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Toluene alters the intrinsic 
excitability and excitatory 
synaptic transmission of 
basolateral amygdala neurons
Kevin Braunscheidel , Michael Okas  and John J. Woodward *

Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States

Introduction: Inhalant abuse is an important health issue especially among children 
and adolescents who often encounter these agents in the home. Research into the 
neurobiological targets of inhalants has lagged behind that of other drugs such as 
alcohol and psychostimulants. However, studies from our lab and others have begun 
to reveal how inhalants such as the organic solvent toluene affect neurons in key 
addiction related areas of the brain including the ventral tegmental area, nucleus 
accumbens and medial prefrontal cortex. In the present study, we extend these 
findings and examine the effect of toluene on electrophysiological responses of 
pyramidal neurons in the basolateral amygdala BLA, a region important for generating 
emotional and reward based information needed to guide future behavior.

Methods: Whole-cell patch-clamp electrophysiology recordings of BLA 
pyramidal neurons in rat brain slices were used to assess toluene effects on 
intrinsic excitability and excitatory glutamatergic synaptic transmission.

Results: Acute application of 3 mM but not 0.3 mM toluene produced a small 
but significant (~20%) increase in current-evoked action potential (AP) firing that 
reversed following washout of the toluene containing solution. The change in 
firing during exposure to 3 mM toluene was accompanied by selective changes 
in AP parameters including reduced latency to first spike, increased AP rise 
time and decay and a reduction in the fast after-hyperpolization. To examine 
whether toluene also affects excitatory synaptic signaling, we expressed 
channelrhodopsin-2 in medial prefrontal cortex neurons and elicited synaptic 
currents in BLA neurons via light pulses. Toluene (3 mM) reduced light-evoked 
AMPA-mediated synaptic currents while a lower concentration (0.3 mM) had no 
effect. The toluene-induced reduction in AMPA-mediated BLA synaptic currents 
was prevented by the cannabinoid receptor-1 antagonist AM281.

Discussion: These findings are the first to demonstrate effects of acute toluene on 
BLA pyramidal neurons and add to existing findings showing that abused inhalants 
such as toluene have significant effects on neurons in brain regions involved in 
natural and drug induced reward.

KEYWORDS

inhalants, basolateral amydgala, action potentials, slice electrophysiology, 
optogenetics, endocannabinoids

Introduction

The amygdala plays a crucial role in regulating emotions, including the response to fear 
and anxiety (Andrewes and Jenkins, 2019) and is involved in aspects of substance and alcohol 
use disorders (Wassum and Izquierdo, 2015). For example, the amygdala mediates alcohol 
seeking behaviors (de Guglielmo et al., 2016), alcohol cue reactivity in individuals with alcohol 
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use disorder (Claus et al., 2011), and anxiety-like behaviors during 
withdrawal from chronic alcohol use (Menzaghi et al., 1994; Diaz 
et  al., 2011). In particular, the basolateral region of the amygdala 
(BLA) is involved in reinstatement of alcohol and drug seeking 
behavior (Keistler et al., 2017; Chesworth and Corbit, 2018; Pelloux 
et al., 2018) and shows alterations in neural activity following chronic 
alcohol or drug exposure (Lack et al., 2007; Marinelli et al., 2010; 
Corbett et al., 2023) including reduced sensitivity to acute ethanol 
(Robinson et al., 2016).

While the effects of alcohol and other drugs of abuse such as 
psychostimulants and opiates on BLA neuronal function have been 
extensively studied, little is known regarding the actions of abused 
inhalants on BLA activity. Inhalants are comprised of several classes 
of volatile agents including organic solvents such as toluene and are 
used for intoxicating purposes with a significant incidence of use 
among children and adolescents (Substance Abuse and Mental Health 
Services Administration (SAMHSA), 2021). An interaction between 
toluene and alcohol has been demonstrated in rodents (Pryor et al., 
1985) as well as in humans with substance use disorder (Marin-
Navarrete et al., 2016) suggesting common underlying neurobiology. 
In fact, toluene and alcohol have a similar chemical profile, overlapping 
pharmacology, as well as abuse potential (reviewed by Beckley and 
Woodward, 2013; Woodward and Braunscheidel, 2023). Despite this, 
few studies have assessed the effects of volatile organic solvents on the 
amygdala although one reported increased c-Fos immunoreactivity, a 
proxy for cellular activity, in the rat amygdala and other brain areas 
following a brief exposure to abuse-level concentrations of toluene 
vapor suggesting changes in BLA neural activity (Perit et al., 2012).

