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Steady-state visual evoked potential brain-computer interfaces (SSVEP-BCI)

have attracted significant attention due to their ease of deployment and high

performance in terms of information transfer rate (ITR) and accuracy, making

them a promising candidate for integration with consumer electronics devices.

However, as SSVEP characteristics are directly associated with visual stimulus

attributes, the influence of stereoscopic vision on SSVEP as a critical visual

attribute has yet to be fully explored. Meanwhile, the promising combination of

virtual reality (VR) devices and BCI applications is hampered by the significant

disparity between VR environments and traditional 2D displays. This is not only

due to the fact that screen-based SSVEP generally operates under static, stable

conditions with simple and unvaried visual stimuli but also because conventional

luminance-modulated stimuli can quickly induce visual fatigue. This study

attempts to address these research gaps by designing SSVEP paradigms with

stereo-related attributes and conducting a comparative analysis with the

traditional 2D planar paradigm under the same VR environment. This study

proposed two new paradigms: the 3D paradigm and the 3D-Blink paradigm. The

3D paradigm induces SSVEP by modulating the luminance of spherical targets,

while the 3D-Blink paradigmemploysmodulation of the spheres’ opacity instead.

The results of o	ine 4-object selection experiments showed that the accuracy

of 3D and 2D paradigmwas 85.67 and 86.17%with canonical correlation analysis

(CCA) and 86.17 and 91.73% with filter bank canonical correlation analysis

(FBCCA), which is consistent with the reduction in the signal-to-noise ratio (SNR)

of SSVEP harmonics for the 3D paradigm observed in the frequency-domain

analysis. The 3D-Blink paradigm achieved 75.00% of detection accuracy and

27.02 bits/min of ITR with 0.8 seconds of stimulus time and task-related

component analysis (TRCA) algorithm, demonstrating its e�ectiveness. These

findings demonstrate that the 3D and 3D-Blink paradigms supported by VR

can achieve improved user comfort and satisfactory performance, while further

algorithmic optimization and feature analysis are required for the stereo-related

paradigms. In conclusion, this study contributes to a deeper understanding of

the impact of binocular stereoscopic vision mechanisms on SSVEP paradigms

and promotes the application of SSVEP-BCI in diverse VR environments.

KEYWORDS

virtual reality (VR), brain-computer interface (BCI), steady-state visual evoked potentials

(SSVEP), three-dimensional (3D) stimuli, binocular vision
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1 Introduction

Brain-computer interface (BCI) (Wolpaw et al., 2000) is

an emerging interdisciplinary technology that establishes new

information pathways between the brain and the external

environment (Yu et al., 2019), which can be achieved

without relying on peripheral nerves or muscles, and realizes

direct interaction between the brain and external devices.

Electroencephalography (EEG)-based BCIs (Lotte et al., 2018)

have gained significant attention in recent years due to their ease

of deployment and high temporal resolution, typical paradigms of

which are P300 (Xiao et al., 2021), Steady-State Visually Evoked

Potentials (SSVEP) (Yin et al., 2015), and Motor Imagery (MI) (Jin

et al., 2020). Among these paradigms, SSVEP-BCI stands out due

to its advantages of high Information Transfer Rate (ITR) (Cheng

et al., 2002) and Signal-to-Noise Ratio (SNR) (Wang et al., 2016),

as well as its low requirements for subjects, which collectively make

it one of the easiest BCI paradigms to deploy and apply at present.

Human EEG signals are inherently variable and subject

to noise. However, a specific frequency of luminance-based

flickering stimulation can elicit EEG signals with distinct frequency

characteristics. This phenomenon is known as SSVEP (Kaspar

et al., 2010). SSVEP is usually characterized by a stable

and synchronized response in the brain at the stimulation

frequency. In a typical SSVEP-BCI system, a liquid crystal

display (LCD)/light-emitting diode (LED) computer screen is

used to simultaneously present several stimuli flashing at

specific frequencies (Mu et al., 2020). EEG signals are collected

during the presentation of these stimuli and then processed

and classified as instructions for BCI control (Allison et al.,

2012).

In early SSVEP experiments, LEDs were commonly used

to directly present physical visual stimuli. Cotrina et al. (2017)

proposed a novel SSVEP-BCI setup where two stimuli are presented

together, one focused and the other non-focused, in the center of

the user’s field of view at different distances using LED displays.

However, the mature and mainstream approach in the current time

mainly involves the use of CRT/LCD displays to present various

planar stimuli (Wang et al., 2016; Liu et al., 2020). Since there

has been research on SSVEP using an LCD display to present

3D stimuli in the past (Mun et al., 2013), there are emerging

studies in this field that have begun exploring similar integrative

applications using Virtual Reality (VR)/Augmented Reality (AR)

devices (Chen et al., 2021; Mahmood et al., 2022; Zhang et al.,

2023). Unlike traditional LCD displays, VR/AR is a binocular

vision-based display device that uses parallax and immersive

computer graphics effects to build an interactive environment.

Despite extensive research (Anzai et al., 1997; Kim et al., 2016)

on stereoscopic and depth perception in neurology, few studies

have been conducted on BCI systems that use stereo-related visual

stimuli. Han et al. (2019) proposed a novel stimulation method

for VEP-BCI based on stereoscopic motion, which utilizes the

mechanism of binocular parallax.

However, there are emerging paradigms in the field of SSVEP,

such as illusion-induced visual evoking potential (IVEP) (Li et al.,

2023) and smoothed steady-state motion visual evoking potential

(SSMVEP) (Yan et al., 2017), which incorporate human motion

perception into SSVEP-based BCI systems, offering brand new

directions for SSVEP-BCI technology. The results of the SSMVEP

experiments demonstrate that the CCA features of stereoscopic

EEG signals are significantly stronger compared to nonstereoscopic

motion, and more regions of the brain were activated (Guo

et al., 2022). Likewise, the exploration of visual stimulation

combined with stereo perception in brain-computer interfaces

holds significant potential for advancing the field and merits

further investigation.

Currently, there have been limited studies that directly explore

the combination of stereoscopic stimuli and the SSVEP-BCI

paradigm. However, some studies have started investigating the

effects of stereoscopic scenes and stereoscopic visual stimuli

on BCI systems. Qu et al. (2018) proposed a novel P300

EEG speller that utilizes stereo visual stimuli, which generated

higher amplitude P300 waveforms compared to the traditional

2D P300 speller. The results of the ERP analysis of this study

revealed the impact of stereoscopic stimulation on EEG. Niu

et al. (2023) introduced a hybrid BCI-VR system, using 3D

blocks as carriers for SSVEP stimuli, in the form of letters

displayed on different faces, which achieved a performance level

with an average accuracy of 92.07% and an average information

transfer rate of 34.367 bits/min. However, in their study, complete

stereoscopic stimuli were not utilized and specific experiments

targeting stereoscopic perception were not designed. Zehra et al.

(2023) compared AR-based SSVEP with 3D and 2D stimulation

using three different strategies: flickering, grow-shrink, and both.

