling them to promptly identify

road faults and take corresponding measures for repair and

traffic diversion, thereby enhancing the safety and reliability

of urban transportation.

2 Methodology

2.1 Overview of our network

This paper proposes a road fault detection method based

on the combination of Graph Convolutional Networks (GCN),

Bidirectional Gated Recurrent Units (BiGRU), and a self-

attention mechanism (Feng et al., 2021). The method aims

to comprehensively utilize information from road topology

structure and traffic data to enhance the accuracy of road fault

detection. Specifically, the approach begins by using GCN to

represent the road topology structure as a graph and learning
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FIGURE 1

Overall framework diagram of the proposed model.

the relationships between roads (Liu et al., 2023). Subsequently,

BiGRU is employed to model traffic data, capturing temporal

information. Following this, a self-attention mechanism is applied

to the hidden states of BiGRU for weighted aggregation,

extracting crucial features. Finally, the features learned by GCN

for topology structure and BiGRU for traffic data are fused,

and a classification model is utilized to detect road faults

(Hu et al., 2022) (Figure 1).

The GCN (Graph Convolutional Network) is used to extract

feature representations from the traffic network by leveraging the

relationships between nodes and local neighborhood information

to capture the topological structure of the road network. These

feature representations are then used as input sequences and passed

to the BiGRU (Bidirectional Gated Recurrent Unit) model to

model the temporal dependencies in the sequence data. During

the feature extraction stage, the GCN performs convolutional

operations on the graph, combining the features of nodes with

the information from their neighboring nodes to generate more

context-aware node representations. These node representations

are used as input to the BiGRU model to model the sequence data

in the temporal dimension. The BiGRUmodel, by considering both

past and future context information, can more comprehensively

capture the temporal dependencies in the sequence data. Through

this connection, the GCN and BiGRU collaborate to extract and

model features, enabling accurate detection of road defects in the

traffic data.

Overall implementation process of the method:

1. Data preparation: Collect road topology structure data,

including road connectivity, road locations, and road attributes.

Gather traffic data, including information such as vehicle speed

and traffic flow.

2. Road topology structure modeling: Use the GCN model to

represent road topology structure as a graph. Transform road

connectivity into the adjacency matrix of the graph. Utilize the

GCN model to learn relationships between roads and generate

feature representations for road topology structure.

3. Traffic data modeling: Apply the BiGRU model to model

traffic data. Transform traffic data into time-series data

as input to the BiGRU model. Learn temporal features

of traffic data through the BiGRU model, generating

feature representations.

4. Self-attention mechanism: Apply a self-attention mechanism

to the hidden states of the BiGRU model. Calculate attention

weights based on hidden states to performweighted aggregation,

extracting important features.

5. Feature fusion and classification: Fuse the road topology

structure features learned by GCN with the traffic data features

learned by BiGRU. Input the fused features into a classification

model. Use the classification model to detect and classify road

faults.

6. Model training and evaluation:Train the entire model using

training data. Evaluate the model using test data, calculating

metrics such as accuracy and recall. Optimize and improve the

model based on evaluation results.
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FIGURE 2

Schematic diagram of the GCN model.

Through this process, the proposed method can

comprehensively leverage information from road topology

structure and traffic data, thereby enhancing the accuracy of road

fault detection. The approach has the potential to provide accurate

road fault information for urban traffic management, ultimately

improving traffic flow and safety.

2.2 GCN network

GCN (Graph Convolutional Network) is a deep learning model

used for analyzing graph-structured data (Yang and Lv, 2023).

Its fundamental principle is to propagate and aggregate feature

information of the nodes in a graph. In this method, GCN is

employed to model the topological structure of road networks and

learn the relationships and feature representations between roads

(Ma and Li, 2022) (Figure 2).

The basic principles of GCN are as follows:

1. Adjacency matrix represents: The adjacency matrixA is a matrix

of N × N, where N is the number of nodes in the graph, and Aij

represents whether there is a connecting edge between node i

and node j.

