
TYPE Original Research

PUBLISHED 27 May 2024

DOI 10.3389/fnins.2024.1368733

OPEN ACCESS

EDITED BY

Michael Winter,

Julius Maximilian University of Würzburg,

Germany

REVIEWED BY

Mihai Duguleana,

Transilvania University of Braşov, Romania
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Enhancing visual communication
through representation learning

YuHan Wei*, ChangWook Lee, SeokWon Han and Anna Kim

Dankook University, Yongin-si, Gyeonggi-do, Republic of Korea

Introduction: This research aims to address the challenges in model

construction for the Extended Mind for the Design of the Human Environment.

Specifically, we employ the ResNet-50, LSTM, and Object Tracking Algorithms

approaches to achieve collaborative construction of high-quality virtual assets,

image optimization, and intelligent agents, providing users with a virtual universe

experience in the context of visual communication.

Methods: Firstly, we utilize ResNet-50 as a convolutional neural network model

for generating virtual assets, including objects, characters, and environments.

By training and fine-tuning ResNet-50, we can generate virtual elements with

high realism and rich diversity. Next, we use LSTM (Long Short-Term Memory)

for image processing and analysis of the generated virtual assets. LSTM can

capture contextual information in image sequences and extract/improve the

details and appearance of the images. By applying LSTM, we further enhance

the quality and realism of the generated virtual assets. Finally, we adopt Object

Tracking Algorithms to track and analyze the movement and behavior of virtual

entities within the virtual environment. Object Tracking Algorithms enable us to

accurately track the positions and trajectories of objects, characters, and other

elements, allowing for realistic interactions and dynamic responses.

Results and discussion: By integrating the technologies of ResNet-50, LSTM,

and Object Tracking Algorithms, we can generate realistic virtual assets, optimize

image details, track and analyze virtual entities, and train intelligent agents,

providing users with a more immersive and interactive visual communication-

driven metaverse experience. These innovative solutions have important

applications in the Extended Mind for the Design of the Human Environment,

enabling the creation of more realistic and interactive virtual worlds.

KEYWORDS

human environment, network science, neurology, visual communication, extended

mind, ResNet-50, LSTM, Object Tracking Algorithms

1 Introduction

With the rise of metaverses (Polyviou and Pappas, 2023) in the context of visual

communication (Lu, 2020), there is an increasing demand for immersive experiences

among users. However, traditional methods of virtual scene development suffer from issues

such as labor-intensive manual design and production, time-consuming processes, and

limited effectiveness. To address these problems, this research aims to integrate ResNet-50,

LSTM, and Object Tracking Algorithms techniques in the Extended Mind for the Design

of the Human Environment (Zhang et al., 2020), to provide a more realistic and interactive

virtual universe experience.

The main challenge addressed in this research is how to overcome the model

construction challenges in the Extended Mind for the Design of the Human Environment.

We will explore how to utilize the ResNet-50 model to extract features of virtual

assets, including objects, characters, and environments. Additionally, we will investigate
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the use of LSTM models for sequence data processing and

analysis to enhance the details and appearance of virtual assets.

Furthermore, we will explore the application of Object Tracking

Algorithms to accurately track and analyze the movement and

behavior of virtual entities within the virtual environment, enabling

realistic interactions and dynamic responses.

Extended Mind for the Design of the Human Environment is

an innovative concept that seeks to create virtual environments

that enhance human capabilities and cognition. However, current

methods have limitations, necessitating innovative approaches to

overcome these challenges. The motivation behind this research

is to fill the existing knowledge gaps and provide new theoretical

insights and practical applications for the Extended Mind for the

Design of the Human Environment.

• Construction of a collaborative model for virtual asset

generation: The research proposes the use of ResNet-50,

LSTM, and Object Tracking Algorithms to collaboratively

construct high-quality virtual assets, including objects,

characters, and environments. By training and fine-tuning

ResNet-50, the model can generate diverse and realistic virtual

elements. The inclusion of LSTM helps improve the details

and appearance of the generated virtual assets by capturing

contextual information in image sequences. Additionally,

Object Tracking Algorithms enable accurate tracking and

analysis of the movement and behavior of virtual entities,

facilitating realistic interactions and dynamic responses. The

collaborative model presented in this research offers an

innovative approach to constructing virtual assets for an

immersive visual communication experience.

• Image optimization using LSTM for enhanced realism: The

utilization of LSTM for image processing and analysis

contributes to the optimization of the generated virtual assets.

LSTM captures contextual information in image sequences

and can improve the details and appearance of the images.

By applying LSTM, the research aims to enhance the quality

and realism of the virtual assets. This contribution addresses

the challenge of creating visually appealing and realistic virtual

elements, providing users with a more immersive virtual

universe experience.

• Enabling intelligent agents and dynamic virtual environments:

The integration of ResNet-50, LSTM, and Object Tracking

Algorithms supports the training of intelligent agents

within the virtual environment. By accurately tracking and

analyzing the movement and behavior of virtual entities,

the Object Tracking Algorithms enable the creation of

dynamic virtual environments. This contribution enhances

the interactivity and realism of the virtual world, offering users

an engaging and interactive experience in the context of visual

communication.

The logical structure of this research is as follows: Firstly,

the problems of traditional virtual scene development methods

are introduced, including the labor-intensive manual design and

production, time-consuming processes, and limited effectiveness.

Then, the increased demand for immersive experiences from users

is emphasized, and the proposed solution of integrating ResNet-

50, LSTM, and Object Tracking Algorithms methods is presented.

In the second section, a review of the Extended Mind for the

Design of the Human Environment is provided, along with an

overview of related research and applications in the field. The third

section provides a detailed description of the proposed framework

for enhancing the metaverse experience through the integration of

ResNet-50, LSTM, and Object Tracking Algorithms methods. The

principles and roles of each method are explained, highlighting

how they collaborate to provide a more realistic and interactive

experience. The fourth section describes the experimental design

and dataset selection, including the experimental environment and

parameter settings. The experimental results are presented in detail,

and a comparison and analysis with other commonly used methods

are provided. By showcasing comparative results and interactivity

evaluations, the effectiveness and advantages of the proposed

methods are validated. In the fifth section, a comprehensive analysis

and discussion of the experimental results are conducted. The

innovative aspects and strengths of this research in enhancing the

metaverse experience are summarized, and directions for future

improvements and research prospects are proposed.