However, the use of dry electrodes and the characteristics of AR

perspective led to interference by various factors, resulting in

overall low performance. Zhu et al. (2023) examined the effects

of shape, color, and frequency parameters on 3D SSVEP in a

VR setting, but without specifically focusing on comparing the

characteristics or performance differences between 3D stimulation

and flat stimuli.

In this study, we mainly investigate the impact of stereoscopic

perception on the performance of SSVEP-BCI under a virtual

reality environment through a comparative analysis with 3D

stereoscopic stimuli and 2D plane stimuli presented under

identical conditions. Attempts were also made to construct

new paradigms to combine stereoscopic perception and visual

evoked potentials to make SSVEP-BCI more suitable for 3D

space applications. A new VEP approach is proposed, which

involves the periodic disappearance and reappearance of a

stereoscopic object at a fixed position through inversion of

opacity instead of luminance. Comparing to existing studies,

this study examines the distinctions between traditional 2D

stimulation and stereo-related stimulation in VR environments

by analyzing frequency domain features and evaluating

the performance of training and non-training recognition

methods. The findings offer insights for advancing spatial

interaction paradigms.

The remaining paper is arranged as follows: Section 2

introduces the materials and methods, which mainly describe

the setup of the VR-BCI system and the experimental design.

Section 3 reports the experimental results, and Section 4 discusses

the significance and future directions of this work. Finally, the

conclusion is presented in the last section.
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2 Materials and methods

2.1 VR-BCI system setup

In this study, we developed a combined VR-BCI system

to present both stereoscopic and planar stimuli, collecting the

EEG signal mainly from the parietal and occipital lobes. The

framework of this system, as shown in Figure 1, can be mainly

divided into three parts: stimulus presentation, EEG acquisition,

and EEG signal processing. The central control unit of the system

is a PC with a GPU, running the Unity3D program (Unity

Technologies, San Francisco, CA, USA), connecting VR-HMD

(PICO Neo3 Pro, PICO Interactive Inc, Shanghai, China) through

a DP cable connection and presenting stimuli with steamVR (Valve

Corporation, Bellevue, WA, USA). A Neuroscan SynAmps2 system

was set up for continuous EEG acquisition, equipped with a 64

channel electrode cap according to the international 10-20 system

at a sampling frequency of 1, 000 Hz. The host PC is connected to

the Neuroscan device through a parallel port, allowing the Unity

experimental program to provide accurate markers directly based

on event triggers.

The internal display of the PICO Neo3 Pro has a resolution

of 2,160 × 1,200 (1,080 × 1,200 per eye) pixels and a vertical

refresh rate of 90 Hz. The PICONeo3 Pro offers a 98-degree field of

view and optical adaptation for the adjustment of the interpupillary

distance (IPD) in the range of 55 − 71 mm, providing participants

with a fundamentally satisfying 3D visual experience.

To ensure precise timing synchronization for the experiment,

PICO Neo3 Pro is configured to use a Display Port (DP)

connection mode to directly receive video output from a

desktop computer with a dedicated graphics card (GeForce

RTX3060, NVIDIA), allowing seamless transmission of

visual content. The physical update interval of Unity Engine

is adjusted to 1 ms, which is required for high-precision

synchronization in certain scenarios. In the described system,

using a fixed duration of stimuli presented at regular intervals

and sending event markers through the parallel port can

indeed minimize the impact of network latency on the

overall system.

2.2 EEG acquisition

2.2.1 Participants
Ten subjects (nine male and one female, aged 21–26)

from ShanghaiTech University and Shanghai Advanced Research

Institute (Chinese Academy of Sciences) were recruited to

participate in the experiments in this study. All subjects had

normal or corrected to normal binocular vision, with the ability

to perceive stereoscopic perception, and without reported issues of

neurological disease or impairments. Participants had not received

specific training for the experiment prior to this experiment,

although some of them had previous experience participating

in similar SSVEP experiments. All subjects received informed

consent under the method and procedure approved by the Ethics

Committee of ShanghaiTech University. Subjects were required to

follow the corresponding experimental instructions and remain

attentive during the experiment. Data from ten subjects were

included in the final analysis.

2.2.2 EEG recordings
Experiments were implemented in an electromagnetically

shielded room to eliminate external noise. Nine

electrodes overlaying parietal and occipital areas

(Oz,O1,O2, Pz, POz, PO3, PO4, PO5 and PO6) (Wang et al.,

2016; Nakanishi et al., 2017) were used to collect continuous

EEG signals elicited by visual stimuli generated by VR-

HMD, with the Neuroscan SynAmps2 system. We placed

the reference electrode in the central area and the ground

electrode in the frontal area. All electrode impedances were

kept below 10k�. In order to facilitate the extraction of

relevant event data and enable subsequent analysis, the

presentation of stimuli was synchronized with event markers

on the EEG data, which were simultaneously transmitted

from the desktop computer to the SynAmps2 system with

parallel port.

2.3 Stimuli and experiment design

An experiment was designed to investigate the impact

of stereo-related objects on the performance of SSVEP-BCI.

The classification performance of planar SSVEP objects and

stereoscopic SSVEP objects was directly compared in a typical 4-

target selection task, while different implementations for visual

stimuli were employed.

For each subject, all tasks were performed on the same

day but during separate sessions. Between sessions, we

provided participants with ∼5–10 min of rest to readjust

to a natural state without wearing the VR headset, which

aimed to exclude possible influences like 3D dizziness. A

regular break of 30 s was also provided between consecutive

blocks within each session. The experiment began with a

briefing session where participants received an introduction

to the study objectives and instructions on performing

the tasks.

Due to the challenges in controlling the consistency of the

stimulus area and the distance between the PC display and the VR

display, all experiments in this study were carried out within VR

scenes. The diameter of the designed round or spherical stimulus

was adjusted to a default of 1 unit in the Unity engine. Additionally,

the subjects’ viewing angle distance was set at four units of stimulus

distance within the scene. By utilizing VR technology, our goal was

to ensure a standardized condition for experiments and eliminate

potential variations that may arise from physical displays and their

respective distances.

After each participant completes all the tasks, we administer a

questionnaire to obtain feedback on the comfort level of different

stimulus presentation methods, as well as the general evaluation of

factors such as clarity of the visuals during the VR experiment, the

presence of 3Dmotion sickness, comfort of wearing the equipment,

and fatigue experienced during the duration of the experiment.
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FIGURE 1

Experiment setup. (A) Schematic diagram of the experiment system. The size, position, and parameters of all four objects in di�erent experiment

scenes are exactly the same, with a length unit of 1m in the default unity scale. (B) VR-BCI system setup. Visuals are transmitted to the VR headset

through a direct display port connection using a desktop computer equipped with a GPU, which simultaneously controls the event markers of

Neuroscan.

2.3.1 Experiment design: 4-target selection task
As shown in Figure 2, based on the standard SSVEP four-target

selection task, the experiment involved a baseline 2D task and two

3D stereoscopic stimulus task using the sinusoidal mode and the

Blink mode, with each task consisting of 60 trials to investigate the

differences between the three types of stimuli. Figure 2 illustrates

the experimental content and provides an overview of the basic

procedure. Each trial in the experiment consisted of a 2-s cue period

followed by a 4-s simulation period.