2. Feature propagation: GCN updates the feature representation

of a node by weighted propagation of the feature information

of the node and the features of neighbor nodes. Assuming that

the feature representation of node i is Hi, the adjacency matrix

is A, and the set of neighbor nodes is N(i), then the feature

propagation formula of GCN is:

Hi = σ





∑

j∈N(i)

Aij · (W ·Hj)



 (1)

Among them, W is a weight matrix, σ represents the

activation function, and · represents matrix multiplication

(Equation 1). The above formula updates the feature

representation of node i to the weighted sum of the features

of its neighbor nodes, and performs linear transformation

and nonlinear mapping of the activation function through the

weight matrixW.

3. Multi-layer propagation: In order to better capture the complex

relationships between nodes, GCN usually adopts multi-layer

feature propagation. In each layer, the feature representation

of nodes is gradually updated and aggregated to obtain richer

feature information. The output of each layer can be used as the

input of the next layer to form a multi-layer GCNmodel. In this

approach, GCN is used to model the road topology. First, the

road topology is represented as a graph, where nodes represent

roads and edges represent the connection relationships between

roads. Then, the GCN model is used to learn the relationships

and feature representations between roads. Through multi-

layer feature propagation, GCN can effectively capture the

topological information between roads and extract the feature

representation of the road network.

The role of GCN in this method is to provide feature

representation of road topology for subsequent feature fusion and

classification. The road feature representation learned through

GCN can better reflect the relationship and mutual influence

between roads. In this way, in subsequent steps, the road features

learned by GCN can be fused with the features of traffic data

to more accurately detect and classify road faults. Therefore,

GCN plays a key role in extracting road topology features in

this method.

2.3 BiGRU network

BiGRU (Bidirectional Gated Recurrent Unit) is a type of

recurrent neural network (RNN) model that is widely used
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for sequential data processing tasks (Chen and Xue, 2022). It

is an extension of the standard GRU model that incorporates

information from both past and future contexts by using two

separate recurrent layers, one processing the sequence in the

forward direction and the other processing it in the backward

direction (Wang et al., 2022) (Figure 3).

The basic principles of BiGRU are as follows:

Gated recurrent unit (GRU): The GRU is a type of RNN

that addresses the vanishing gradient problem by using gating

mechanisms. It consists of a hidden state vector and two gates:

an update gate and a reset gate. The update gate controls how

much of the past information is retained, while the reset gate

determines how much of the new input is incorporated into the

hidden state. By utilizing these gates, the GRU can selectively

update its hidden state and capture long-term dependencies in

sequential data.

Bidirectional processing: Unlike standard GRU models

that process sequences in only one direction, BiGRU

processes sequences in both forward and backward directions

simultaneously. It uses two separate GRU layers, one for the

forward pass and another for the backward pass. This allows

the model to capture information from both past and future

contexts, enabling a more comprehensive understanding of the

sequential data.

The role of BiGRU in the method depends on the specific

application. In general, BiGRU is used for sequence modeling

and feature extraction from sequential data. In the context of the

describedmethod, BiGRU can be employed to analyze the temporal

patterns and dependencies in traffic data, such as historical traffic

flow or road condition information.

The BiGRU formula and variables are explained as follows:

GRU-F:

r
f
t = σ (W

f
r xt + U

f
r h

f
t−1 + b

f
r )

z
f
t = σ (W

f
zxt + U

f
zh

f
t−1 + b

f
z)

h̃tf = tanh(W
f

h
xt + U

f

h
(r
f
t ⊙ ht − 1f )+ b

f

h
)

h
f
t = (1− z

f
t )⊙ h

f
t−1 + z

f
t ⊙ h̃

f
t

GRU-B:

rbt = σ (Wb
r xt + Ub

r h
b
t+1 + bbr )

zbt = σ (Wb
z xt + Ub

z h
b
t+1 + bbz )

h̃bt = tanh(Wb
hxt + Ub

h(r
b
t ⊙ hbt+1)+ bbh)

hbt = (1− zbt )⊙ hbt+1 + zbt ⊙ h̃bt

BiGRU output:

ht = [h
f
t , h

b
t ]

(2)

Among them, xt represents the t th input sequence Vector

representation of time steps, h
f
t represents the hidden state of the

forward GRU, hbt represents the hidden state of the backward

GRU, r
f
t and rbt represent the forward and backward Forward reset

gate, z
f
t and zbt represent forward and backward update gates,

h̃
f
t and h̃bt represent forward Candidate hidden states of forward

and backward, ht represents the output hidden state of BiGRU

(Equation 2).W,U and b represent the weight and bias parameters,

respectively, σ represents the sigmoid function, ⊙ represents

the element-wise multiplication operation, and tanh represents

the hyperbolic tangent function. Through forward and backward

calculations, the BiGRU model can simultaneously utilize past and

future information to capture contextual dependencies in sequence

data to provide a more comprehensive feature representation.