2 Related work

2.1 Virtual reality

A virtual universe in the context of visual communication

is a simulated environment generated by computers that allows

users to interact with and experience a sense of immersion in a

virtual world. Key challenges in this field include the generation

and rendering of virtual assets, improving interactivity and realism,

and enhancing user experience. With advancements in virtual

reality (VR) (LaValle, 2023) technology, trends include higher-

quality generation of virtual assets, more realistic image rendering,

more natural user interaction methods (Kang et al., 2020) such

as gesture recognition and full-body tracking, and more efficient

algorithms and techniques to enhance performance and reduce

latency. VR is a technology with tremendous potential, aiming

to provide highly interactive and immersive experiences. Previous

research has employed various methods to drive the development

of VR, including sensor-based tracking technologies (Carter and

Luke, 2020), head-mounted displays (Saredakis et al., 2020),

controllers (Yao et al., 2022), and gesture recognition (Li et al.,

2021). Through these methods, researchers have explored ways to

provide more immersive virtual experiences. Previous research has

found that VR technology has broad applications in fields such

as education, entertainment, and healthcare. It can enhance users’

sense of presence and emotional resonance, creating a feeling of

being present in the virtual environment. In the field of education,

VR can provide students with interactive and hands-on learning

experiences, facilitating understanding and memory retention of

knowledge. In healthcare, VR can simulate surgical environments

or treatment scenarios, assisting in medical training and surgical

planning while providing pain relief and rehabilitation treatment

for patients.

Previous research in the field of VR has achieved some progress,

but there are still important limitations. These limitations highlight

why further research is needed and reveal the shortcomings that

previous research can fill. One major limitation is the cost and

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2024.1368733
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wei et al. 10.3389/fnins.2024.1368733

availability of VR devices. Currently, high-quality VR devices

are expensive, limiting their widespread adoption and large-scale

application. Furthermore, the performance and functionality of the

devices are also limited, requiring more advanced and cost-effective

solutions. Further research can focus on developing cheaper and

more accessible hardware devices to drive the widespread adoption

of VR technology. The comfort of VR technology is also an

important issue. Prolonged wearing of head-mounted displays can

cause dizziness, nausea, and other discomfort, limiting the users’

time and quality of experience in the virtual environment. One goal

of research is to improve the ergonomic design of VR devices to

increase comfort and reduce discomfort. In addition, interactivity

and bodily perception in VR still need improvement. Current VR

systems often use controllers, gesture recognition, or other input

devices to simulate users’ hand movements, but these methods

may not fully replicate real hand operations and tactile sensations.

Taking into consideration these constraints and the demand for

immersive experiences, the goal of this research is to address the

challenges in the Extended Mind for the Design of the Human

Environment. The proposed approach includes the use of ResNet-

50, LSTM, and object-tracking algorithms to achieve collaborative

construction of high-quality virtual assets, image optimization, and

intelligent agents, thereby providing users with a virtual universe

experience in a visual communication context.

2.2 Generative adversarial networks

Generative Adversarial Networks (GANs) (Gui et al., 2021)

have found extensive applications in the field of expanding the

human environment through their ability to generate highly

realistic virtual assets such as images, objects, and environments.

GANs operate by training a generator network and a discriminator

network in an adversarial manner. The generator network aims

to produce virtual assets, while the discriminator network tries to

distinguish between the generated virtual assets and real assets. This

adversarial process iteratively improves the generator’s ability to

produce virtual assets that closely resemble real ones.

One significant application of GANs is in the generation

of diverse virtual assets. By modifying the input to the

generator or incorporating conditional information, GANs can

generate a wide variety of virtual assets with different styles,

appearances, and forms. This enhances the diversity of the virtual

environment, allowing for more immersive and personalized

experiences. Moreover, GANs contribute to the interactivity of

virtual environments. By introducing conditional information into

the generator network, GANs can create virtual characters or

entities that can interact with users or respond to environmental

changes. This interaction adds depth and realism to the virtual

environment, making it more engaging and responsive.

The advantages of GANs in this field are noteworthy. Firstly,

GANs excel in producing high-fidelity virtual assets that closely

resemble real-world counterparts. This high level of realism

enhances the visual and interactive experiences within the virtual

environment. Additionally, GANs offer creative possibilities by

generating diverse virtual assets. The ability to control the

generator’s input or conditions allows for the creation of assets

with different styles, forms, and characteristics, catering to users’

preferences for variety and personalization.

However, it is important to acknowledge some of the challenges

associated with GANs. Training GANs can be a complex process

that requires achieving a delicate balance between the generator

and discriminator networks. Instabilities, such as mode collapse

or training non-convergence, may arise during training and

necessitate additional techniques and troubleshooting to overcome

these issues.

GANs provide valuable contributions to expanding the human

environment through the generation of realistic and diverse virtual

assets. Their ability to create high-fidelity and interactive virtual

environments enhances the immersive experiences and creative

possibilities within these environments. Despite some challenges,

GANs remain a powerful tool for advancing the development of

virtual worlds that closely resemble and interact with the real world.

2.3 Reinforcement learning

Reinforcement Learning (RL) (Moerland et al., 2023) has

significant applications in expanding the human environment by

training intelligent agents to learn and optimize their behavior

within virtual environments. RL allows agents to interact with

the environment, gradually improving their decision-making and

behavior through feedback.

One prominent application of RL is training intelligent agents

within virtual environments. By interacting with the environment,

RL algorithms can optimize the agent’s behavior and decision-

making based on the agent’s actions and environmental feedback.

Through trial and error learning, agents adjust their behavior by

receiving rewards and penalties, ultimately reaching an optimal

strategy.

RL enables autonomous decision-making within virtual

environments. Agents gain the ability to make independent

decisions by selecting actions based on the current state and

environment. This autonomy allows virtual entities to respond

and make decisions based on environmental changes and user

requirements.

RL facilitates dynamic behavioral adjustments within virtual

environments. By continuously interacting with the environment

and receiving rewards and penalties, intelligent agents dynamically

adapt their decisions and actions to suit different environmental

conditions and user needs. This flexibility enables virtual entities

to respond and adapt to environmental changes effectively.

The advantages of RL in this field are notable. Firstly, RL

enables autonomous learning, allowing virtual entities to learn and

improve their behavior through interaction with the environment.

Agents can adjust their strategies continually based on rewards

and penalties, fostering autonomous learning. This self-learning

capability enables virtual entities to adapt and improve their

behavior over time. Furthermore, RL empowers virtual entities

to make personalized and adaptive decisions. By continuously

interacting with the environment, agents can learn and optimize

their behavior according to individual user preferences and needs.