There were a total of three sessions, and each session included

three blocks. Within each block, the four target selections were

conducted five times, which means one block consisted of 20 trials.

During each cue period, a red indicator dot appeared at one of four

specific locations, which were the center positions of the stimuli

shown in Figure 2. Subjects were instructed to direct their gaze

toward the position of the red dot whenever it appeared and to

maintain a steady gaze during the stimulation period. All four

targets are flickering simultaneously during each simulation period.

In the VR scene design, four stimuli were arranged in a cross

pattern on a vertical plane located at a distance of two standard

units from the camera’s viewpoint, as shown in Figure 2A. The

distances between the upper and lower stimuli, as well as between

the left and right stimuli, were set to three standard units. The

stimuli themselves were circular planes or spheres with a diameter

of 1 standard unit. During the actual experiment, the participants

could comfortably maintain their gaze on each stimulus, even

after making slight adjustments to their viewing angles. The 2D

and 3D stimuli in the VR scene were rendered using the default
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FIGURE 2

Experiment protocol. (A) Experiment tasks design. The four-target selection tasks were designed using identical methods for all types of stimulus

presentation. The di�erent tasks are performed in separate sessions, resulting in three sessions for each participant’s experiment. Each session

consists of three blocks, with each block comprising 20 trials, totaling 60 trials. Participants were given 10 s of preparation time at the beginning of a

session. A 30-s rest period was provided after each block of multiple consecutive tests. After completion of all three tasks, a questionnaire was

administered to obtain feedback from the participants. (B) Experiment procedure. In each trial, all four stimuli were presented simultaneously during

the simulation period. One trial consists of a 2-s display of the target location followed by a 4-s stimulus presentation. Following each trial, the next

target would be switched, and the switching order starts from the target at 8.5 Hz and proceeds clockwise through the four targets, which would

finally complete one round of the 4-target recognition task. The entire experiment consists of repeating this process multiple times.

Unity material, but 3D stimuli had lighting and shading effects

additionally. Cotrina et al. (2017) discussed the impact of switching

between different points of focus on the effects of SSVEP. As the

primary focus of this research was not on the potential effects of

focal switching, a gray plane positioned at a fixed distance in front

of the observer was used to present the 2D stimuli. This ensured

consistent effects with the PC-SSVEP paradigm while eliminating

potential confounding factors. For 3D tasks, the positions of the

3D spheres’ centers are also on the same plane as the center of

the 2D circles. However, in 3D tasks, this plane is not displayed,

and the background maintains a natural 3D skybox environment

as shown in Figure 2A. In the overall experimental task, the 2D,

3D and 3D-Blink tasks were conducted in separate sessions. Within

each session, the four stimuli flickered at fixed frequencies as 8.5,

9.5, 11, and 12.5 Hz, positioned as shown in Figure 1A, starting with

the upper object and in clockwise order.We chose these frequencies

based on Wang et al. (2016) and similar AR-SSVEP studies (Zhang

et al., 2023), also with the consideration about fresh rate of VR

device.We developed twomethods for presenting flickering stimuli

in the Unity3D program, as shown in Figures 3A, B. Flip mode

reversed colors at fixed intervals, whereas sinusoidal mode used a

modulated sine wave for smooth luminance transitions, with flip

mode being more affected by hardware refresh rate and sinusoidal

mode being more robust to dropped frames. In this study, to

address the accuracy issues with the stimulus frequency and event

markers in Unity, the update time of the engine was adjusted to

1ms. Additionally, the sinusoidal mode was used by default for

presenting both 2D and 3D stimuli, as shown in Figure 3B, to

minimize the impact of error factors such as dropped frames.

2.3.2 SSVEP paradigms
In this experiment, we compared three different paradigms: 2D,

3D, and 3D-Blink, using the same target selection task. The 2D and

3D paradigms presented stimuli of the target frequency through

sinusoidal modulation of luminance. We aimed to investigate the

influence of planar and stereoscopic stimuli on the SSVEP features

through comparison of their results. Due to the primary source of

immersion and depth perception in VR being binocular display-

induced disparity, we came up with a novel approach to present

visual stimuli, as shown in Figure 3A, to further leverage this visual

characteristic to construct visual stimuli that are better aligned

with the SSVEP paradigm. This new simulation mode, which

we named 3D-Blink, modified the original luminance-related

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2024.1367932
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2024.1367932

FIGURE 3

Three di�erent implementations of visual stimuli. (A) Inversion of Luminance. (B) Sinusoidal Modulation of Luminance. (C) Inversion of Opacity.

modulation of SSVEP stimuli by using inversion of opacity instead

of luminance to achieve a periodic appearance and disappearance

of the target at a specific frequency, which overcame the discomfort

caused by luminance flickering and might further benefit from

depth perception.

2.4 EEG processing

All the original signals were downsampled to achieve a

sampling rate of 250 SPS and filtered using a notch filter with

a frequency range of 48 − 52 Hz to eliminate power frequency

interference. The desired frequency band was obtained through

the implementation of a second-order Chebyshev IIR filter with a

passband ranging from 4 to 40 Hz.

2.5 Classification methods

2.5.1 Filter bank canonical correlation analysis
As the most classic SSVEP method, Canonical Correlation

Analysis (CCA) (Lin et al., 2006) analyzes SSVEP signals by

calculating the canonical correlation coefficients of the two groups

of signals. While CCA can generally reflect the effectiveness of

the implementation of the SSVEP system, its performance is not

sufficiently stable to meet real-time requirements for accurate

interaction. Compared to ordinary CCA, FBCCA (Chen et al.,

2015) can better leverage potential gains from harmonics of

the target frequency. By incorporating a filter bank mechanism,

FBCCA can decompose the input signal into multiple frequency

bands and process each band independently, and then the CCA

results of all frequency bands are weighted and superimposed to

produce the final FBCCA results. This approach enables FBCCA

to better utilize the SSVEP feature information contained in EEG

signals, thereby improving the overall signal-to-noise ratio, which

makes FBCCA one of the best non-calibration algorithms for

SSVEP. The FBCCA method in this study processed 3 sub-bands,

namely 6 − 90 Hz, 14 − 90 Hz, and 22 − 90 Hz, with the number

of harmonics set to 3. The calculation method used for the weights

of the sub-band components is w(n) = n−a
+ b, where n ∈ [1,N],

n is the sub-band index, and N is the total number of sub-bands.

The FBCCA algorithm employed in this study uses 1.25 and 0.25 as

the parameter values for a and b, respectively, referring to previous

studies (Chen et al., 2015).
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2.5.2 Task-related component analysis
Based on previous research, deep perception can elicit specific

ERP (Event-Related Potentials) responses (Guo et al., 2022). In

our study, we hypothesized that 3D stimuli could also evoke these

ERP components in EEG data. Due to the time-locking nature of

these ERP components, TRCA (Nakanishi et al., 2017) is a suitable

classification method for extracting and utilizing potential ERP

characteristics related to stereoscopic stimuli. TRCA constructs

spatial filters to maximize task-related correlations in multiple time

series. By utilizing the reproducibility of task-related components,

TRCA significantly improves the signal-to-noise ratio of SSVEP.