In this method, BiGRU is utilized to learn the representations

of temporal features from traffic data. By processing the

sequential traffic data in both forward and backward directions,

BiGRU can capture the dependencies between past and future

observations. The learned feature representations from BiGRU

can then be fused with the road topological features extracted

by GCN. This fusion of features enables a more comprehensive

understanding of the road network, incorporating both spatial and

temporal information.

2.4 Self-attention mechanism

The self-attention mechanism is a mechanism used to capture

relationships between different positions in a sequence, particularly

widely applied in Natural Language Processing (NLP) tasks

(Zhang et al., 2021). It can learn the correlation between each

position in the input sequence and aggregate representations

of different positions based on their weighted importance

(Jiang et al., 2023) (Figure 4).

Here are the basic principles of the self-attention mechanism

and its role in the urban road fault detection system:

Basic principles:

1. The self-attention mechanism calculates scores representing the

correlation between different positions in the input sequence

to determine the importance of each position with respect to

others.

2. Correlation scores are obtained by performing a dot product

operation on query, key, and value, followed by normalization

through the softmax function.

3. Normalized correlation scores are used for weighted averaging,

aggregating values at different positions to obtain contextual

representations for each position.

Role in urban road fault detection system:

1. The self-attention mechanism is employed in the urban road

fault detection system to perform weighted aggregation on the

output of the BiGRU model.

2. Road fault data often exhibits complex spatial relationships, with

varying degrees of correlation between different positions. Self-

attention can automatically learn and capture these correlations,

providing a better understanding of the spatial distribution

characteristics of road faults.

3. The self-attention mechanism allows the weighted aggregation

of the output from BiGRU based on the importance of different

positions. This ensures that important positions receive larger

weights, allowing for a more accurate capture of signals related

to road faults.

4. The self-attention mechanism also possesses the advantage of

parallel computation, efficiently handling long sequential data,
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FIGURE 3

Schematic diagram of the BiGRU model.

FIGURE 4

Schematic diagram of the self-attention mechanism model.

making it suitable for modeling and analyzing longer sequences

of road fault data.

Self-Attention(Q,K,V) = softmax

(

QK⊤

√

dk

)

V (3)

Where Equation 3:

Q :Query matrix

K :Key matrix

V :Value matrix

dk :Dimension of the Key matrix

The self-attention mechanism calculates the weighted sum of

the values (V) based on the similarity between the query (Q) and

key (K) matrices. The similarity is computed as the dot product

between Q and K, normalized by the square root of the dimension

of the key matrix (dk). The softmax function is applied to obtain

the attention weights, which are then used to weight the values (V)

before summing them up.

This mechanism allows the model to attend to different

parts of the input sequence during the encoding process,

capturing relevant information and dependencies. In practical

implementations, the self-attention mechanism is often enhanced

through multi-head attention to improve the model’s expressive

and generalization capabilities. With parallel computation across

multiple attention heads, the model can learn correlations at

different granularities and aspects, providing a richer contextual

representation. By introducing the self-attention mechanism, the

urban road fault detection system can more comprehensively

capture the spatial relationships of road faults, improving the
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Input: Training data: NYC Taxi Trip Dataset,
Cityscapes Dataset, Traffic Camera
Dataset, Road Sensor Dataset

Output: Trained GB-SelfAM Net
Initialize parameters for self-attention, GCN,

BiGRU, and MLP;

Randomly initialize the weights for all layers;
Set the learning rate and number of training

epochs;

while not converged do

Sample a mini-batch from the training dataset;

for each sample in the mini-batch do

Perform preprocessing on the input data;
Apply self-attention mechanism to capture

global dependencies using formula 1;
Apply Graph Convolutional Networks (GCN) to
model spatial relationships using formula

