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In clinical practice and research, the classification and diagnosis of neurological 
diseases such as Parkinson’s Disease (PD) and Multiple System Atrophy (MSA) 
have long posed a significant challenge. Currently, deep learning, as a cutting-
edge technology, has demonstrated immense potential in computer-aided 
diagnosis of PD and MSA. However, existing methods rely heavily on manually 
selecting key feature slices and segmenting regions of interest. This not only 
increases subjectivity and complexity in the classification process but also 
limits the model’s comprehensive analysis of global data features. To address 
this issue, this paper proposes a novel 3D context-aware modeling framework, 
named 3D-CAM. It considers 3D contextual information based on an attention 
mechanism. The framework, utilizing a 2D slicing-based strategy, innovatively 
integrates a Contextual Information Module and a Location Filtering Module. 
The Contextual Information Module can be applied to feature maps at any layer, 
effectively combining features from adjacent slices and utilizing an attention 
mechanism to focus on crucial features. The Location Filtering Module, on 
the other hand, is employed in the post-processing phase to filter significant 
slice segments of classification features. By employing this method in the fully 
automated classification of PD and MSA, an accuracy of 85.71%, a recall rate 
of 86.36%, and a precision of 90.48% were achieved. These results not only 
demonstrates potential for clinical applications, but also provides a novel 
perspective for medical image diagnosis, thereby offering robust support for 
accurate diagnosis of neurological diseases.
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1 Introduction

In clinical practice, Parkinson’s Disease (PD) and Multiple System Atrophy (MSA) are two 
neurodegenerative diseases. Despite their obvious differences in prognosis, treatment, and 
pathologic features, they are extremely similar in early symptoms (Palma et al., 2018). This 
poses a great challenge for doctors in their diagnosis (Song et al., 2007; Antonini, 2010). 
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Parkinson’s disease has a high degree of heterogeneity, with different 
clinical subtypes, which makes diagnosis difficult (Wullner et  al., 
2023). According to statistics, the misdiagnosis rate of early-stage 
Parkinson’s disease can be as high as 20–30% (Poewe and Wenning, 
2002). Misdiagnosis can potentially lead to doctors providing patients 
with incorrect treatment plans, resulting in disease progression and 
even irreversible neurological damage. Therefore, it is evident that 
diagnostic methods that rely solely on the personal experience of 
physicians may not be sufficiently reliable. As a result, there is an 
urgent need for a scientifically validated auxiliary diagnostic 
approaches to assist doctors in making diagnoses.

In recent years, with the development of medical imaging 
technology, many studies have been conducted to differentiate PD and 
MSA using advanced medical imaging. Among them, machine 
learning-based methods for extracting medical image features have 
shown promising results. For example, Chen et  al. (2017, 2023) 
explored the differences in brain functional connectivity patterns 
between patients with PD and MSA, provided a diagnostic tool for PD 
and MSA using machine learning methods. Pang et  al. (2020) 
extracted radiomics features on Susceptibility-weighted-imaging 
using machine learning methods for differential diagnosis of PD and 
MSA. Kim et al. (2022) constructed a machine learning model to 
extract radiological features using medical images, successfully 
differentiating various types of Parkinsonian syndromes. Bu et al. 
(2023) utilized different kinds of medical images to build a radiological 
model based on machine learning to differentiate PD from 
MSA. Although the above methods have shown good results in the 
diagnosis of PD and MSA, they all rely on manually selecting key 
feature slices and segmenting regions of interest. In addition, the 
features extracted by machine learning methods are filtered from a 
fixed set, which also presents limitations.