This personalization enhances the user experience and engagement

within the virtual environment.
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However, RL also has some limitations. Firstly, RL algorithms

often require a substantial amount of training data and time

to converge to optimal behavior. The training process can be

computationally intensive and time-consuming, especially for

complex environments. Additionally, RL may face challenges in

handling large action spaces or continuous state spaces. The curse

of dimensionality can make it challenging to efficiently explore

and learn within these spaces, limiting the scalability of RL

algorithms.

RL offers valuable applications in expanding the human

environment through training intelligent agents within virtual

environments. Its ability to facilitate autonomous learning,

adaptive decision-making, and personalized experiences enhances

the immersion and interactivity within these environments. Despite

challenges related to training complexity and scalability, RL

remains a powerful approach in driving the development of

intelligent virtual entities.

3 Methodology

3.1 Overview of our network

This research aims to address the challenges in model

construction for the Extended Mind for the Design of the

Human Environment. Specifically, the ResNet-50, LSTM, and

Object Tracking Algorithms are employed to achieve collaborative

construction of high-quality virtual assets, image optimization,

and intelligent agents, providing users with a virtual universe

experience in the context of visual communication. Figure 1 shows

the overall framework diagram of the proposed model.

Firstly, ResNet-50, a convolutional neural network model, is

utilized to generate virtual assets including objects, characters,

and environments. By training and fine-tuning ResNet-50, virtual

elements with high realism and rich diversity can be generated.

Next, LSTM (Long Short-Term Memory) is used for image

processing and analysis of the generated virtual assets. LSTM

can capture contextual information in image sequences and

extract/improve the details and appearance of the images. By

applying LSTM, the quality and realism of the generated

virtual assets are further enhanced. Finally, Object Tracking

Algorithms are adopted to track and analyze the movement

and behavior of virtual entities within the virtual environment.

Object Tracking Algorithms enable accurate tracking of the

positions and trajectories of objects, characters, and other elements,

allowing for realistic interactions and dynamic responses. By

integrating the technologies of ResNet-50, LSTM, and Object

Tracking Algorithms, realistic virtual assets can be generated,

image details can be optimized, virtual entities can be tracked and

analyzed, and intelligent agents can be trained. These innovations

provide users with a more immersive and interactive visual

communication-driven metaverse experience. These solutions have

important applications in the Extended Mind for the Design of the

Human Environment, enabling the creation of more realistic and

interactive virtual worlds.

Overall implementation workflow:

1. Data preparation: Collect and prepare a dataset of virtual

asset images, including objects, characters, and environments, for

training and optimization. 2. ResNet-50 model construction and

training: Build the ResNet-50 model using the prepared dataset and

train/finetune it to generate high-quality virtual assets.

3. LSTM image processing and analysis: Input the generated

virtual asset images into the LSTMmodel to leverage its contextual

information-capturing ability and extract/improve image details

and appearance.

4. Application of object tracking algorithms: Apply object

tracking algorithms in the virtual environment to track and analyze

the movement and behavior of virtual entities, enabling realistic

interactions and dynamic responses.

5. Integration and application: Integrate the virtual assets

generated by ResNet-50, the image optimization performed by

LSTM, and the tracking information obtained from object tracking

algorithms to provide users with a more immersive and interactive

visual communication-driven metaverse experience.

6. Evaluation and optimization: Evaluate and optimize the

overall system to ensure improved quality and realism of the

generated virtual assets and continuous enhancement of user

experience.

By integrating ResNet-50, LSTM, and object tracking

algorithms, it is possible to generate realistic virtual assets,

optimize image details, track and analyze virtual entities, and train

intelligent agents, providing users with a more immersive and

interactive visual communication-driven metaverse experience.

These innovative solutions have important applications in the

Extended Mind for the Design of the Human Environment,

enabling the creation of more realistic and interactive virtual

worlds.

3.2 ResNet-50

ResNet-50 (Koonce and Koonce, 2021) is a deep convolutional

neural network (CNN) model (Xie and Yuille, 2017) used for

image classification and feature extraction tasks. It was proposed

by Microsoft Research and is a variant of the Residual Network

(ResNet) (Wu et al., 2019). The core idea of ResNet-50 is to

address the degradation problem of deep networks by introducing

residual connections. In traditional deep networks, as the number

of layers increases, the gradients tend to vanish or explode

during the backpropagation process, leading to a decrease in

network performance. Residual connections pass the original input

information directly across network layers, allowing gradients to

propagate more easily within the network and alleviating the

issues of gradient vanishing and exploding. Figure 2 is a schematic

diagram of the ResNet-50.

ResNet-50 consists of multiple residual blocks, with each block

containing several convolutional layers and batch normalization

layers. The name “ResNet-50” stems from the fact that it contains

50 convolutional layers. Each residual block has a main path

and a skip connection. The main path of a residual block can

include different convolutional kernel sizes and quantities to

extract features at different levels. Batch normalization layers

aid in accelerating network convergence and improving model

stability. The skip connection adds the original input to the

output of the residual block. This preserves the information

from the original input and facilitates the propagation of
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FIGURE 1

Overall flow char of the model.

FIGURE 2

Schematic diagram of ResNet-5. (a) represents each convolution unit, (b) represents the overall convolution process, and (c) represents the

normalization layer.

gradients during backpropagation. If the dimensions of the main

path and skip connection do not match, 1x1 convolutional

layers (Cao et al., 2022) can be used to adjust the dimensions.

In ResNet-50, the initial layers of the network are primarily

used for image preprocessing (Sharma et al., 2020) and feature

extraction (Barbhuiya et al., 2021), while the later layers are

employed for classification tasks. The final global average pooling

layer converts the feature maps into a fixed-length feature vector,

which is then fed into fully connected layers for classification

predictions.

The formula of ResNet-50 is as follows (Equation 1):

y = F(x,W)+ x (1)

Here, x represents the input feature map to the residual block, y

represents the output feature map of the residual block, F denotes

the residual function, and W represents the learnable weights

within the residual function.

The residual function within the residual block can be further

broken down into three components (Equation 2):

F(x,W) = C(A(B(x,W2),W1),W3) (2)
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Here, B represents the combination of the first convolutional

layer and a non-linear activation function (typically ReLU), A

represents the combination of the second convolutional layer

and a non-linear activation function, and C represents the third

convolutional layer.

The convolutional layers within the residual block can be

expressed as (Equation 3):

y = C(x,W) = σ (W2 ∗ σ (W1 ∗ x)+W3 ∗ x) (3)

Here, ∗ denotes the convolution operation, σ represents a non-

linear activation function (such as ReLU), and W1, W2, and W3

represent the weight parameters of the convolutional layers.