Previous studies from our laboratory using ex vivo slice 
electrophysiology revealed circuit and cell specific effects of toluene 
on the activity of mPFC projecting VTA dopamine neurons (Beckley 
et al., 2013), accumbens projecting mPFC neurons (Wayman and 
Woodward, 2018a,b) and D2 medium spiny neurons in the nucleus 
accumbens (Okas et al., 2023). Some of toluene’s inhibitory effects on 
glutamatergic synaptic transmission were shown to be mediated by a 
cannabinoid type 1 (CB1) receptor-dependent mechanism (Beckley 
and Woodward, 2011; Beckley et al., 2016). CB1 receptors are also 
expressed on presynaptic terminals in the BLA, and activation of 
CB1R, Gi-coupled signaling reduces neurotransmitter release (Melis 
et al., 2004; Busquets-Garcia et al., 2018). Given the important role of 
the BLA in emotional processing and reward learning and its 
sensitivity to various intoxicating substances, the present study 
examined the effects of acute toluene on the intrinsic excitability and 
glutamatergic transmission of BLA glutamatergic neurons.

Materials and methods

Animals

Male Sprague–Dawley rats (P77–P86 on arrival, Envigo RMS) 
were housed in pairs in polypropylene cages on a reverse light cycle 
(lights off at 09:00) in a climate-controlled room with food and water 
delivered ad libitum. For current clamp experiments, animals 
remained in their homecage until testing at age P105–P125. For 
voltage clamp experiments, animals underwent stereotaxic surgery 
1 week after arrival for viral infusion of channelrhodopsin-2 (ChR2). 
Deep anesthesia was achieved via an isoflurane vaporizer (air flow 

1 L/min, 5% induction, 2–3% maintenance) and 300 nL of AAV2-
hSyn-ChR2-EYFP (AddGene) was injected into the prelimbic portion 
of the mPFC (AP: ±2.95; ML: ±0.6; DV: ±2.85 mm). Rodents were 
given 3–7 weeks of recovery to allow for channelrhodopsin-2 
expression in mPFC in terminals of the BLA before recording at age 
P115–P145.

Preparation of brain slices

As previously described (Wayman and Woodward, 2018b), brain 
tissue was rapidly removed and placed in an ice-cold sucrose solution 
that contained (in mM): sucrose (200), KCl (1.9), NaH2PO4 (1.4), 
CaCl2 (0.5), MgCl2 (6), glucose (10), ascorbic acid (0.4), and NaHCO3 
(25); osmolarity 305–315 mOsm. This solution was bubbled with 95% 
O2/5% CO2 to maintain physiological pH. Sections containing the 
BLA were cut coronally into 300 μm slices using a Leica VT1000 
vibrating microtome with a double walled chamber through which 
cooled solution (2°C–4°C) circulated (Isotemp 3006, Fisher Scientific). 
Slices were transferred to a warmed chamber (32°C–34°C) containing 
a carbogen-bubbled aCSF solution containing (in mM): NaCl (125), 
KCl (2.5), NaH2PO4 (1.4), CaCl2 (2), MgCl2 (1.3), glucose (10), 
ascorbic acid (0.4), and NaHCO3 (25); osmolarity 290–300 mOsm for 
30 min, and then kept at room temperature in carbogen-bubbled aCSF 
for at least 45 min before recordings.