Unlike methods such as CCA, TRCA does not require high

accuracy in the frequency of the stimuli. Instead, its focus lies on the

consistency of the stimulus components in each task, emphasizing

accurate time synchronization, especially for strongly time-locked

EEG features. The TRCA method used in this study employed the

same filter bank strategy as the FBCCA method.

2.6 Performance evaluation

2.6.1 Amplitude and signal-to-noise ratio
Amplitude values reflect the intensity or magnitude of the

SSVEP response. By comparing the amplitudes between 2D and

3D stimuli, we can assess if depth perception induced by the 3D

stimuli leads to larger or different SSVEP responses compared to

2D stimuli. SNR is a crucial indicator for evaluating the quality

of SSVEP signals and is widely used in SSVEP research (Wang

et al., 2016; Zhang et al., 2022). As a measure of the quality of the

SSVEP signal, SNRs indicate the strength of the signal relative to

background noise. Higher SNR values suggest a more reliable and

accurate detection of SSVEP responses. In this study, we defined

the SNR as the ratio between the amplitude at frequency f Hz and

the average amplitude within the frequency bands [f − 2, f ) Hz and

(f , f + 2] Hz (Zhang et al., 2022).

2.6.2 Information transfer rate
Information transfer rate (Cheng et al., 2002) is widely used

to evaluate communication performance in most previous BCI

studies. In the offline experiment, we evaluated the accuracy

of the target recognition algorithm by varying the data length

from 0.2 to 2 s with a step size of 0.2 s. After comparing the

recognition accuracy of different paradigms, we selected the one

with the best performance and the best ITR. These evaluations

allow us to determine the optimal data length and assess the overall

effectiveness of the system. ITR can be computed with:

ITR =

(

log2(N)+ p log2(p)+ (1− p) log2

(

1− p

N − 1

))

×
60

T
,

(1)

where N stands for the number of targets, p is the target

identification accuracy, and T is the time per selection (including

the length of the time required for gaze shifting and time of the

whole stimulus progress).

2.6.3 Comfort evaluation
VR-SSVEP, compared to traditional PC-SSVEP, uses closer

displays to create a sense of stereoscopic vision and immersion.

Although the field of view angle is limited, the design of object

placement in VR allows for more flexibility. In a previous

experiment, participants found VR-SSVEP more comfortable and

reported a softer perception of stimuli during the stare-to-switch

process. To assess the comfort level and usability of the paradigms,

we used experiment feedback questionnaires and rating scales. For

some users, VR headsets can cause motion sickness and visual

fatigue due to a mismatch in interpupillary distance (Mun et al.,

2012). Therefore, to obtain a comprehensive assessment of the user

experience in VR-SSVEP applications, we took into account the

overall experience of the participants and conducted a survey to

identify factors that influenced their perception.

3 Results and analysis

3.1 Feature analysis

The objective of this study is to investigate the differences

in SSVEP signals induced by 2D and 3D stimuli in a virtual

environment. Additionally, the study aims to explore the impact

of stereo-related paradigms on SSVEP signals in the same

execution mode.

To achieve these objectives, we primarily focus on evaluating

the performance differences based on the amplitude spectrum

and SNR for the SSVEP signal under different paradigms, while

combining the results of feature comparison and recognition

performance analysis to explore their correlations. Figure 4 shows

feature comparison of EEG data from all targets with four

stimulus frequencies, which are grouped related to different stimuli

presentation as 2D, 3D and 3D-Blink. The first row to the last row

represent the cross-subject average amplitude spectrum marking

the target frequency, the mean amplitudes of the fundamental

frequency and harmonics, and the corresponding signal-to-noise

ratio levels. By calculating the average values for different target

stimuli, we derived the average amplitude and SNR depicted in

Figure 5 to compare the overall levels of SSVEP features across

different paradigms.

The recorded EEG data of 1,800 trials (10 participants × 60

trials × 3 tasks) and their corresponding event markers were

grouped based on target frequency and task type, resulting in 12

sets of data (four targets × three tasks), each set containing 150

trials. We then computed the amplitude spectra and SNRs of the

target frequencies based on these grouped data. By examining

the amplitude spectra of all stimulus frequencies, clear peaks

corresponding to each frequency were observed in Figure 4.

We conducted separate comparisons and analyzes of the

characteristic differences among different frequency targets. This

was done because the 3D binocular visual environment generated

by VR differs from the flat screens traditionally used in the SSVEP

experiments. Factors such as the participant’s perspective changes

during the experiment may indeed have some influence. However,

in this experiment, there are certain differences in the background

between the 2D and 3D stimuli. The experimental design aimed to

highlight the immersive and stereoscopic effects of the 3D stimuli.

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2024.1367932
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2024.1367932

FIGURE 4

Feature comparison of four SSVEP targets. The first row shows the averaged amplitude spectrum of SSVEPs across subjects for all stimulus

frequencies. The second row displays amplitudes of base frequency, second harmonic, and third harmonic calculated from the results, and the third

row represents the SNRs computed. Here “BF" stands for base frequency, and “SH”, “TH” stands for the second and third harmonics of the target

frequency. The EEG signals used for the analysis were obtained by averaging across trials for all subjects in the 2D, 3D, and 3D-Blink paradigms, and

divided into four groups based on the di�erent stimulus frequencies.

However, as a result, the backgrounds of different targets in the

3D environment differ. Specifically, as shown in Figure 1A, the

3D target in the upper part has a pure sky background, while the

backgrounds for the other three targets have a clearly extended floor

visible in the distance.

In terms of results, we observed that the amplitude and SNR

level for the left and right targets in the 2D paradigm were

significantly better than those for the top and bottom targets. This

suggests that there is a clear decrement in performance for 2D

targets due to changes in perspective within the 3D space, while

targets in the 3D paradigm exhibit better adaptability. There were

no significant differences among the different targets in the 3D

luminance paradigm. However, for the 3D-Blink paradigm, the

first target with a flickering frequency of 8.5 Hz had a higher SNR

compared to the subsequent three targets. Considering that our

experiment was conducted sequentially in each trial, we speculate

that the human eye may develop a certain tolerance to the visual

stimulus of blinking, adapting to it over time and thus reducing its

provocative nature. This may lead to a decrease in stimulation but

an improvement in comfort.

Regarding the comparisons between different paradigms,

we conducted an analysis combining the information from

Figure 5 along with the results of Bonferroni corrected post-

hoc pairwise comparisons using paired t-tests for different

groups. The results indicate that there were no significant

differences between the three paradigms in terms of base

frequency (p > 0.05). However, for the second and third

harmonic frequencies, the 2D paradigm exhibited significant

differences in SNR levels compared to both the 3D-Blink and

3D paradigms (p < 0.05). Additionally, despite the 3D-Blink

paradigm having a lower base frequency SNR compared to the

2D paradigm, it showed superior SNR across the base frequency,

second harmonic, and third harmonic levels when compared to

the 3D paradigm.