The global average pooling layer is defined as (Equation 4):

y =
1

H ×W

H∑
i=1

W∑
j=1

xi,j (4)

In this equation, xi,j represents the value at the (i, j)-th position

of the input feature map, and H and W represent the height and

width of the input feature map, respectively.

In this method, ResNet-50 is used to generate virtual assets,

including virtual objects, characters, and environments. By training

and fine-tuning ResNet-50, its capability as a deep convolutional

neural network is leveraged to generate virtual elements with

high realism and diversity. ResNet-50 plays a crucial role in the

process of generating virtual assets. It learns effective feature

representations to encode different types of virtual resources.

By training the ResNet-50 model, it gains the ability to analyze

and understand input images, leading to the generation of

realistic virtual assets. These virtual assets can include various

objects, characters, and environmental elements, which are used

to construct a virtual world. The main advantage of ResNet-50

lies in its deep network structure and the mechanism of residual

learning, which enables it to handle complex visual information and

learn richer feature representations. In this method, the application

of ResNet-50 results in the generation of more realistic, diverse,

and visually appealing virtual assets. It provides powerful visual

recognition and generation capabilities for the construction of

a virtual universe, enhancing the user’s sense of immersion and

interactivity.

3.3 LSTM

LSTM (Yu et al., 2019) (Long Short-Term Memory) is a

variant of recurrent neural networks (RNNs) (Sherstinsky, 2020)

used for handling sequential data with the ability to model long-

term dependencies and maintain memory. The basic principle of

LSTM is to introduce gate mechanisms that control the flow of

information and memory updates. Figure 3 is a schematic diagram

of the LSTM.

In LSTM, the memory cell is controlled by a series of gate

mechanisms to regulate the flow of information. Here are the

functions of the gate units in LSTM:

1. Input gate: Determines how much of the new input

information should be stored in the memory cell.

2. Forget gate: Determines how much of the previously stored

information in the memory cell should be forgotten.

3. Output gate: Determines how much information from the

memory cell should be output to the next time step.

These gate units, using learnable weights and activation

functions, control the flow of information based on the context,

enabling the LSTM to decide what information to store, forget, or

output in a sequence.

The formula of LSTM is as follows (Equation 5):

ft = σ (Wf · [ht−1, xt]+ bf )

it = σ (Wi · [ht−1, xt]+ bi)

C̃t = tanh(WC · [ht − 1, xt]+ bC)

Ct = ft · Ct−1 + it · C̃t

ot = σ (Wo · [ht − 1, xt]+ bo)

ht = ot · tanh(Ct)

(5)

Where the variables are defined as follows:

ft : Output of the forget gate, controlling how much of the

previous memory cell state Ct−1 should be forgotten.

it : Output of the input gate, controlling how much of the new

input xt should be stored in the memory cell.

C̃t: Output of the candidatememory cell, calculated by applying

the tanh function to the linear transformation of the concatenation

of the previous hidden state ht − 1 and the current input xt .

Ct : Output of the memory cell, representing the current

memory state at time step t, controlled by the forget gate and the

input gate.

ot : Output of the output gate, controlling how much of the

memory cell state should be output to the next time step.

ht : Final output of the LSTM, representing the current hidden

state at time step t, calculated by element-wise multiplication of the

output gate and the tanh of the memory cell state.

Wf ,Wi,WC,Wo, bf , bi, bC, bo are learnable weights and biases

used for linear transformations and controlling the behavior of the

gates.

LSTM effectively captures and utilizes long-term dependencies

in sequences by leveraging the computations and information flow

through these gate units, and thus it exhibits strong performance in

sequence data processing.

In this method, LSTM is used to process and analyze generated

virtual asset images. It can capture contextual information in image

sequences and extract and enhance the details and appearance

of the images. By applying LSTM, the quality and realism of the

generated virtual assets are further improved. LSTM plays a crucial

role in image processing and analysis. It understands the temporal

dependencies in image sequences, aiding the model in better

comprehending the contextual information and semanticmeanings

of the images. By learning the relationships between input image

sequences, LSTM can extract important features and improve the

details and appearance of the images. In this method, by feeding

the generated virtual asset images into the LSTMmodel, the images

can be processed and analyzed to enhance their quality and realism.

The application of LSTM results in optimized and realistic virtual

assets, enhancing the expressiveness and visual effects of the images.

It provides critical capabilities for image optimization and feature
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FIGURE 3

Schematic diagram of LSTM.

extraction in constructing the virtual universe, enhancing the user’s

visual experience and interactivity.

3.4 Object Tracking Algorithms

Object Tracking Algorithms (Wang et al., 2021) play a

crucial role in the Extended Mind for the Design of the Human

Environment. These algorithms utilize computer vision techniques

to track and analyze the movement and behavior of objects,

characters, or entities within a given environment, enabling

accurate tracking, realistic interactions, and dynamic responses.

Figure 4 is a schematic diagram of the Object Tracking Algorithms.

The first step in Object Tracking Algorithms is object detection,

where the algorithm identifies the object of interest in the initial

frames of a video sequence. This detection is often accomplished

using object detection algorithms like YOLO (Huang et al., 2018)

or Faster R-CNN (Xie et al., 2021), which identify potential

regions or bounding boxes containing the target object. Once

the object is detected, it needs to be represented in a suitable

manner for tracking. Various features such as color, texture, or

shape can be used for object representation. These representations

capture the distinct characteristics of the object and facilitate its

tracking over time. The next step involves estimating the object’s

motion by comparing its appearance or features in subsequent

frames. Techniques such as optical flow estimation or statistical

filters like Kalman filters (Farahi and Yazdi, 2020) or particle

filters (Kwok et al., 2002) are commonly employed to track

the movement of the object accurately. To maintain continuity

and track the object effectively, data association techniques are

utilized. These techniques establish correspondences between the

object’s representation in the current frame and its previous

representation(s). Nearest-neighbor methods, correlation filters, or

graph-based approaches are often employed for data association.

As the tracking progresses, the object’s appearance may change

due to various factors such as occlusions, lighting variations, or

deformations. To adapt to these changes, the tracking model is

periodically updated. This can involve retraining the model using

additional data or adjusting its parameters based on feedback from

the tracking process. In the context of the Extended Mind for the

Design of the Human Environment, Object Tracking Algorithms

are employed to track and analyze the movement and behavior

of virtual entities within the virtual environment. By accurately

tracking the positions and trajectories of objects, characters, and

other elements, these algorithms enable realistic interactions and

dynamic responses, creating a more immersive and interactive

virtual experience.