Ex vivo electrophysiology

Brain slices were transferred to the recording chamber and 
perfused with oxygenated aCSF at a flow rate of 1.5 mL/min. The 
temperature was maintained at 34°C during the course of the 
recordings with in-line and bath heaters (Warner Instruments). A 
horizontal pipette puller (P-97, Sutter Instrument) was used to pull 
recording pipettes that were constructed from thin-walled borosilicate 
capillary glass tubing (I.D. 1.0 mm, O.D. 1.50 mm; Sutter Instruments). 
Pipettes were filled with an internal solution containing (in mM) the 
following: K-gluconate (120), HEPES (10), KCl (10), MgCl2 (2), 
Na2ATP (2), NaGTP (0.3), EGTA (1), a pH 7.3–7.4, osmolarity of 
285–295 mOsm, and resistances ranging from 3 to 4 MΩ. BLA 
pyramidal neurons were visually identified using an Axioskop FS2 
microscope using landmarks illustrated in a rat brain atlas (Paxinos 
and Watson, 1986). Following the formation of a gigaohm seal, light 
suction was applied to break through the cell membrane and achieve 
whole-cell access,. Neurons with an access resistance greater than 20 
megaohm were not used for analysis. Recorded events were acquired 
with an Axon MultiClamp 700A (Molecular Devices), filtered at 4 kHz 
and digitized at a sampling rate of 10 kHz with an Instrutech ITC-18 
analog-digital converter (HEKA Instruments) controlled by 
AxographX software (Axograph Scientific) running on a Macintosh 
G4 computer (Apple).

Intrinsic excitability
In order to study intrinsic excitability of BLA neurons, the resting 

membrane potential neurons was recorded under current clamp mode 
and then adjusted to ~ −70 mV for electrophysiological assessments 
of intrinsic excitability. A current ramp (0 to 500 pA over 1 s) was 
performed on each cell to determine rheobase. Then, action potentials 
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were elicited using a 1 s pulse of current (rheobase +50 pA) at 0.1 Hz 
for 15 min (2 min baseline, 8 min treatment, 5 min washout). Internal 
resistance was calculated by measuring the voltage deflection in 
response to a 50 ms, 30 pA hyperpolarizing pulse given prior to each 
current pulse. Traces in which internal resistance deviated more than 
25% from baseline were excluded from analysis. Recordings were 
analyzed offline for the number of spikes and action potential 
characteristics in response to each current step using 
AxographX software.

Glutamatergic synaptic transmission
Using a separate cohort of animals expressing 

channelrhodopsin-2 in mPFC neurons, voltage clamp experiments 
were performed to measure the effects of bath applied toluene on 
light-evoked synaptic glutamate transmission of BLA neurons. For 
these experiments, K-gluconate and KCl in the pipette solution were 
replaced with CsCl (120 mM). To isolate monosynaptic AMPA-
mediated currents in BLA neurons, the extracellular recording 
solution also contained 250 nM tetrodotoxin (American Radiolabeled 
Chemicals, Inc.), 500 μM 4-aminopyridine (Sigma), and 50 μM AP5 
(Tocris). In some experiments, 0.75 μM AM 281 (Tocris) was included 
in the bath solution to inhibit CB1 receptors. Following breakthrough, 
EPSCs were induced by photostimulation of mPFC terminals in the 
BLA via pulses of 470 nm LED light (LEDD1B, Thor Labs). Stimulus 
power ranged from 1.1–2.45 mW and generated EPSCs ranging from 
100–400 pA. Traces were obtained during pairs of photostimulation 
pulses (1–5 ms with 150 ms inter pulse interval) and collected at a 
regular interval of 0.05 Hz for 15 min (2 min baseline, 8 min treatment, 
5 min washout).

In all experiments, baseline values were collected until responses 
were stable (~1–5 min before recordings began). For toluene 
treatments, a known volume of HPLC grade toluene (Sigma-Aldrich, 
Saint Louis, MO) was added to pre-gassed aCSF and immediately 
perfused into recording bath using teflon tubing to minimize solvent 
loss. To control for loss of oxygen in the pre-gassed toluene solution, 
Sham recordings also used pre-gassed aCSF. Previous studies in our 
laboratory monitored the loss of toluene from experimental recording 
solutions and found that the concentration of toluene 15 min after 
dilution was 77.9 ± 15% (mean ± SEM) of baseline value obtained at 
0 min (Cruz et al., 1998). Following this initial rapid loss because of 
volatility, toluene concentrations in recording solutions were relatively 
constant. Concentrations of toluene reported in the results section are 
not corrected for this loss. Once toluene was applied to a slice, no 
subsequent cells were recorded from that slice.

All procedures were performed in compliance with Medical 
University of South Carolina IACUC protocols in strict accordance 
with the NIH Guide for the Care and Use of Laboratory Animals.