We attribute this observation to the overall weaker stimulation

intensity of non-luminance-modulated stimuli compared to

luminance-modulated stimuli. Compared to 2D targets, the

amplitude and SNR of the harmonics are lower for 3D

targets. From an intuitive perspective, this is likely due to

differences in the visual presentation of images between the

3D and 2D paradigms. The 3D targets constructed using Unity

materials, despite being adjusted for brightness or transparency

using the same methods and parameters as the 2D stimuli,

exhibit more irregular gray scale distribution due to lighting

and depth cues. Additionally, the distance from each point

on the 3D sphere to the observer’s retina varies due to

spatial positioning. With planar stimuli, we can assume that

the stimulation intensity is consistent for every point on the

graphics, resulting in a uniform perception within a certain

area for the observer. However, when stereoscopic targets are

observed, the visual image generated exhibits non-uniform

properties, which makes the fundamental frequency response still

pronounced in the SSVEP results, while the harmonic components

are suppressed.
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FIGURE 5

Amplitude spectrum and SNR. Bar chart obtained by averaging the results from all stimuli, with error bars, used to compare the di�erences in SSVEP

features across di�erent paradigms. (A) Amplitude. (B) SNR.

3.2 Recognition performance

We demonstrated the significant difference between 2D and 3D

stimuli through the accuracy of classification performance and ITR.

This finding reflects and contrasts the most direct and fundamental

ability of the VEP-based BCI to perform classification tasks.

The ratio of correct identifications to the total number of trials

in a task is considered the classification accuracy. We calculated the

accuracies for three tasks with three different algorithm. Figure 6

displays the variation of classification accuracy with data length

for 10 participants using CCA, FBCCA, and TRCA methods. The

experimental data are marked based on the onset time of the target

flickering in the experimental procedure, taking into account a

visual delay of 130ms during processing. A complete trial has a data

length of 4 s, and for offline analysis, we used data lengths ranging

from 0.2 to 2 s with intervals of 0.2 s for classification. The target

with the highest correlation coefficient is considered the identified

target. The classification accuracy was calculated using leave-one-

out cross-validation, which divides the collected data into 60÷ 4 =

15 sets, where 60 represents the total number of trials for a single

task and 4 represents the number of targets. For each set of data,

the overall accuracy and ITR of the remaining 14 sets of data were

calculated, and the average accuracy and ITR from each calculation

yielded the final accuracy and ITR.

As shown in Figure 6A, the best average accuracy for the 3D

paradigm was 85.67% and for the 2D paradigm it was 91.73% with

a data length of 1 s and the FBCCA method. However, there was

little difference in accuracy between the two paradigms when the

data length was extended to 2 s.

Based on the observations from the results in Figure 6, we

can see that when comparing different algorithm groups, there is

no significant difference in the improvement trend of accuracy

between the 2D and 3D paradigms in CCA (p > 0.05). 3D

paradigm slightly underperformed compared to the 2D paradigm,

while the performance of the 3D-Blink paradigm in CCA was

significantly lower than the two luminance-modulated stimuli.

As there are no significant differences in classification accuracy

between 3D targets and 2D targets when controlling variables

and displaying them in a VR environment, we can conclude that

the effect of stereoscopic perception is limited in the context of

conventional SSVEP paradigms. For the SSVEP paradigm, there

may be a certain conflict between visual evoked potentials and

cognitive activities. On the basis of the known results, it is believed

that the perceived stereoscopic effect cannot directly provide usable

gains for traditional SSVEP.

In the case of FBCCA, we set FBCCA to use three sub-bands

and generate up to three harmonics for the reference signal, and

observed a significant advantage in the performance of the 2D

paradigm compared to the 3D paradigm. The average accuracy

of the 2D paradigm increased by 5.56% with a 1-second data

length, while the 3D paradigm increased only by 0.50%. We can

clearly observe that results of the 2D paradigm show a more

pronounced increase in accuracy as data length increases, especially

in the 0.6–1 s interval. This result aligns with the analysis of

the harmonic component SNR, which was found to be lower for

the 3D target compared to the 2D target. The FBCCA method

further divides the SSVEP signals into multiple sub-bands using

filter banks, which means that the performance improvement of

FBCCA relies on extracting more information from the analysis of

harmonic components.

The TRCA algorithm has shown significant superiority over

CCA and FBCCA in terms of recognition performance, especially

when the length of the data is short. However, in this experiment,

as the length of the data used increased, there was no significant

improvement in performance. Even with a data length of 2 s, all

three paradigms achieved performance below an average of 90%.

The 3D luminance paradigm demonstrated the highest recognition

performance, followed by the 3D-Blink paradigm, while the 2D
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FIGURE 6

Comparison of o	ine performance during target selection task between the CCA, FBCCA, and TRCA methods when using the data from experiments

showing 2D, 3D and “3D-Blink" paradigms in VR scene. (A) Averaged target identification accuracy across subjects. (B) Averaged ITRs across subjects.

FIGURE 7

Average accuracy of di�erent algorithms for di�erent paradigms. Performance of three algorithms (CCA, FBCCA, TRCA) for three paradigms (2D, 3D,

3D-Blink) when using a data length of 1 s.

paradigm using planar stimuli showed the lowest performance.

Although efforts were made to address time synchronization issues

in the VR-BCI system, small errors or accumulated errors may still

exist due to animation implementation and visual stimulus display

instability, leading to phase shifts and inconsistent event labeling.

These factors probably contributed to the limited performance

improvement of the TRCA algorithm with longer data lengths.

Overall, except for the 0.2–0.6 s interval with relatively good

performance, the ITR levels were generally lower than those

achieved by the FBCCA method.

Figure 7 compares the recognition accuracy of different

paradigms using different algorithms, with a data length of 1 s. The

results of this comparison lead to the following conclusions: (1)

Under the CCA algorithm, there is little difference in performance

between the 2D and 3D luminance modulation paradigms,

indicating that their recognition performance is comparable.

However, the 3D-Blink paradigm performs worse due to its lower

response magnitude at the target frequency. (2) The FBCCA

algorithm shows greater improvement for the 2D and 3D-Blink

paradigms, as it effectively utilizes harmonic information. However,
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TABLE 1 Subjective comfort questionnaire on visual feeling for di�erent

paradigms and overall VR user experience.

Scores (ranges from 1 to 10)

Subject 2D 3D 3D-Blink VR

S1 3 9 6 8

S2 1 6 10 9

S3 4 6 8 6

S4 7 9 9 9

S5 5 7 10 8

S6 2 5 8 7

S7 3 6 9 6

S8 2 7 10 8

S9 1 4 7 4

S10 3 5 8 5

Mean 3.1 6.4 8.5 7.0

Scores ranges from 1 to 10, where 1 indicates totally unacceptable, and 10 indicates very

comfortable.

for the 3D paradigm, the gain is minimal due to the lower

signal-to-noise ratio of the harmonic components. (3) Under

the TRCA algorithm, both paradigms of 3D target exhibit some

performance advantages, suggesting that TRCA can be beneficial

for these paradigms.