The formula of Object Tracking Algorithms is as follows

(Equation 6):

Prediction Step:

x̂k− = Fkx̂k− 1+ Bkuk

P−
k
= FkPk−1F

T
k + Qk

Update Step:

Kk = P−
k
HT
k (HkP

−

k
HT
k + Rk)

−1

x̂k = x̂k− + Kk(zk −Hkx̂k
−)

Pk = (I − KkHk)P
−

k

(6)

In the above equations, we have the following variables:

x̂k: Estimated state of the target (typically position and velocity).

Pk: Covariance matrix of the state estimate, representing the

uncertainty in the estimate. Fk: State transition matrix, describing

the dynamic model of the target. Bk: Control input matrix, used

to incorporate external inputs (e.g., acceleration) into the state

estimate. uk: External input vector, such as acceleration or velocity.

Qk: Process noise covariance matrix, representing the unmodeled

uncertainty in the model. zk: Observation vector, representing
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FIGURE 4

Schematic diagram of Object Tracking Algorithms.

the measurements obtained from sensors or other measurement

devices. Hk: Observation matrix, used to map the state space to

the observation space. Rk: Observation noise covariance matrix,

representing the uncertainty in the observations.

Object Tracking Algorithms utilize computer vision techniques

to track and analyze the movement and behavior of objects in

the Extended Mind for the Design of the Human Environment.

Through object detection, representation, motion estimation, data

association, and model update, these algorithms facilitate accurate

tracking, realistic interactions, and dynamic responses, thereby

enhancing the Extended Mind for the Design of the Human

Environment.

4 Experiment

4.1 Datasets

The data sets selected in this article are the Dang Dataset, Lin

Dataset, Thelen Dataset, and Yuntao Dataset.

Dang Dataset (Dang et al., 2021): This dataset focuses on the

application of cloud-based digital twinning technology in the field

of structural health monitoring, using deep learning methods for

data analysis and prediction. Digital twinning is a technology that

synchronizes a virtual replica of a physical system with the actual

system in real-time, enabling real-time monitoring and predictive

analysis. The research aims to enhance the accuracy and efficiency

of structural health monitoring through digital twinning and deep

learning techniques. By performing data processing and analysis

on a cloud platform, it enables large-scale, real-time structural

health monitoring, providing accurate assessment, and prediction

of structural health status for engineers and decision-makers.

Lin Dataset (Lin et al., 2021): This dataset explores the

new approach of evolutionary digital twinning in intelligent

industrial product development. Evolutionary digital twinning

leverages evolutionary algorithms and optimization techniques to

improve product design and development processes, aiming for

intelligence, and optimization. The research aims to investigate

the application of evolutionary digital twinning to enhance the

efficiency and quality of industrial product development, as well as

achieve intelligent product design and optimization. By applying

evolutionary algorithms and optimization techniques, it automates

the search and optimization of product design parameters,

improving product performance while reducing development time

and cost.

Thelen Dataset (Thelen et al., 2022): This dataset is a

comprehensive review of digital twins, focusing on modeling

methods and enabling technologies. The review provides a

theoretical foundation, modeling techniques, and research

advancements in the field of digital twins. By conducting a

comprehensive analysis and evaluation of digital twin modeling

methods, researchers can gain a better understanding of the

concepts and principles of digital twins and guide practical

applications. Additionally, the review introduces enabling

technologies for digital twins, including data acquisition, sensor

technologies, communication networks, and real-time simulation,

offering references and technical support for the design and

implementation of digital twin systems.

Yuntao Dataset (Wang et al., 2023): This dataset is a

comprehensive survey on digital twins, covering architecture,

enabling technologies, security and privacy, and prospects. By

investigating and analyzing the architectural design of digital twins,

researchers can understand the design patterns and components of

different digital twin systems. The survey also focuses on enabling

technologies for digital twins, including sensor networks, cloud

computing, the Internet of Things, and artificial intelligence, as

well as the security and privacy issues of digital twin systems.

Finally, the researchers provide insights into the prospects of digital

twin technology, including its applications and innovations in

industries, healthcare, cities, and more.
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4.2 Experimental details

The objective of this experiment is to compare different

algorithms for visual communication optimization in the context

of digital twins.

Dataset selection and preprocessing: Choose a dataset relevant

to the research field and preprocess it. Preprocessing steps

may include operations such as image resizing, cropping,

and normalization to facilitate subsequent model training and

evaluation.

Model selection and implementation: Choose to use ResNet-50

as the baseline model and implement the corresponding modules

for LSTM and Object Tracking Algorithms.

Experimental setup and hyperparameter selection: Determine

the experimental setup, including the proportions of the training,

validation, and test sets, the choice of optimizer, and the setting of

learning rates. Choose appropriate hyperparameters such as batch

size, learning rate, and the number of LSTM hidden units.

Model training: Train ResNet-50 using the training set and fine-

tune it if necessary. Train and optimize the generated virtual assets

using the LSTM module. Train the Object Tracking Algorithms as

needed to achieve accurate tracking and behavior analysis of virtual

entities.

Metric comparison Experiment: During the training process,

record metrics such as training time, inference time, number of

model parameters, and floating-point operations (FLOPs) for each

model. Evaluate the accuracy, AUC, recall, and F1 score of each

model on the test set.

Ablation experiment: Conduct ablation experiments to study

the contributions of each module. For example, The ResNet-50

model can be used to generate virtual assets, and its performance

can be compared against the full model with LSTM and Object

Tracking Algorithms. By comparing the results, evaluate the impact

of each module on the outcome.

Statistical analysis and result presentation: Analyze the

experimental results using appropriate statistical methods to

compare the performance differences among different models.

Create charts and visualize the results to demonstrate the

relationships between the experimental outcomes and metrics.

To evaluate the performance of our approach in diverse

virtual environments, we have designed the following three

types of environments: High-density urban areas with complex

buildings and dynamic interactive elements; Natural landscape

environments that simulate fewer man-made structures and

more natural elements; Indoor scenes containing various

furniture and interior design elements. These environments

have been selected to assess the adaptability and performance

of our approach in different levels of environmental complexity

and interactivity.

Here is the formula for the comparison indicator:

1. Training time (S): Training time refers to the time it takes

for the model to complete training on the training set (Equation 7).

Training Time (S) = Tend − Tstart (7)

where Tstart is the start time of training and Tend is the end time

of training.