Data analysis

Data were analyzed with Prism 10 software (Graphpad Inc.) using 
a repeated measures mixed effects model with treatment and time as 
factors. Values during and following toluene exposure were compared 
to baseline with Dunnett’s post-hoc test. For secondary measures of 
intrinsic excitability, averaged responses in the last minute of 
treatment and washout were compared to baseline (repeated measures 
one-way ANOVA, Dunnett’s post-hoc).

Results

Toluene increases the intrinsic activity of 
BLA neurons

In order to determine the effect of toluene on the intrinsic excitability 
of BLA neurons, action potentials (APs) were evoked by direct current 
injection designed to elicit 5–10 spikes (rheobase +50 pA) during 
baseline, treatment, and washout of aCSF, 0.3 or 3 mM toluene 
(Figures 1A,B). Each neuron was exposed to only one condition and the 
data were expressed as a percent of firing normalized to the 2 min 
baseline period (Figure 1B). Statistical analysis of the data shown in 
Figure 1B using a repeated measures mixed-effects model revealed no 
significant main effect of treatment (F(2,24) = 2.65, p = 0.082) but a 
significant time x treatment interaction (F(178,2127) = 2.57, p < 0.0001). To 
determine which data drove this interaction, we averaged the last two 
minutes of baseline, toluene exposure and washout for each neuron 
under each condition. There was no effect of Sham (Figure 1C, left panel; 
main effect of treatment F(2,16) = 2.6, p = 0.10; one-way repeated measures 
ANOVA) or 0.3 mM toluene (F(2,24) = −0.03, p > 0.99; One-way repeated 
measures ANOVA, data not shown) on BLA action potential firing. 
However, the number of action potentials was significantly increased 
during exposure to 3 mM toluene (Figure 1C, right panel; main effect of 
treatment, F(2,20) = 7.39, p = 0.0039, one-way ANOVA; post-hoc Dunnett’s 
test, treatment vs. baseline, q(20) = 3.83, p = 0.0020), and this effect reversed 
following washout (washout vs. baseline, q(20) = 2.22, p = 0.070).

Figure 2 shows that the increase in action potential firing during 
exposure to 3 mM toluene was accompanied by changes in several other 
measures including decreased latency to fire (vs. baseline q(20) = 4.18, 
p = 0.0009), decreased AP amplitude (vs. baseline q(20) = 2.39, p = 0.049), 
decreased inter-event interval (vs. baseline q(20) = 4.45, p = 0.005), and a 
smaller fast after-hyperpolarization potential (vs. baseline q(20) = 6.58, 
p < 0.0001). However, in the presence of 3 mM toluene, AP rise time 
increased (vs. baseline q(20) = 3.27) and AP decay time increased (vs. 
baseline q(20) = 4.79, p = 0.0002), that would be expected to decrease 
overall excitability. Sham aCSF treatment did not affect spike number, 
resting membrane potential, latency to fire, AP rise time, AP decay, AP 
half width, inter event interval, or fast afterhyperpolarization potential. 
However, a small, yet statistically significant decrease in AP amplitude 
was detected following washout of aCSF (vs. baseline q(12) = 3.38, 
p = 0.0040) accompanied by an increase in AP decay observed during 
aCSF treatment (vs. baseline q(12) = 2.65, p = 0.038).

Toluene dose-dependently inhibits 
excitatory mPFC-BLA signaling in a 
CB1R-dependent manner

Toluene disrupts mPFC-BLA dependent behavior (St Onge et al., 
2012; Jenni et al., 2017; Braunscheidel et al., 2019), and this circuit also 
mediates alcohol withdrawal-related neurophysiology (Gioia et al., 
2017; Gioia and McCool, 2017). To determine the effects of toluene 
on glutamatergic mPFC-BLA synapses, we  expressed 
channelrhodopsin-2 (ChR2) in the prelimbic mPFC and recorded 
light-evoked (470 nm) EPSCs in BLA neurons surrounded by ChR2 
expressing mPFC terminals. We verified that these responses were 
mediated by AMPA receptors as they were blocked by the antagonist 
DNQX (10 μM; Figure 3A, top traces). We then tested the effects of 
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aCSF or toluene on BLA AMPA EPSCs using pairs of light pulses 
(Figure 3A, bottom traces) and each neuron was exposed to only one 
condition and data were then expressed as a percent of the response 
normalized to the 2 min baseline period. Figure  3B shows the 
amplitude of EPSC 1 from BLA neurons before, during and after 
exposure to aCSF (Sham), 0.3 mM, 3 mM toluene and 3 mM toluene 
applied in aCSF containing 0.75 μM of the CB1 receptor antagonist 
AM281. Statistical analysis of this data revealed a significant main 
effect of treatment (F(3,36) = 5.47, p = 0.003, repeated measures mixed 