Currently, deep learning, as a cutting-edge technology of machine 
learning, shows great potential in the field of computer-aided 
diagnosis (Greenspan et  al., 2016) and has made remarkable 
achievements in many aspects such as medical image analysis, 
pathology diagnosis and clinical decision support (Litjens et al., 2017; 
Panayides et  al., 2020; Rehman et  al., 2021). Some scholars have 
started applying deep learning techniques to studies on PD or MSA 
(Zhao et al., 2019; Jyotiyana et al., 2022; Wu et al., 2022). Among them, 
for the specific task of PD and MSA classification, some scholars have 
achieved considerable results by applying deep learning methods 
based on medical images. For example, Huseyn (2020) utilized 
Magnetic Resonance Imaging (MRI) with an improved AlexNet 
network structure to diagnose Parkinson’s disease, multiple system 
atrophy, and healthy individuals. Rau et al. (2023) proposed a deep 
learning algorithm capable of precisely segmenting the nucleus and 
shell, applying it to the diagnosis of PD and MSA. Compared to the 
aforementioned machine learning algorithms, although the features 
extracted by these methods are no longer limited to a fixed set of 
features, they still need to rely on manually selecting key feature slices 
and segmenting regions of interest, which does not allow for fully 
automated classification and diagnosis of diseases.

Therefore, we  urgently need to develop a fully automatic 
classification model that can achieve classification diagnosis of PD and 
MSA without the need for manually selecting key feature slices and 
segmenting regions of interest. This approach would allow the model 
to comprehensively utilize data from the entire brain, enabling a 
comprehensive analysis of lesion features across various brain regions, 

thereby providing more reliable support for accurate diagnosis. In this 
study, we propose a novel 3D context-aware modeling framework 
called 3D-CAM. It allows a suitable convolutional neural network to 
be freely selected and embedded according to the dataset features in 
order to construct a classification model. The framework employs a 
2D slicing-based strategy to process 3D Regional homogeneity (ReHo) 
data from brain Blood Oxygenation Level Dependent (BOLD) 
sequences (Zang et al., 2004). It segments the data into multiple 2D 
slices and uses them to train the classification model. The framework 
integrates two innovative modules: the Contextual Information 
Module and the Location Filtering Module. The Contextual 
Information Module is a feature enhancement module that can 
be inserted into any feature layer. It not only introduces features of 
adjacent slices, but also utilizes an attention mechanism to analyze the 
feature similarity between adjacent slices, enhancing focus on crucial 
features. This step effectively complements the inadequacy of 2D 
classification models in handling spatial information and contextual 
relationships. The Location Filtering Module is a post-processing 
module that not only leverages the 2D slice information to enable the 
model to concentrate on the slice segments with key features, but also 
analyzes and integrates the 2D slice information into the final 3D 
classification results. This step contributes to enhancing the model’s 
classification performance and enables it to identify key features 
more accurately.

The main contributions of this paper are as follows:

 • A feature extraction framework called 3D-CAM is proposed for 
neurological disease classification. The framework achieves 
automatic classification with significant results in the 
classification tasks of PD and MSA.

 • We propose a Contextual Information Module that can fuse the 
features of adjacent slices in any feature layer, enabling the 
network to emphasize key features and capture the spatial 
correlation between slices.

 • We propose a Location Filtering Module that accurately 
concentrates on slice segments with key features, effectively 
enhancing the model’s classification performance by analyzing 
and integrating 2D slice information into 3D classification results.

2 Materials and methods

2.1 Dataset and preprocessing

The dataset for this study was obtained from the Neurology 
Outpatient Department of the First Hospital of China Medical 
University, covering patient data from July 2020 to August 2023.

For data acquisition, a 3.0 T MRI scanner outfitted with a 
32-channel head coil was employed to acquire high-resolution T1 
weighted MRI sequence and BOLD sequences in accordance with 
standardized scanning protocols. Subsequently, these sequences 
underwent processing to derive ReHo data. All processing 
procedures were executed using the Data Processing & Analysis of 
Brain Imaging (DPABI, RRID:SCR_010501), encompassing artifact 
removal, motion correction, temporal adjustments, and spatial 
normalization, as documented in pertinent literature (ChaoGan 
and YuFeng, 2010). Rigorous data quality assurance measures were 
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undertaken, including meticulous data cleansing with manual 
exclusion of motion exceeding 3 mm, to ensure the integrity of 
the dataset.

Finally, we successfully obtained ReHo data from 189 patients, 
including 105 PD cases and 84 MSA cases. To ensure the effectiveness 
of model training, tuning, and evaluation, we divided these datasets 
into training set, validation set, and testing set according to the ratio 
of 7:1:2. Detailed sample information is shown in Figure 1.