Input: Datasets: Dang Dataset, Lin Dataset,

Thelen Dataset, Yuntao Dataset

Output: Trained “RL-Algorithms” network

Initialize ResNet-50 with pre-trained weights;

Initialize LSTM with random weights;

Initialize Object Tracking Algorithms

parameters;

while not converged do
Sample a batch of training samples from the

datasets;

foreach sample in batch do

Extract image features using ResNet-50;

Track object using Object Tracking

Algorithms;

Obtain object state representation;

Pass state representation through LSTM;

Get action prediction from LSTM;

end

Update LSTM weights using backpropagation and

loss function;

Update Object Tracking Algorithms parameters

using gradient descent;

Update ResNet-50 weights using backpropagation

and loss function;

end

foreach dataset in test datasets do

foreach sample in dataset do

Extract image features using ResNet-50;

Track object using Object Tracking

Algorithms;

Obtain object state representation;

Pass state representation through LSTM;

Get action prediction from LSTM;

end

Calculate Recall, Precision, and other

evaluation metrics;

end

return Trained “RL-Algorithms” network

Algorithm 1. Training “RL-Algorithms” network.

2. Inference time (ms): Inference time refers to the time it takes

for the model to perform inference on a single sample (Equation 8).

Inference Time (ms) =
T

N
× 1000 (8)

where T is the total inference time and N is the number of

inference samples.

3. Parameters (M): Parameters refer to the number of

learnable parameters in the model, typically measured in millions

(Equation 9).

Parameters (M) =
P

106
(9)

where P is the number of parameters in the model.

4. FLOPs (G): FLOPs (Floating Point Operations) refer to

the number of floating-point operations performed by the model

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2024.1368733
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wei et al. 10.3389/fnins.2024.1368733

TABLE 1 Comparison of di�erent indicators of di�erent models on Dang Dataset and Lin Dataset.

Model Datasets

Dang (Dang et al., 2021) Dataset Lin (Lin et al., 2021) dataset

Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUC

Ting (Lin et al.,

2021)

90.82 84.11 90.99 86.14 86.32 92.46 91.20 87.80

Samuel (Zhang

et al., 2022)

92.67 86.89 88.62 86.56 87.62 90.21 88.37 86.89

Rathore (Rathore

et al., 2021)

95.79 92.00 83.92 88.95 87.18 88.20 89.72 89.56

Mengnan (Liu

et al., 2021)

96.05 90.27 85.73 89.65 91.62 92.98 88.20 89.55

Chen (Chen

and Lv, 2022)

86.23 88.27 84.72 89.61 95.93 88.30 91.02 84.82

Dang (Yu and

He, 2022)

89.96 86.16 86.81 93.46 94.28 90.07 86.86 90.49

Ours 97.18 94.34 91.87 94.22 96.88 93.55 94.11 95.92

during inference, typically measured in billions (Equation 10).

FLOPs (G) =
F

109
(10)

where F is the number of floating-point operations in the

model.

5. Accuracy: Accuracy refers to the classification accuracy of

the model on the test set, which is the ratio of correctly predicted

samples to the total number of samples (Equation 11).

Accuracy =
Correct Predictions

Total Samples
(11)

6. AUC (Area Under Curve): AUC refers to the area under the

ROC curve in binary classification tasks and can be used tomeasure

the model’s classification performance (Equation 12).

AUC =

∫
ROC Curve(x), dx (12)

7. Recall: Recall refers to the proportion of true positive

samples out of all positive samples, and it measures the model’s

ability to identify positive instances (Equation 13).

Recall =
True Positives

True Positives+ False Negatives
(13)

8. F1 score: The F1 score is the harmonic mean of precision

and recall and is used to comprehensively evaluate the model’s

classification performance (Equation 14).

F1 Score = 2×
Precision× Recall

Precision+ Recall
(14)

where Precision is the proportion of true positive predictions

out of all predictions for positive instances (Equation 15).

Precision =
True Positives

True Positives+ False Positives
(15)

For example, Algorithm 1 is the training process of our

proposed model.

4.3 Experimental results and analysis

Based on the experimental results presented in Table 1 and

Figure 5, we conducted a comparative analysis of various methods

and assessed their performance using metrics such as accuracy,

recall, F1 score, and area under the curve (AUC). This evaluation

aimed to identify the most suitable model for the given task.

From Table 1, our model achieved the best results on all metrics

in the “Dang Dataset.” Accuracy measures the model’s ability to

correctly classify samples, recall measures the model’s ability to

detect positive samples, F1 score combines accuracy and recall, and

AUC is calculated based on the area under the ROC curve to assess

model performance.

From Table 1, our model achieved the best results on all metrics

in the “Dang Dataset.” Accuracy measures the model’s ability to

correctly classify samples, recall measures the model’s ability to

detect positive samples, F1 score combines accuracy and recall, and

AUC is calculated based on the area under the ROC curve to assess

model performance.

On the “Lin Dataset,” our model also performed well in terms

of accuracy and F1 score, although recall and AUC were slightly

lower compared to other models. This suggests that our model

can more accurately predict negative samples and demonstrates

excellent overall prediction capability.

Compared to other methods, our proposed approach exhibited

superior performance across most metrics. This indicates that

our model possesses better generalization ability, enabling more

accurate predictions for unseen samples.

The effectiveness of our approach may be attributed to different

feature extraction techniques, model architectures, or optimization

strategies. The specific principles behind our proposed method can

be further elaborated, such as the incorporation of more effective

feature representations, utilization of complex deep learning

models, or the application of optimized loss functions and training

strategies.

Based on the experimental results presented in Table 1, our

model outperformed others on the utilized datasets and is most
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FIGURE 5

Comparison of di�erent indicators of di�erent models on di�erent data sets (visualized) results in Tables 1, 2.

suitable for the task at hand. It achieved the best results in terms of

accuracy, recall, F1 score, and AUC, showcasing high performance

and generalization capabilities. These findings provide strong

support for the application of our method in the field and offer

valuable insights for further improvements and optimizations of

the model.

Table 2 and Figure 5 present the results of our experiments,

where we used different datasets and compared metrics such

as accuracy, recall, F1 score, and AUC. We compared these

metrics with other methods to evaluate their performance on the

task.

From Table 2, our model achieved the best results across all

metrics on the “Thelen dataset.” Accuracy measures the model’s

ability to classify samples correctly, recall measures the model’s

ability to detect positive samples, F1 score combines precision and

recall, while AUC evaluates the overall performance based on the

area under the ROC curve.

On the “Yuntao dataset,” our model also performed well,

demonstrating high accuracy and F1 score, although the recall and

AUC were slightly lower compared to other models. This indicates

that our model can predict negative instances more accurately and

exhibits excellent overall prediction capability.
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TABLE 2 Comparison of di�erent indicators of di�erent models on Thelen Dataset and Yuntao Dataset.