effects model) and post-hoc testing of the Sham versus experimental 
groups showed a significant difference between Sham and 3 mM 
toluene (Dunnett’s post-hoc, q(3.50), p = 0.0036) but no difference 
between Sham and 0.3 mM toluene (Dunnett’s post-hoc, q(0.048), 
p > 0.99) or Sham and 3 mM toluene plus 0.75 μM AM281 (Dunnett’s 
post-hoc, q(0.71), p = 0.82). Post-hoc pairwise testing also showed a 
significant difference between the 3 mM toluene group and the 3 mM 
toluene plus 0.75 μM AM281 group (Sidak’s post-hoc, t2.49, p = 0.018). 
Figure 3C shows the paired pulse ratio (PPR expressed as EPSC2/

FIGURE 1

Toluene increases the intrinsic excitability of BLA pyramidal neurons. (A) Representative spike trains evoked by direct current injection in BLA pyramidal 
neurons under baseline, treatment, and washout of Sham aCSF (black, left) or 3  mM toluene (right, red). Scale bars: x-axis 100  msec, y-axis 10  mV. 
(B) Time course of number of evoked APs during exposure to Sham aCSF, 0.3  mM toluene or 3.0  mM toluene (expressed as percent of corresponding 
baseline). Symbol (****) indicates significant time × treatment interaction (p  <  0.0001), repeated measures mixed effects model. (C) Summary of 
changes in action potential number before, during and after exposure to Sham aCSF (left panel) or 3.0  mM toluene (right panel). Symbol (*) indicates 
significant difference (p  <  0.05) from baseline, one-way ANOVA with Dunnett’s post-hoc. Data are mean  +  SEM; aCSF Sham (n  =  8 cells/3 animals); 
0.3  mM toluene (n  =  8 cells/5 animals), 3  mM toluene (n  =  11 cells/4 animals).
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EPSC1) before, during and after treatment with aCSF (Sham), 0.3 mM 
toluene or 3.0 mM toluene, or 3.0 mM toluene with 0.75 μm AM281. 
Statistical analysis of this data showed no significant change in the 

PPR over the 15 min testing period under any condition (main effect 
of treatment F(3,36) = 1.71, p = 0.18; time × treatment F(132,1575) = 0.96, 
p = 0.61; mixed effects model).

FIGURE 2

Summary of changes in electrophysiological parameters before, during and after exposure to Sham aCSF or 3.0  mM toluene. Graphs show resting 
membrane potential, latency to first action potential, AP amplitude, AP rise time, AP decay, AP half width, inter event interval, and fast after-
hyperpolarization potential. Data are expressed as mean  ±   SEM; aCSF Sham (n  =  8 cells/3 animals), toluene (n  =  11 cells/4 animals). Symbols: *p  <  0.05, 
**p  <  0.01, ***p  <  0.001, ****p  <  0.0001; value significantly different from baseline, one-way ANOVA with Dunnett’s post-hoc.
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FIGURE 3

Toluene dose-dependently reduces excitatory mPFC-BLA signaling in a CB1R-dependent manner. (A) EPSCs in BLA principal neurons evoked by light 
pulses (470  nm) in slices from rats expressing channelrhodopsin-2 in mPFC terminals. Top traces show EPSCs before (left) and after (right) bath 
application of the AMPA receptor antagonist DNQX (10  μM). Scale bars: x-axis 50  msec, y-axis 50 pA. Bottom traces show representative AMPA-
mediated EPSCs before, during and after Sham aCSF or toluene (3  mM) exposure. Scale bars: x-axis 100  msec, y-axis 50 pA. (B) Time course of EPSC1 
before, during and after exposure to Sham aCSF, 0.3  mM toluene, 3.0  mM toluene or 3.0  mM plus 0.75  μM  AM281. Symbols: (**) indicates significant 