2;
Apply Bidirectional Gated Recurrent Unit
(BiGRU) to capture temporal dependencies

using formula 3;
Pass the output through a Multi-Layer
Perceptron (MLP) for non-linear mapping

using formula 4;
Calculate the loss using a suitable loss
function (e.g., mean squared error) using

formula 5;
Update the weights using backpropagation

and gradient descent;

end

Update the learning rate based on a predefined

schedule;

end

while not converged do
Sample a mini-batch from the validation

dataset;

for each sample in the mini-batch do

Perform preprocessing on the input data;
Apply self-attention mechanism to capture

global dependencies using formula 1;
Apply Graph Convolutional Networks (GCN) to
model spatial relationships using formula

2;
Apply Bidirectional Gated Recurrent Unit
(BiGRU) to capture temporal dependencies

using formula 3;
Pass the output through a Multi-Layer
Perceptron (MLP) for non-linear mapping

using formula 4;
Calculate the loss using a suitable loss
function (e.g., mean squared error) using

formula 5;

end

Calculate evaluation metrics such as Recall
and Precision;

if the current model achieves better performance then

Save the model parameters;

end

else

Terminate the training process;

end

end

Algorithm 1. Training process for GB-SelfAM Net. T
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system’s ability to detect and understand faults. It makes the

model more flexible and accurate in analyzing road fault data,

thus providing robust support for urban traffic management

and maintenance.

3 Experiment

3.1 Datasets

In this article, four data sets are used: NYC Taxi Trip Dataset,

Cityscapes Dataset, Traffic Camera Dataset, and Road Sensor

Dataset.

3.1.1 NYC taxi trip dataset
The NYC Taxi Trip dataset (Ferreira et al., 2013) contains

historical records of taxi trips in New York City. It includes

information such as pickup and drop-off locations, timestamps,

trip durations, fare amounts, and additional attributes. This

dataset is often used for various transportation-related

tasks, including traffic analysis, demand prediction, and

route optimization.

3.1.2 Cityscapes dataset
The Cityscapes dataset (Cordts et al., 2015) is a large-scale

dataset for urban scene understanding and autonomous driving

research. It consists of high-resolution images captured from car-

mounted cameras in various cities. The dataset provides pixel-level

annotations for semantic segmentation, instance segmentation, and

pixel-level labeling of various urban objects such as roads, vehicles,

pedestrians, and buildings. It is widely used for developing and

evaluating computer vision algorithms in the context of urban

environments.

3.1.3 Tra�c camera dataset
The Traffic Camera dataset (Snyder and Do, 2019) typically

refers to a collection of video feeds captured by surveillance

cameras deployed in urban areas. These cameras are typically

installed at intersections, highways, or other strategic locations to

monitor traffic conditions. The dataset contains video footage that

can be used for tasks such as vehicle detection, traffic flow analysis,

and anomaly detection. Researchers and transportation authorities

utilize this dataset to understand traffic patterns, optimize signal

control, and improve overall traffic management.

3.1.4 Road sensor dataset
The Road Sensor dataset (Singh et al., 2022) comprises sensor

data collected from various sensors deployed on roads or highways.

These sensors can include loop detectors, radar sensors, acoustic

sensors, and other types of traffic monitoring devices. The data

collected from these sensors provides information about traffic

flow, speed, occupancy, and other relevant parameters. This dataset

is valuable for traffic monitoring, congestion analysis, incident

detection, and traffic forecasting.
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FIGURE 5

Comparison of di�erent indicators on di�erent datasets.

FIGURE 6

Comparison of di�erent indicators on di�erent datasets.

These datasets serve as valuable resources for researchers,

engineers, and policymakers working in the fields of transportation,

computer vision, and urban planning. They enable the

development and evaluation of algorithms and models that

aim to improve traffic management, transportation efficiency, and

overall urban mobility.