Figure 8 displays bar charts with error bars to illustrate the

performance differences and the significance of these differences for

various paradigms and algorithms across each time length. Overall,

the results indicate that the performance of the 3D paradigm

remains relatively consistent across the three algorithms, whereas

the 3D-Blink paradigm shows a notable improvement when using

the FBCCA algorithm compared to CCA with data length of 0.6–

2 s. When comparing different paradigms for each algorithm, it is

evident that under the CCA algorithm, the 2D and 3D paradigms

often outperform the 3D-Blink paradigm. On the other hand, with

the FBCCA algorithm, the performance of the three paradigms

tends to converge as the time length increases. Notably, the TRCA

algorithm does not display a significant overall performance trend

change across the three paradigms. These findings suggest that the

3D-Blink paradigm benefits more from the FBCCA algorithm than

the 3D paradigm and can achieve performance levels similar to the

2D paradigm.

3.3 Questionnaire feedback

The subjective feedback results are shown in Table 1, which

contains the comfort level scores of the 2D, 3D, and 3D-Blink

paradigms from the questionnaire provided to subjects after the

experiments. Repeated-measures analysis of variance (ANOVA)

was employed to assess the significant differences between the

three paradigms in comfortable experience, the results [F(2, 27) =

27.86, p < 10−5] of which indicate that subjective comfort

level scores differ significantly between the 2D, 3D, and 3D-Blink

paradigms. It can be observed from comparison of the mean

value of comfort level score that the 3D-Blink paradigm has the

highest level of comfort, followed by the 3D luminance stimulation

paradigm, and the 2D paradigm has the lowest level of comfort.

VR scores are derived from a comprehensive assessment of factors

including visual clarity, presence of 3D motion sickness, comfort

of wearing, fatigue during the experiment, and overall experience.

The average result to some extent indicates that participants are

still influenced by certain discomfort factors associated with the

use of VR.

4 Discussion

This study utilized VR, a binocular display device, to construct

an SSVEP-BCI paradigm, considering the stereoscopic or depth

attributes of the stimulus targets. Two new paradigms were

proposed in this study: the 3D paradigm and the 3D-Blink

paradigm, which were investigated along with the traditional 2D

planar paradigm. The results demonstrate that there were almost

no differences in recognition performance between the 2D and

3D paradigms in static selection tasks when using the CCA

method, but a significant difference was shown in frequency feature

analysis. The lower signal-to-noise ratio and limited performance

optimization obtained through the FBCCA method in the 3D

paradigm suggest that there is still room for improvement in

utilizing this new paradigm in VR-BCI systems. This study

demonstrates the feasibility of implementing the proposed new

paradigms in VR-BCI systems and the fact that stereoscopic vision

significantly affects SSVEP features, highlighting the need for

further research to investigate the sources of these differences and

explore potential optimization strategies.

4.1 System of VR-BCI and implementation
of VR-SSVEP

Our study aims to compare the effects of presenting 2D and 3D

targets in VR stereoscopic vision on SSVEP. Initially, we planned

to compare 2D targets on a flat screen with 3D targets in VR.

However, we found that this comparison method introduced many

uncontrollable factors, such as screen brightness, viewing angle,

and participants’ perception of the actual size of the stimuli, due to

differences in display principles. Finally, we chose to present all 2D

and 3D stimuli in a VR environment to ensure a fair comparison

under the same conditions. To maintain visual consistency with

traditional PC-SSVEP visual presentation on flat screens, we added

a flat gray background for the 2D paradigm. This eliminates the

influence of depth information, allowing us to obtain purer 2D

visual stimuli and avoid introducing stereoscopic features that may

arise from the inclination of 2D targets or depth contrast with the

background. In other words, we simulated the presentation of 2D

stimuli on a flat screen and 3D spherical stimuli in the same spatial

location in a VR environment. All stimuli used in the experiment

were circular or spherical in shape to avoid the potential influences

of the stimulus area and optical distortions at the edges of VR

displays (Duan et al., 2022). Additionally, it should be noted that

the limited field of view in VR leads to visual distortion of non-

currently aiming stimuli that flicker in the peripheral vision. This
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FIGURE 8

Performance comparison of di�erent algorithms and di�erent paradigms from the o	ine BCI experiment. (A) Average classification accuracy, (B)

mean ITRs across subjects of di�erent paradigms. (C) Average classification accuracy, (D) mean ITRs across subjects di�erent algorithms. The error

bars indicate standard errors. The asterisks indicate the significance of paired t-tests (*p <0.05, **p <0.01, ***p <0.001).

effect is equitable when applied to both 2D and 3D paradigms and

can be considered a characteristic of VR vision without causing

additional system differences.

An important factor for normal display and comfortable use

of VR is the alignment between the user’s IPD and device settings,

which could exacerbate visual fatigue or 3D vertigo (Mun et al.,

2012). In this study, due to the lack of automatic adjustment

capabilities in the device, we simply used a fixed IPD setting in

our experimental setup. As there were few reports of 3D dizziness

or significant fatigue from the majority of participants, while the

duration of the experiment was not very long, we believe that

the influence of IPD variations can be neglected in the analysis

of the results.

Some users reported fatigue and dizziness associated

with wearing VR headsets, which could potentially impact

the experiment. To address this issue, we implemented

session-block separation, allowing participants to rest

and return to their natural visual state between sessions.

Additionally, we further divided sessions into blocks with

short breaks, creating an overall relaxed experimental

procedure. Although we believe that these measures effectively

controlled for this factor, questionnaire feedback indicated some

residual impact.

The VR-BCI system implemented in the study did not prioritize

implementation of the mobile system, but the display parameters

and graphic performance of the VR headset may have influenced

the results. By adjusting system design and software parameters,

we have successfully reduced the error in event marking to an

acceptable range.With the 1ms graphics engine update interval, we

believe that the influence of this factor on TRCA synchronization

can be effectively mitigated.

TRCA’s performance remains below anticipated levels,

potentially attributed to phase shifts arising from the refresh

mechanisms of VR in simulating SSVEP stimuli, suggesting

a significant underlying issue. We investigated the display

mechanisms of VR-HMD and traditional desktop LCD monitors

through the TSL257-LF sensor, particularly focusing on their

refresh strategies and the modulation of luminance, aiming to

validate whether the simulation process of the stimuli meets

expectations. Figure 9 presents stimuli in both flip and sin modes

at 8.5 Hz, displayed using desktop LCD monitors and VR-HMD,

all rendered by Unity. Comparing Figures 9B, D, we can observe
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FIGURE 9

Results of validation tests using TSL257-LF. (A) 2D-flip displayed by PC-LCD, (B) 2D-sin displayed by PC-LCD, (C) 2D-flip displayed by VR-HMD, (D)

2D-sin displayed by VR-HMD.

the differences between the VR-HMD and desktop LCD monitors,

where VR-SSVEP luminance modulation is achieved by an 8.5 Hz

sinusoidal wave carried by a 90 Hz square wave, with the 90 Hz

carrier for left and right eye displays having opposite phases. Upon

further investigation, we understand that this is attributed to VR’s

adoption of black frame insertion (BFI) technology (Kurita, 2001;

Hong et al., 2005), which is utilized to enhance visual clarity, reduce

motion blur, and improve user comfort by integrating black frames

between image frames, thus aligning the display refreshment

more closely with the natural human vision process. In terms of

temporal features, the waveform in Figure 9D lacks the same level

of stability and regularity observed in the PC response shown in

Figure 9B. While certain parts exhibit consistent 90 Hz changes,

highlighting the characteristics of the high-frequency carrier,

anomalies occur in other segments, potentially due to system

delays or other factors leading to temporary non-responsiveness.