(Continued)
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Discussion

A major finding of this study is that a brief exposure to toluene 
produced a small (~20%) but significant increase in the excitability of 
principal basolateral amygdala (BLA) glutamatergic pyramidal neurons 
that reversed upon washout. The increase in firing during an acute in 
vitro exposure to toluene complements a previous finding showing 
increased c-Fos expression, a proxy for increased neuronal activity, in the 
BLA and other brain regions following in vivo exposure to toluene (Perit 
et al., 2012). Several components of the action potential of BLA neurons 
were also affected by toluene treatment including decreased latency to 
fire, decreased inter-spike interval, and a reduced fast after-
hyperpolarization potential (AHP) and these changes likely contributed 
to the increase in firing during toluene exposure. Toluene-mediated 
increases in neuronal excitability have been reported for some but not all 
brain regions examined. For instance, in slice recordings, toluene 
increased the tonic firing of dopamine neurons within the VTA (Riegel 
and French, 1999; Riegel et al., 2007; Nimitvilai et al., 2016), but not 
outside of the ventral tegmental area (Riegel et al., 2007). In contrast, 
action potential firing of nucleus accumbens neurons (Beckley et al., 
2016) or deep layer prelimbic mPFC neurons (Beckley and Woodward, 
2011) was not affected by acute application of toluene to the slice. 
However, 24 h following a single in vivo exposure to binge-like 
(~10,000 ppm) levels of toluene vapor, mPFC neurons that project to the 
nucleus accumbens show sub-region, projection and layer-specific 
changes in excitability (Wayman and Woodward, 2018b). Core-
projecting mPFC neurons in layer 5/6 prelimbic mPFC were hypo-
excitable following the toluene exposure while those in layer 2/3 were not 
affected. In contrast, toluene exposure enhanced firing of core-projecting 
neurons in both deep and shallow layers of the infralimbic mPFC. Shell 
projecting neurons in the infralimbic mPFC were hypoexcitable 
following toluene treatment with no effect seen in shell projecting 
neurons from layer 2/3 infralimbic mPFC or those from the prelimbic 
mPFC. Twice daily exposures to toluene vapor over a 10 days period was 
shown to increase the excitability of deep layer prelimbic mPFC neurons 
although the projection specificity of those neurons was not determined 
(Armenta-Resendiz et al., 2018). A recent study from our laboratory 
examined changes in the intrinsic excitability of nucleus accumbens 
medium spiny neurons (MSNs) 1 day after a single exposure to 
10,000 ppm toluene. Toluene exposure had no effect on current-evoked 
spiking of MSNs in the nucleus accumbens core but caused a leftward 
shift in the rheobase of those in the nucleus accumbens shell accompanied 
by a depolarization block of firing at higher current amplitudes (Okas 
et al., 2023). Using a transgenic Cre expressing line of rats, this effect was 
shown to be driven by changes in D2 but not D1 NAc shell neurons. 
Taken together, these findings reveal a surprising degree of selectively of 
toluene action on neural activity following in vitro or in vivo exposure to 
toluene that, as discussed below, may reflect differential expression of 
toluene targets between various neuron subtypes and circuits.

The underlying cause of the increased excitability of BLA neurons 
during acute exposure to toluene is not completely known. An 

interesting possibility is that toluene, via direct inhibition of large 
conductance calcium-activated potassium (BK) channels (Del Re 
et al., 2006) reduced the neurons relative refractory period (Sah and 
Faber, 2002). This explanation is consistent with observed decrease in 
the BK-dependent fast afterhyperpolarization potential (AHP) and 
decreased inter-spike interval by toluene in the present study. Beckley 
and colleagues also found that toluene dampens the fast component 
of the AHP in medium spiny neurons in the nucleus accumbens 
(Beckley et al., 2016), but had no effect on the AHP in mPFC neurons 
(Beckley and Woodward, 2011). Together with the findings of the 
present study, these results show that toluene’s effects on BK-mediated 
components of neuronal excitability are region specific possibly due 
to differential expression of BK channel subtypes that may contribute 
to their toluene sensitivity.