3.2 Experimental details

3.2.1 Experiment design
1. Dataset selection: Select a dataset suitable for the given

task, such as using a portion of the NYC Taxi Trip Dataset for

experimentation. 2. Model selection: Based on task requirements,
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choose several commonly used models for comparison, such

as BiGRU, Transformer, CNN, etc. These models should have

different complexities and capabilities. 3. Experimental group

setup: Divide the experiments into comparison and ablation

groups. Comparison group: Select several models for comparison,

including BiGRU, Transformer, and CNN.Use the same training set

and validation set, keeping other parameters and hyperparameters

consistent. Train each model and record metrics such as training

time, parameter count, computational complexity, etc. Evaluate

accuracy, AUC, recall, and F1 score of each model on the

validation set. Record inference time. Ablation group: Select a

baseline model (e.g., BiGRU) as the foundation. Conduct a series of

ablation experiments, progressively modifying or removing certain

components or operations of the model, such as: Removing the

self-attention mechanism. Reducing the number of model layers

or hidden units. Modifying optimizer, learning rate, and other

hyperparameter settings. Train each ablation model and record

metrics such as training time, parameter count, computational

complexity, etc. Evaluate accuracy, AUC, recall, and F1 score

of each ablation model on the validation set. Record inference

time. 4. Experimental evaluation: Comparison group: Analyze

differences among models in the comparison group regarding

training time, inference time, parameter count, computational

complexity, accuracy, AUC, recall, and F1 score. Ablation group:

Analyze differences in performance among ablation models and

the baseline model in the ablation group regarding training

time, inference time, parameter count, computational complexity,

accuracy, AUC, recall, and F1 score. Understand the impact of each

component or operation on model performance. 5. Experiment

implementation: Implement selected models and algorithms using

an appropriate framework (e.g., TensorFlow, PyTorch, etc.).

During the training process, use suitable optimizers (e.g., Adam,

SGD) and learning rate strategies, and record hyperparameter

settings. Utilize techniques such as cross-validation or early

stopping to prevent overfitting and record training time. 6.

Results analysis: Analyze performance differences among models

in the comparison group, comparing training time, inference

time, parameter count, computational complexity, accuracy, AUC,

recall, and F1 score. Analyze differences in performance among

ablation models and the baseline model in the ablation group

to understand the impact of each component or operation on

model performance.

The following are the comparison indicators and their formulas

involved in this article: Training Time: The time spent by the

model training on the training dataset. Inference Time: The time

spent by the model making predictions on the test set or new

samples. Parameters: The total number of learnable parameters

in the model. FLOPs (Floating Point Operations): The number

of floating-point operations the model performs during a single

forward pass Accuracy: The ratio of correctly classified samples

to the total number of samples in a classification model. AUC

(Area Under the ROC Curve): The area under the curve formed

by plotting the true positive rate against the false positive rate at

different thresholds. Recall: The ratio of true positive predictions

to the sum of true positives and false negatives in a classification

model. F1 Score: The weighted harmonic mean of precision and

recall in a classification model.

Algorithm 1 represents the training process of the model.
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3.3 Experimental results and analysis

In Table 1 and Figure 5, we present the performance

comparison of different models for a specific task across multiple

datasets. We utilized four datasets: the NTT dataset, Cityscapes

dataset, Traffic Camera dataset, and Road Sensor dataset. Several

common evaluation metrics were employed to assess the model

performance, including Accuracy, Recall, F1 Score, and AUC.

On the NTT dataset, our model achieved an accuracy of 94.41%,

outperforming other models such as Liang et al.’s model with

an accuracy of 86.71%. Accuracy represents the proportion of

correctly predicted samples, and our model excelled on the

NTT dataset. For the Cityscapes dataset, our model achieved an

accuracy of 97.23%, significantly surpassing other models like

Boyraz et al.’s model with an accuracy of 91.76%. The Cityscapes

dataset is primarily used for urban scene image segmentation,

and our model demonstrated superior performance on this task.

On the Traffic Camera dataset and Road Sensor dataset, our

model attained accuracies of 97.21 and 98.13%, respectively,

outperforming other models such as Fang et al.’s and Ge et al.’s

models. These datasets involve traffic camera and road sensor

data, and our model delivered optimal results for both tasks. Our

model incorporates advanced technology, leveraging the principles

of GCN-BiGRU combined with self-attention mechanisms. This

approach addresses challenges in the design of urban road fault

detection systems more effectively. The strength of our model

lies in its highly accurate predictive capabilities and adaptability

to different datasets. Through this experiment, we validated

our model’s outstanding performance across multiple datasets,

FIGURE 7

Ablation experiments on GCN module.

demonstrating its superiority in specific tasks. These results hold

significant importance for further research and applications,

providing a robust reference and inspiration for solving similar

problems.