Following these interruptions, the carrier continues to oscillate

at a 90 Hz frequency, albeit with a shifted phase due to these

unexpected pauses. This discontinuity not only disrupts the

carrier’s coherence but also introduces phase interference to the 8.5

Hz sinusoidal wave, impacting the overall waveform’s uniformity

and stability. Although frequency domain analysis and results from

other algorithms suggest that VR-SSVEP frequency properties

are relatively stable, the impact on temporal features may indeed

be the primary reason for the limitations in TRCA performance.

Adapting to the refresh method of VR devices and optimizing VR-

BCI systems accordingly will be an important research direction in

the future.

Ma et al. (2018) implemented a VR-BCI system in a 40-

target SSVEP experiment with a 300-millisecond data length,

achieving an accuracy of 82%. The study showed that SSVEP

signals collected in VR-BCI settings effectively utilized TRCA

classification. However, both this study and Ke et al. (2020) point

to suboptimal performance of TRCA in VR or AR combined

with BCI systems. It is suggested that display performance,

temporal precision of event markers, and stimulus implementation

logic should be reconsidered and improved to ensure temporal

stability of stimulus presentation for addressing synchronization

issues. Additionally, a wider variety of training-based methods

may be considered for SSVEP-BCI under VR/AR conditions to

provide robust, high-performance classification algorithms tailored

for these scenarios. Another way to improve synchronization in

various scenarios is to modify the TRCA algorithm. Expanding the

data extraction window beyond the reference event interval can

help when trial-to-trial latency jitter makes it difficult to identify

task-related components (TRCs). By accounting for latency jitter in

each TRC within this extended range and incorporating this into

the TRCA algorithm, it may adapt and perform better in situations

with imperfect synchronization, allowing for the identification of

optimal reproducible components.

4.2 Impact of stereo-related mechanisms

When discussing the impact of VR environments on EEG

activity, it is important to understand their sources. On the one
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hand, stereo and depth perception can elicit ERP features, as shown

in previous studies (Guo et al., 2022). However, these features are

difficult to utilize in SSVEP-BCI systems and may be suppressed by

sustained stimulation. In our study, prolonged or high-frequency

stimuli appeared to make participants familiar or adapted to

fixating on the current target, which benefits short-term TRCA

methods but not long-term CCA-based methods. Although VR

presents 3D objects through binocular disparity, depth cues are still

necessary. Specifically, 3D objects rendered by the program may

have uneven grayscale due to material and lighting effects, resulting

in differences from 2D targets perceived by the human eye. The

perception of distance and stereopsis in space is synthesized in the

brain on the basis of binocular disparity. These differences in image

presentation might affect the SSVEP features.

In our study, the SNR of the harmonic components for the

3D targets was much lower compared to the uniform 2D targets.

This phenomenon rendered methods such as FBCCA, which rely

on the extraction of harmonic components, ineffective. However, it

may benefit multi-target SSVEP encoding by reducing harmonic

interference with other targets’ base frequency, thus improving

overall system SNR and encoding capability. Liang et al. (2021)

have shown effects similar to the attenuation of harmonics, but

with stimuli placed in the left and right visual fields with the

screen display. Moreover, experiments involving binocular rivalry

(Yue et al., 2020) have also raised the issue of differences in

SSVEP response phase patterns between the left and right visual

fields. Similar effects may exist in binocular displays compared

to natural visual displays, causing phase shifts in SSVEP due

to differences between left and right visual perceptions. Specific

research is needed into binocular VEP’s temporal and spectral

differences under stereoscopic vision and optimization of spatial

channel deployment and phase modulation for the source stimuli.

Within the framework of an overt paradigm, our hypothesis

posits that there are distinct physiological differences in the

processing of binocular image synthesis between 2D and 3D

stimuli. Two-dimensional stimuli in space are also perceived

binocularly, but their planar nature lacks the third-dimensional

attribute for stereoscopic perception, leading to only slight

positional differences in the left and right visual fields and resulting

in the classic features of SSVEP due to their uniform characteristics.

In contrast, 3D stimuli, like the sphere in our study, show

depth variations when observed directly, such as the top of the

sphere facing the viewer. The depth perception inherent in 3D

stimuli, achieved through the fusion of binocular images with left-

right disparities, may introduce phase shifts in the conduction of

SSVEPs in the nervous system, resulting in differing conduction

patterns and reduced harmonic energy for 3D stimuli. However,

the fundamental frequency energymay remain relatively unaffected

compared to 2D stimuli. These theoretical propositions warrant

further investigation, especially regarding the impact of varying

depths in VR-supported environments on SSVEP characteristics.

The Blink mode of the 3D paradigm has received positive

feedback in terms of user comfort, but overall it has lower

accuracy compared to the conventional luminance modulation

SSVEP, whether it is for 3D or 2D targets. Considering that

the 3D-Blink paradigm actually uses an inversion of opacity to

transition the stimulus state, the decrease in SNR in this case may

be attributed to the insufficient contrast between the purely default

material white solid and the similarly light-colored background.

Whether factors such as color or lighting materials have an

impact on this phenomenon requires further research to provide

a conclusive explanation.

Additionally, the 3D-Blink paradigm utilized in this study

induces SSVEP in the flipmode, which operates through alternating

states of 0% and 100% transparency. Similar to SSVEP based on

luminance modulation, the sin mode of the 3D-Blink paradigm

may yield better or different SSVEP responses, which needs further

exploration in future research.

In the 3D-Blink paradigm, the presentation creates a

persistence of vision, forming a semi-transparent spherical target

for the observer. From the experiments, we also discovered that

participants could stably perceive the background behind the

target, such as the floor or the distant horizon of the VR space.

This suggests that by incorporating focal cues before, after, and

in the center of the stimuli, the 3D-Blink paradigm allows users

to expand the visual state induced by the same stimulus target.

This mechanism, which operates in a depth-related manner,

may offer a novel approach to enhance the encoding capabilities

of VR-SSVEP. This could also display additional information,

allowing users to switch between SSVEP targets using peripheral

vision or focused attention. At the same time, users can extract

other information from the scene through their gaze, thereby

enhancing the interactive capabilities of VR-BCI systems.

In this study, the proposed paradigms provide diverse visual

spatial information, potentially influencing the phase and spatial

distribution of SSVEP responses, warranting a detailed analysis

of SSVEP characteristics. Our comparative analysis of SSVEP

characteristics across the 2D, 3D, and 3D-Blink paradigms,

especially focusing on Subject 2’s data, is illustrated in Figure 10.