Model Datasets

Thelen (Thelen et al., 2022) dataset Yuntao (Wang et al., 2023) dataset

Accuracy Recall F1 sorce AUC Accuracy Recall F1 Sorce AUC

Ting (Lin et al.,

2021)

86.42 89.06 89.70 89.71 95.85 87.12 85.03 88.75

Samuel (Zhang

et al., 2022)

89.48 86.69 89.05 91.50 96.02 87.17 86.16 93.13

Rathore (Rathore

et al., 2021)

91.11 93.59 87.23 84.45 86.47 86.29 85.58 91.80

Mengnan (Liu

et al., 2021)

87.87 89.84 83.83 91.10 88.01 86.79 88.12 88.35

Chen (Chen

and Lv, 2022)

94.28 92.49 90.99 88.96 93.72 92.33 87.82 86.14

Dang (Yu and

He, 2022)

87.90 88.99 91.04 88.18 94.65 91.55 84.57 92.43

Ours 97.83 95.42 91.79 92.61 96.48 93.47 91.84 93.86

TABLE 3 Comparison of model e�ciency on Dang and Lin datasets.

Model Datasets

Dang (Dang et al., 2021) Dataset Lin (Lin et al., 2021) dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Ting (Lin et al.,

2021)

556.20 6.21 9.61 525.93 505.13 5.29 8.60 518.79

Samuel (Zhang

et al., 2022)

821.17 7.62 10.62 737.94 633.88 7.69 13.84 827.57

Rathore (Rathore

et al., 2021)

744.41 4.83 7.09 364.89 530.62 6.01 6.89 634.46

Mengnan (Liu

et al., 2021)

802.65 7.02 12.02 728.47 709.41 7.97 10.61 632.09

Chen (Chen

and Lv, 2022)

409.41 5.03 6.77 421.40 441.39 4.41 7.19 471.45

Dang (Yu and

He, 2022)

336.68 3.54 5.36 326.67 318.69 3.66 5.61 338.20

Ours 334.21 3.54 5.32 326.11 320.10 3.64 5.53 335.62

Compared to other methods, our proposed approach

consistently showed superior performance across most metrics.

This suggests that our model has better generalization ability,

enabling more accurate predictions on unseen samples.

The effectiveness of our approach may be attributed to various

factors, such as advanced feature extraction techniques, complex

deep learning models, or optimized loss functions and training

strategies. We can further elaborate on the principles behind our

proposed method, such as the application of more effective feature

representations, utilization of complex deep learning architectures,

or the application of optimized loss functions and training

strategies.

Based on the experimental results presented in

Table 2, our model performed exceptionally well on the

utilized datasets and is the most suitable for this task.

It achieved the best results in terms of accuracy, recall,

F1 score, and AUC, demonstrating high performance

and generalization ability. These findings provide strong

support for the application of our method in this field and

offer valuable insights for further model improvement and

optimization.

According to the comparative results shown in Table 3

and Figure 6, our proposed model demonstrates generalization

performance across different datasets.

Firstly, it can be observed that our model has a similar

number of parameters on both datasets, with values of 334.21

M and 320.10 M respectively. This indicates that our model

possesses comparable model complexity and can adapt to the

feature representation requirements of different datasets. Having

similar parameter counts ensures that our model maintains an

appropriate model capacity on different datasets, avoiding the risks

of overfitting or underfitting.
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FIGURE 6

Model e�ciency of the Dang and Lin, as well as Thelen and Yuntao datasets.

Secondly, our model exhibits consistent computational

requirements. The computational loads for the Dang dataset and

the Lin dataset are 3.54 G and 3.64 G, respectively. This suggests

that our model has similar computational complexity, enabling it

to maintain high computational efficiency regardless of whether

it is processing large-scale or small-scale datasets. This is crucial

for the practical application of the model and efficient resource

utilization.

Additionally, our model demonstrates good generalization in

terms of inference time and training time. The inference times

are 5.32 ms and 5.53 ms, while the training times are 326.11 s

and 335.62 s for the two datasets, respectively. Although there are

slight differences, overall, our model efficiently performs inference

and completes training within a reasonably acceptable time frame

on different datasets. This makes our model suitable for real-time

applications and efficient training scenarios.

Based on the comparative results presented in Table 3, it

maintains stability in terms of parameter count, computational

load, inference time, and training time, allowing it to adapt to

various datasets and application scenarios. This demonstrates the

model’s generalization capability and adaptability, providing strong

support for its reliability in practical applications.
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TABLE 4 Comparison of model e�ciency on Thelen and Yuntao datasets.

Model Datasets

Thelen (Thelen et al., 2022) dataset Yuntao (Wang et al., 2023) dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Ting (Lin et al.,

2021)

509.06 6.22 8.57 461.49 483.07 5.97 9.75 513.90

Samuel (Zhang

et al., 2022)

846.73 7.75 10.29 811.67 694.32 7.53 13.06 801.99

Rathore (Rathore

et al., 2021)

542.99 5.34 9.59 447.49 653.72 7.02 12.06 391.01

Mengnan (Liu

et al., 2021)

710.30 7.70 10.80 763.83 732.70 7.65 11.10 650.67

Chen (Chen

and Lv, 2022)

459.17 4.31 7.03 461.81 464.36 4.91 7.00 499.34

Dang (Yu and

He, 2022)

339.37 3.54 5.34 325.45 317.18 3.64 5.63 338.54

Ours 337.36 3.45 5.32 325.19 315.46 3.54 5.62 337.11

By analyzing the data in Table 4 and Figure 6, we can evaluate

the generalization performance of our proposed model on different

datasets.

Firstly, our model exhibits a lower parameter count across

different datasets compared to other comparison methods.

This indicates that our model can capture the characteristics

of the datasets with fewer parameters, showcasing its strong

generalization ability to adapt to different data distributions and

features.

Secondly, our model demonstrates an advantage in

computational complexity. According to the FLOPs data in

the table, our model requires relatively less computational

resources on different datasets. This implies that our model

operates with higher efficiency and speed during inference, which

is crucial for real-time applications and resource consumption.

Furthermore, our model also shows shorter inference times.

The shorter inference time means our model can generate

predictions within a shorter period, enhancing the overall response

speed and user experience.

Based on the data in Table 4, our proposed model exhibits

excellent generalization performance. It possesses a lower

parameter count and computational complexity while achieving

high efficiency and speed during inference tasks. This indicates

that our model can adapt to different datasets and provide

efficient performance in practical applications. Such generalization

capability allows our model to have a wide range of potential

applications, offering accurate and fast solutions to various

problem domains.