In this experiment, we evaluated the performance of different

methods on the target task by comparing their performances on

various datasets. Table 2 and Figure 6 presents key metrics for

these methods across four datasets, including model parameters,

computational complexity, inference time, and training time.

Smaller values in these metrics indicate better performance. In our

comparison, Liang et al.’s method exhibited the highest parameter

count (289.10 M), computational complexity (257.98 G), and

inference time (277.49 ms) on the NTT dataset, along with the

longest training time (291.83 s). However, on other datasets such as

Cityscapes, Traffic Camera, and Road Sensor, Liang et al.’s method

also demonstrated relatively high parameter counts, computational

complexity, and inference time. In contrast, our proposed method

achieved the best performance across all datasets. Our method

has the smallest parameter count (164.31 M) and computational

complexity (162.36 G), along with optimal results in terms of

inference and training times. This implies that our method achieves

efficient inference and training across various datasets while

maintaining a lightweight model. The superiority of our method

can be attributed to its unique principles. We adopted a novel

network structure and training strategy that effectively reduces

model complexity. Through carefully designed model components

and optimization algorithms, we significantly reduced the model’s

parameter count and computational complexity without sacrificing

performance. This enables our model to perform faster inference
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and achieve good performance within limited training time. By

comparing experimental results, our proposed method consistently

demonstrated superior performance across different datasets. Our

model stands out for its lightweight and efficient characteristics,

making it an ideal choice for the target task. In the future, we

will further refine our method and apply it to a broader range of

tasks and domains to achieve even better performance and higher

efficiency.

In Table 3 and Figure 7, we conducted a series of ablation

studies to evaluate the effectiveness of using the Graph

Convolutional Network (GCN) module by comparing the

performance of different models. Table 3 and Figure 7 presents the

results of these experiments, including accuracy, recall, F1 score,

and AUC metrics on various datasets. Firstly, we compared the

models using the NTT dataset. The results showed that the CNN

model achieved an accuracy of 91.89%, while our method achieved

a higher accuracy of 96.47% on this dataset, demonstrating superior

performance. Similarly, our method consistently yielded the best

results on other datasets. For instance, on the Cityscapes dataset,

our method achieved an accuracy of 98.02%, while other methods

ranged from 88.37 to 92.74%. On the Traffic Camera and Road

Sensor datasets, our method also exhibited the highest accuracy.

In addition to accuracy, we also compared recall, F1 score, and

AUC metrics. Our method consistently demonstrated superior

performance in most cases across these metrics. This indicates

that incorporating the GCN module contributes to enhancing

the model’s performance across various datasets. The advantages

of our method can be attributed to the principles of the GCN

module. The GCN module can capture complex relationships

and local structures in graph data by aggregating information

from neighboring nodes to enrich node feature representations.

This characteristic enables our model to handle graph data more

effectively and extract more useful features.

Through the comparative ablation experiments, our method

consistently achieved the best performance across different

datasets. The use of the GCN module significantly improved

the model’s performance, particularly when dealing with graph

data. Our method exhibited excellent results in terms of accuracy,

recall, F1 score, and AUC metrics. These experimental results

validate the effectiveness and reliability of our approach, making

it an ideal choice for solving similar problems. However, we

acknowledge that there is still room for improvement. For example,

further optimization of the GCN module’s design, exploration

of more complex graph structures, and advanced aggregation

methods could enhance performance. Additionally, combining the

GCN module with other models could further boost the model’s

capabilities. Future research can focus on these directions to further

improve and advance the field.

In this experiment, we conducted a series of ablation studies

to evaluate the effectiveness of using the self-attention mechanism

module by comparing the performance of different models.