The first column of Figure 10 showcases simulated SSVEP stimuli

for 2D and 3D visual conditions, incorporating a depiction of

transparency variations in the 3D-Blink paradigm. The second

column captures the brain’s response to these stimuli, represented

through averaged EEG time series, with red dashed vertical lines

indicating the 8.5 Hz frequency and gray dashed lines accentuating

the 90 Hz frequency. The third column presents the power

spectral density (PSD) analysis, where blue crosses identify target

frequencies and their harmonics, and a red cross highlights the

prominent 90 Hz peak, along with topographic maps that illustrate

the spatial distribution of EEG responses.

Feedback from the time series not only aligns closely with the

8.5 Hz trend but also exhibits components of 90 Hz, reflecting the

influence of VR display mechanisms mentioned in the previous

section. Apart from the target frequency of 8.5 Hz and its

harmonic components, the PSD plots prominently feature a peak

at 90 Hz. The spatial distribution of PSD energy for the 2D

and 3D paradigms appears similar, consistent with the expected

SSVEP spatial propagation results considering the 8.5 Hz stimulus

was positioned to the participant’s left. The 3D-Blink paradigm’s

topographic map distribution is more symmetrical and exhibits

weaker intensity compared to the 2D and 3D paradigms.

Furthermore, the foundation of depth perception relies on

binocular display. The characteristics arising from the dual-screen

refresh mechanism in VR-SSVEP are noteworthy. In our study,
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FIGURE 10

Comparative Analysis of SSVEP characteristics of three paradigms.

FIGURE 11

One frame of VR binocular display captured at 1/1,000 shutter speed.

the originally simulated 8.5 Hz stimulus effectively modulates atop

a 90 Hz square wave, with the phase of the 90 Hz square waves

for the left and right eyes inverted. As shown in the Figure 11

captured with a smartphone camera at a shutter speed of 1/1,000,

the phenomenon of black frame insertion in VR displays is

observable, along with the complementary characteristics of the

left and right displays. Although their combination should yield

an SSVEP stimulus light intensity change response identical to that

of an LCD display, physically, each eye indeed receives the 8.5 Hz

stimulus on a differently phased 90 Hz carrier. Research indicates

that the anatomical outcomes of the visual neural pathway are

essentially symmetrical, implying the contributions from the left

and right eyes toward the EEG response generated in the occipital

area for SSVEP are ultimately equivalent (Wu and Wu, 2017).

However, this pertains to continuous identical stimuli; the PWM

refresh method with dual-screen utilized by VR might introduce
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other impacts. Future research could explore the effects of binocular

display’s refresh mechanisms on SSVEP-BCI and refine algorithms

to accommodate these mechanisms, enhancing the efficacy and

adaptability of SSVEP-based VR-BCI systems.

4.3 Significance, limitation, and future
directions

Deploying BCI technology in immersive VR applications of

today inevitably encounters the influence of perspective and

distance in the 3D space. In addition to accuracy and response

speed, user comfort during repeated usage is a crucial factor

of concern. Consequently, exploring the impact of 3D target

presentation mechanisms and depth-related visual cues on VEP-

BCI is of significant importance. The findings of this research

primarily uncover the differences between the 3D and 2D

paradigms in the characteristics of SSVEP, as well as the availability

and potential of new paradigms. The non-significant performance

difference between the 3D and 2D paradigms has a positive

implication for diversified VR-BCI interaction design. However,

the discrepancies in the optimization methods resulting from

feature differences indicate the need to further explore the stimulus

modulation methods or algorithms in VR-SSVEP.

The main limitation of our study lies in the analysis of

differences in features between the proposed 3D, 3D-Blink

paradigms and the baseline 2D paradigm, which was limited to

the frequency domain. Differences in features in the frequency

domain may be caused by multiple factors. Our experimental

design did not consider phase or time latency issues, and electrode

setup was limited to traditional occipital regions, providing little

insight from an EEG Montage perspective. Future studies should

attempt to introduce channels in the temporal lobe region and

obtain responses to monocular and binocular SSVEP stimuli at

different spatial locations under the same conditions. The results

of monocular and binocular responses could be compared, or the

effect of recognition could be observed by setting different phase

offsets for the stimuli. In future research, it will also be crucial

to include a broader range of participants, particularly adolescents

and the elderly, in order to extend the applicability and depth of

the findings.

To further leverage the effects of stereoscopic perception

in enhancing VEP-BCI, presenting IVEP or SSMVEP in a VR

environment may be a better choice, where techniques such

as spatial flipping actions, stereoscopic contraction/expansion

transformations, rotation of textured surfaces in 3D, and changes

in distance could potentially be employed to yield notable ERP

responses for recognition. Last but not least, note that the full

potential of TRCA has not yet been demonstrated on platforms

like VR-BCI. Future studies should focus on improving the stability

of visual presentation and system event synchronization while also

exploring whether the presentation of stereoscopic target stimuli

can provide TRCA with task-relevant components that exhibit

good recognition and reproducibility.

Eye-tracking integration in VR devices is also considered an

innovative and efficient interaction method. While this study

does not directly compare the ITRs between VR headsets with

eye-tracking and VR-BCI using SSVEP, it contends that even

in the presence of eye-tracking technology, VR-BCI based on

SSVEP still holds certain advantages and value. Eye-tracking

relies on monitoring physical eye movements for information

gathering, but human gaze is less reliable than a mechanical

system due to subconscious movements, tremors, and response

delays. Calibration failures in eye-tracking can occur due to head

movements and squinting, which, in contrast, have a lesser impact

on the reliability of EEG-BCI systems. Many systems address the

Midas Touch problem (Jacob, 1991) by integrating eye-tracking

with alternative inputs like gestures, showing the potential for

BCI technology to complement eye-tracking. BCI can offer rich

cognitive information and, theoretically, does not conflict with eye-

tracking technology; their combination can enhance the diversity

and efficiency of interactive systems. From a user experience

perspective, relying solely on BCI or eye-tracking for interaction

can be burdensome. However, exploring the integration of the

SSVEP-BCI paradigm with eye-tracking indicates that combining

these technologies could provide a superior interaction option,

thereby enhancing the overall user experience. Additionally,

this integration might further increase the overall ITR, paving

the way for more effective and efficient composite interaction

methodologies in the future.

5 Conclusion

As a comparative study, we compared the differences between

2D and 3D paradigms in a virtual reality (VR) based SSVEP

multi-target selection task. Additionally, a new non-luminance-

modulated visual stimulus method was proposed. The results

showed that, under well-controlled variable conditions, there was

almost no difference in recognition performance between the 2D

and 3D paradigms in static selection tasks. However, certain factors

inherent to VR may introduce slight performance degradation.

The 3D-Blink paradigm, inspired by the 3D paradigm, further

improved the comfort of visual stimulation, which exhibited

significant performance degradation in non-trained algorithms,

while maintaining usable recognition ability in trained algorithms.

This study explored the use of stereo-related stimulation in the

SSVEP paradigm, offering a new approach for developing user-

friendly wearable EEG signal applications.
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