While the reduction in AHP and inter-spike interval is a likely 
explanation for driving the observed toluene-induced increases in 
excitability, toluene-mediated reductions in AHP have been observed 
in the absence of signficant changes in excitability (Beckley et al., 
2016). Further, this mechanism does not appear to be responsible for 
the toluene-induced hyperexcitability of nucleus accumbens core-
projecting prelimbic mPFC neurons (Wayman and Woodward, 
2018b), although this may reflect differences between the in vitro and 
in vivo exposure protocols used in these studies. While some effects of 
toluene on action potential parameters observed in the present study 
would be expected to increase excitability, others are more consistent 
with reduced excitability including increased action potential rise time 
and decay. These effects could be due to toluene’s effect on voltage 
gated sodium channels (Cruz et al., 2003; Gauthereau et al., 2005) 
although it is noted that these studies were conducted with channel 
subtypes expressed primarily in cardiac or skeletal muscle tissue.

Despite its effect on intrinsic activity, toluene is generally regarded 
as a central nervous system depressant via actions on voltage-gated 
calcium channels (Tillar et  al., 2002; Shafer et  al., 2005), NMDA 
receptors (Cruz et al., 1998, 2000), nicotinic acetylcholine receptors 
(Bale et al., 2002), GABAA, and glycine receptors (Beckstead et al., 
2000, 2001). In the present study, we found that 3 mM toluene inhibited 
mPFC-dependent AMPA receptor excitatory post-synaptic currents 
(EPSCs) in the BLA. Given in vitro volatility losses of 20%–25% (Cruz 
et al., 1998) and estimates that ~3% of inhaled toluene reaches the brain 
(Benignus et  al., 1981), this dose equates roughly to 7,400 ppm, a 
concentration similar to that encountered by humans during voluntary 
solvent inhalation (Brouette and Anton, 2001; Bukowski, 2001). 
Toluene’s inhibitory effect on BLA AMPA currents progressed slowly 
over the course of treatment, persisted during washout and was 
prevented by co-application of the CB1 receptor inverse agonist 
AM281. These findings are consistent with the lack of a direct effect of 
toluene on recombinant AMPA receptors (Cruz et al., 1998) and results 
from previous studies from our laboratory showing that toluene-
induced decreases in AMPA EPSCs in the NAc (Beckley et al., 2016) 
and mPFC (Beckley and Woodward, 2011) are CB1 receptor-
dependent and involve release of calcium from intracellular stores 

difference (p  <  0.01) between Sham aCSF and 3  mM toluene group, repeated measures mixed model with Dunnett’s post-hoc test. (*) indicates 
significant difference (p  <  0.05) between 3  mM toluene and 3  mM toluene plus 0.75  μM  AM281 (Sidak’s post-hoc test). (C) Time course of paired pulse 
ratio (EPSC 2/EPSC 1) before, during and after exposure to Sham aCSF, 0.3  mM toluene, 3.0  mM toluene or 3.0  mM plus 0.75  μM  AM281. Data are 
expressed as a percent (mean  +  SEM) of pre-treatment baseline; aCSF Sham (n  =  11 cells/6 animals), 0.3  mM toluene (n  =  10 cells/6 animals), 3.0  mM 
toluene (n  =  11/4 animals), and 3.0  mM toluene +0.75  μM  AM 281 (n  =  8 cells/6 animals).