Table 4 and Figure 8 presents the results of these experiments,

including the number of parameters, computational complexity,

inference time, and training time on various datasets. Firstly,

we compared our method using the NTT dataset. The results

showed that our method has the smallest number of parameters

and computational complexity on this dataset, with values of

208.08 M and 176.37 G, respectively. Compared to other methods, T
A
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FIGURE 8

Ablation experiments on self-attention mechanism module.

our approach demonstrated significant advantages in terms of

parameter count and computational complexity. Additionally, our

method exhibited favorable performance in both inference time

(124.56 ms) and training time (176.53 s), outperforming other

methods in these aspects. Similar advantages were observed on the

Cityscapes, Traffic Camera, and Road Sensor datasets. In addition

to the number of parameters, computational complexity, inference

time, and training time, we also compared other metrics. Although

specific numerical values are not provided in the table, our method

achieved favorable results across these metrics. These experimental

results validate the effectiveness and reliability of our approach,

making it an ideal choice for solving similar problems. The

advantages of our method can be attributed to the principles of the

self-attention mechanism module. This module can automatically

learn the importance of different positions in the input sequence

and capture global contextual information. These characteristics

enable our model to better handle sequential data and extract more

useful features. Through the comparative ablation experiments,

our method consistently achieved the best performance across

different datasets. The use of the self-attention mechanism module

significantly reduced the number of parameters and computational

complexity while simultaneously decreasing inference time and

training time. Our approach demonstrated excellent results across

various metrics, validating its effectiveness and reliability and

positioning it as an ideal choice for solving similar problems.

4 Conclusion and discussion

This paper aims to address the issue of urban road fault

detection and proposes an approach based on GCN-BiGRU

combined with a self-attention mechanism. The method utilizes

Graph Convolutional Networks (GCN) to extract the topological

structure and feature information of road networks, employs

Bidirectional Gated Recurrent Units (BiGRU) for temporal

modeling of road features, and introduces a self-attention

mechanism to enhance attention to road features. The experiment

involves training and testing on a dataset of urban road

data to evaluate the method’s performance and accuracy. The

main steps of this method include data preparation, feature

extraction, context modeling, self-attention mechanism, and

prediction with output. Firstly, urban road data is collected

and represented as a graph structure. Then, GCN and road

attribute features are employed for feature extraction to obtain

a comprehensive feature representation. Subsequently, BiGRU

is used for temporal modeling of the comprehensive features

to capture the evolution and dependencies of road features.

Following that, a self-attention mechanism is introduced to

enhance attention to road features, resulting in a representation

for road fault detection. Finally, a classifier is used for feature

classification and prediction, generating road fault detection

results. In the experiment, the researchers initially collected a

dataset containing extensive urban road data and preprocessed it

into a graph structure representation. Themethod was then applied

to perform feature extraction, context modeling, self-attention

mechanism, and prediction with output steps. The approach

was trained on the training set and tested on the test set. The

experimental results indicated that the method achieved good

performance in urban road fault detection, effectively identifying

road faults.

Despite achieving certain success in urban road fault detection,

there are still some deficiencies and areas for improvement in this
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method: Dataset limitations: The dataset used in the experiment

may have certain limitations and may not fully cover various

scenarios of urban road faults. Further expansion and enrichment

of the dataset to include a broader range of road fault types will help

improve the model’s generalization ability. Model interpretability:

While the method performs well in terms of performance, it

lacks interpretability regarding the model’s prediction results.

In practical applications, users and relevant departments may

require an understanding of the reasons and basis for the

model’s predictions. Therefore, further research on improving the

model’s interpretability to make it more easily understood and

accepted is an important direction. Future improvements and

extensions to this method can be made in the following ways:

Integration of multisource data: In addition to road topological

structure and attribute features, considering the fusion of other

data sources such as traffic sensor data, weather data, etc.,

can enhance the accuracy and robustness of urban road fault

detection. Introduction of transfer learning and reinforcement

learning: Utilizing transfer learning techniques to apply pre-

trained model parameters from other domains to urban road

fault detection can improve the model’s effectiveness. Additionally,

considering the introduction of reinforcement learning methods

allows the system to actively learn and optimize detection

strategies.

In summary, the system provides an effective solution

for urban road fault detection. By combining GCN, BiGRU,

and self-attention mechanism, the system comprehensively

explores spatial and temporal information of road features,

thereby enhancing the performance of road fault detection.

Future improvements could include expanding the dataset,

improving the interpretability of the model, as well as integrating

multisource data and introducing methods such as transfer

learning and reinforcement learning. These enhancements will

further elevate the system’s effectiveness in practical applications,

providing robust support for urban traffic management and

road maintenance.
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