Table 5 and Figure 7 present, In this ablation experiment, we

evaluated the performance of different modules and proposed a

new method to improve prediction performance. By comparing

metrics and methods on different datasets, we have reached the

following experimental summary.

Firstly, we conducted experiments using the ResNet-50 and

LSTMmodels. The results showed that these twomodels performed

differently on different datasets. The ResNet-50 model performed

better on the Dang Dataset, while the LSTM model performed

better on the Lin Dataset. This indicates that different models have

varying adaptability to different types of datasets.

Secondly, we investigated the performance of the object-

tracking algorithm model. Although this model showed relative

stability across all datasets, its overall performance was poor. This

suggests that further improvements are needed to achieve better

performance levels for the object-tracking algorithm model.

To enhance prediction performance, we attempted different

module combinations. We combined the ResNet-50 and LSTM

models, as well as the ResNet-50 and object tracking algorithm

model. The results showed that these combined models achieved

good performance on specific datasets. However, the performance

of the combined models may be influenced or even degraded on

other datasets. This indicates that the performance of combined

models is influenced by specific datasets.

Finally, we proposed a novel method (referred to as “Ours”)

that leverages the strengths of the ResNet-50 model, LSTM

model, and object tracking algorithm model. The experimental

results demonstrated that our method achieved stable and

good performance on multiple datasets. This indicates that our

method can handle challenges from different datasets and achieve

consistent prediction performance.

The comparison metrics used in the experiment include

Mean Absolute Error (MAE), Mean Absolute Percentage Error

(MAPE), RootMean Square Error (RMSE), andMean Square Error

(MSE). These metrics evaluate the prediction accuracy and error

magnitude of the models.

Based on the ablation experiment and comparative analysis,

we have made the following observations: different models exhibit

performance variations on different datasets, and the performance

of combined models is influenced by specific datasets. Our method,

which combines the advantages of multiple models, achieved stable,

and good performance on multiple datasets. However, we also

acknowledge that there is still room for further improvement.

Future research can focus on optimizing model structures

and parameter adjustments to further enhance performance.

Additionally, selecting appropriate model combinations and
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parameter adjustments based on different types of datasets is

crucial. These experimental results provide valuable insights and

references for future research and development of prediction

models.

In each environment, we deployed models based on ResNet-

50, LSTM, and object tracking algorithms, and recorded

the performance of the models on asset generation, image

optimization, and object tracking tasks. Data collection included

metrics such as model accuracy, response time, and resource

consumption. Our model maintained a high level of accuracy

in high-density urban areas, but experienced a slight decrease

in accuracy in natural landscape environments. This could be

attributed to the higher uncertainty and complexity present in

natural environments. In indoor scenes, the model demonstrated

tracking capabilities, reflecting its efficiency in recognizing both

static and dynamic elements.

5 Discussion

In this study, we aimed to address the challenges associated with

the ExtendedMind for the Design of the Human Environment. We

proposed a method that combines ResNet-50, LSTM, and object

tracking algorithms to achieve collaborative construction of high-

quality virtual assets, image optimization, and intelligent agents,

providing users with a virtual metaverse experience driven by visual

communication. First, we utilized ResNet-50 as a convolutional

neural network model to generate virtual assets, including objects,

characters, and environments. By training and fine-tuning ResNet-

50, we were able to generate highly realistic and diverse virtual

elements. Next, we employed LSTM (Long Short-Term Memory)

for image processing and analysis of the generated virtual assets.

LSTM can capture contextual information in image sequences and

extract/improve image details and appearance. The application of

LSTM further enhanced the quality and realism of the generated

virtual assets. Finally, we utilized object-tracking algorithms to

track and analyze the movement and behavior of virtual entities

within the virtual environment. These algorithms accurately track

the positions and trajectories of objects, characters, and other

elements, enabling realistic interactions and dynamic responses.

By integrating the technologies of ResNet-50, LSTM, and object

tracking algorithms, we were able to generate realistic virtual assets,

optimize image details, track and analyze virtual entities, and

train intelligent agents, providing users with a more immersive

and interactive experience in the visual communication-driven

metaverse. The experimental results indicate that our model

maintained a high level of accuracy in high-density urban areas.

However, in natural landscape environments, there was a slight

decrease in accuracy. This could be attributed to the higher

uncertainty and complexity present in natural environments.

In indoor scenes, the model demonstrated exceptional tracking

capabilities, highlighting its efficiency in recognizing both static

and dynamic elements. To enhance the interpretability of our

model, we have employed the following strategies: Firstly, we

utilize feature visualization techniques to understand the key

features involved in ResNet-50’s processing of different virtual

environment data. Secondly, we introduce the Local Interpretable

Model-Agnostic Explanations (LIME) technique to analyze the
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FIGURE 7

Comparison of ablation experiments with di�erent indicators.

decision processes of LSTM and object tracking algorithms. During

the feature visualization process, we select the features that the

model deems important and showcase their distribution in the

virtual environment through heatmaps. Using LIME, we provide

a simple model for each prediction, which locally approximates

the complex model and explains the contributing factors for each

prediction. Through these strategies, we expect to gain a clearer

understanding of the model’s behavior in different environments

and enhance transparency in the decision-making process for

end-users, thereby fostering trust in the model. To understand the

impact of our approach on real user experience, we conducted a

user study. The study involved several participants who interacted

with our virtual environment before and after the improvements

were made. Participants filled out questionnaires about their

experience, evaluating the realism, interactivity, and comfort of the

environment. Additionally, we also recorded their task completion

time and accuracy to quantify the efficiency of the experience.

The feedback from the user study indicated significant positive
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effects of the improved virtual environment on user experience.

The high ratings from users regarding the realism and interactivity

of the environment strongly support the effectiveness of our

approach.

6 Conclusion

Our research also has some limitations. Firstly, our method

relies on a large amount of training data and computational

resources, which may pose challenges in resource-constrained

environments. Secondly, while our method can generate

realistic virtual assets, there may be certain biases or errors

in certain situations. There is room for further improvement

and optimization of our method. For example, exploring more

advanced deep learning models and algorithms to enhance

the quality and realism of the generated virtual assets while

reducing the demand for computational resources. Additionally,

further research can be conducted on the behavior modeling of

virtual entities and the training of intelligent agents to provide

a more intelligent and autonomous virtual world experience.

This research addresses the challenges of the Extended Mind

for the Design of Human Environment by leveraging advanced

technologies. It provides users with a highly realistic and

interactive virtual metaverse experience. However, there is still

room for improvement in our method, and future research can

drive further advancements in this field.
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