FIGURE 3 (Continued)
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linked to the synthesis of endogenous endocannabinoids. Interestingly, 
in the NAc study, the effect of toluene on AMPA-mediated EPSCs was 
restricted to D2 MSNs again highlighting a cell-type specificity of 
toluene action (Beckley et  al., 2016). Endocannabinoid mediated 
inhibition of synaptic transmission is thought to occur via a presynaptic 
mechanism as indicated by changes in the paired pulse ratio of evoked 
responses and a reduction in the frequency of spontaneous and 
miniature synaptic events (Busquets-Garcia et al., 2018). In the present 
study, although the CB1R antagonist AM281 prevented the toluene 
inhibition of BLA AMPA-mediated EPSCs, toluene itself did not 
significantly alter the paired pulse ratio of optically evoked synaptic 
events. A previous study reported a reduction in EPSC amplitude 
accompanied by a small (~19%) but significant increase in the PPR of 
electrically evoked BLA AMPA EPSCs following exposure to the direct 
acting CB1R agonist WIN-55-212 (Azad et al., 2003). Similarly, ethanol 
induced a small increase (~9%) in the PPR of BLA AMPA EPSCs in 
some but not all neurons tested along with a decrease in AMPA EPSC 
amplitude that was blunted by CB1R antagonists (Robinson et al., 
2016). Both of those studies used a shorter inter-pulse interval 
(50 msec) than in the present study (150 msec) that may allow better 
detection of small changes in PPR. In addition, there are reports of 
differences in paired pulse plasticity between electrically and optically 
evoked responses that could have contributed to differences between 
these studies and the present one (reviewed by Jackman et al., 2014). It 
is important to note that while most studies suggest that projections 
from mPFC to BLA are glutamatergic, there is evidence for long-range 
GABAergic neurons in the frontal cortex. For example, expressing 
ChR2 in GABergic neurons in the medial prefrontal cortex via use of 
the Dlxi12b-Cre mouse line revealed fibers projecting to subcortical 
areas including the NAc, BLA, dorsal striatum and claustrum (Lee 
et  al., 2014). Electrophysiological recordings revealed light-evoked 
currents in approximately half of the NAc neurons examined and these 
currents were blocked by the GABAA antagonist gabazine. Whether the 
ChR2 stimulated inward currents in BLA neurons recorded in the 
present study may have included those mediated by long-range GABA 
neurons is not known but is possible due to the lack of a GABAA 
antagonist in the bath and use of a high chloride containing pipette 
solution. However, we observed that the light-evoked currents were 
blocked by the AMPA receptor antagonist DNQX and note that 
we selectively targeted the prelimbic division of the rat mPFC while Lee 
et al. (2014) expressed ChR2 in the anterior cingulate, prelimbic and 
infralimbic areas of the Dlxi12b-Cre mouse line. Nonetheless, at the 
present time, we can not rule out that the endocannabinoid-dependent 
toluene-induced suppression of light-evoked currents in BLA neurons 
may have been a mixture of glutamatergic and GABAergic responses.

The present study is the first to show that acute toluene impairs 
neural activity and synaptic signaling in the mPFC-BLA neural circuit, 
a pathway implicated in alcohol-seeking behavior in C57BL/6J mice 
(Gioia et  al., 2016, 2017; Gioia and McCool, 2017). The toluene 
inhibition of mPFC-BLA signaling observed in the current study is 
interesting in light of recent work from our lab investigating risk/
reward decision making following exposure of male and female rats to 
binge-like concentrations (6,000–10,500 ppm) of toluene vapor 
(Braunscheidel et al., 2019). In that study, toluene exposure produced 
deficits in behavioral flexibility that mimicked those observed following 
pharmacological inactivation of the mPFC-BLA pathway (St Onge 
et al., 2012; Jenni et al., 2017). This was manifested as a delayed shift in 
their choice behavior as the odds of receving a large/risky reward 

changed suggesting that a persistent CB1R-mediated suppression of 
mPFC or BLA excitatory signaling may have contributed to the 
reduction in behavioral flexibility in toluene treated animals. However, 
in a follow-up study, systemic or intra-mPFC infusion of CB1R 
antagonists failed to prevent changes in risk behavior in rats acutely 
exposed to toluene vapor despite producing selective effects on choice 
behavior and latency on their own (Braunscheidel et al., 2021). While 
these results do not rule out a role for toluene-induced inhibition of 
mPFC-BLA synaptic activity in this effect, future studies using 
intra-BLA infusion of CB1R antagonists or genetic manipulation of 
BLA CB1R signaling are needed to fully address this issue.

To our knowledge, these studies are the first to investigate the 
effect of the inhalant toluene on BLA neurophysiology. Using whole-
cell patch clamp electrophysiology, we found that a concentration of 
toluene that is associated with voluntary inhalant abuse transiently 
increased the excitability of BLA pyramidal neurons. The increase in 
firing was accompanied by a significant reduction in the fast AHP 
potential and decreased inter-spike interval. Optical stimulation of 
mPFC terminals in the BLA revealed that toluene induced a CB1R-
dependent decrease in AMPA-mediated excitatory signaling. These 
findings add to those clearly demonstrating the ability of a commonly 
used inhalant to alter neural activity and signaling in key addiction 
related brain regions.
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