2.2 Experimental setup and evaluation 
criteria

2.2.1 Implementation
The classification models in this paper are programmed using 

Python and Pytorch. We performed all experiments on a personal 
workstation with an Nvidia GeForce RTX 3080 GPU. For the 
optimizer, we chose a learning rate of 0.0001, a weight decay of 0.0001, 
and used a stochastic gradient descent algorithm with a momentum 
of 0.9. The batch size for training was set to 32. In addition, we chose 
the cross-entropy loss function during the training process. This loss 
function is widely used in classification problems and can effectively 
measure the difference between the model output and the real labels, 
which helps to optimize the network parameters to improve the 
classification accuracy.

2.2.2 Evaluation criteria
In evaluating the network’s classification performance, various 

evaluation metrics were introduced, including accuracy, precision, 
and recall. These indices are defined by Equations (1)–(3). Where TP, 
FN, FP and TN represent correctly classified positive samples, 
misclassified positive samples, misclassified negative samples and 
correctly classified negative samples, respectively. In this paper, 
positive samples are PD patient data and negative samples are MSA 
patient data.

 
Accuracy TN TP

TN TP FN FP
=

+
+ + +

×100%
 

(1)

 
Recall TP

TP FN
=

+
×100%

 
(2)

 
Precision TP

TP FP
=

+
×100%

 
(3)

In addition, we introduce the Receiver Operating Characteristic 
(ROC) curve and the Area Under the Curve (AUC). The ROC curve 
is a curve plotted with the True Positive Rate (TPR) as the vertical 
coordinate and the False Positive Rate (FPR) as the horizontal 
coordinate at different thresholds. The AUC value is the area under 
the ROC curve, which is used as a measure of the quality of the 
classifier’s prediction. The closer the AUC value is to 1, the better the 
performance of the classifier. In order to verify the robustness and 
generalization ability of the model, several experiments were 
conducted and the results were statistically analyzed and compared.

2.3 Methodology

2.3.1 Overall framework
In this work, we propose a novel deep learning-based framework 

for 3D medical image classification, named 3D-CAM. The framework 
of 3D-CAM is illustrated in Figure 2. 3D-CAM employs a 2D slicing-
based strategy to slice the 3D ReHo data into multiple 2D slices for 
putting into the network. Unlike traditional training methods, 
we incorporate several adjacent slices surrounding the current slice as 
inputs to the network. 3D-CAM can be divided into two main stages 
as follows.

In the first stage, we  freely choose a suitable convolutional 
network, such as ResNet (He et  al., 2016), and embed it into the 
3D-CAM framework. As the convolutional network extracts features 
from the current slice layer by layer, it also simultaneously extracts 
features from adjacent slices. During the feature extraction process, 
we introduce a Contextual Information Module at an optimal location. 
This module can simultaneously receive feature maps of the current 

FIGURE 1

Example of ReHo data slices for PD patients and MSA patients.
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slice and its adjacent slices as inputs, thereby achieving the effect of 
introducing contextual information. In order to make the network 
focused on overall features and capture the spatial correlation between 
slices, we introduce attention mechanism in this module. By analyzing 
the similarity between the features of the current slice and its adjacent 
slices, we  reassign weights to different features for feature 
enhancement. Afterwards, the enhanced features are further processed 
by convolutional networks to obtain the prediction results of 2D slices.

In the second stage, we introduce a Location Filtering Module to 
enhance the classification performance and integrate the 2D 
classification information into 3D classification results. This module 

is designed to filter the sliced segments with more significant 
classification features. In this step, we categorize all the 2D slice data 
used for training by location and compute the prediction accuracies 
of the slices with different locations in validation set. Based on this 
analysis, we  filter out the consecutive slices with high prediction 
accuracy as the key prediction segments of the sample. Following this, 
we apply a voting mechanism to integrate the prediction results of 
each 2D slice within the segment to obtain 3D prediction results. This 
process aims to optimize and accurately extract segments with 
significant classification features serving as the basis for 
3D classification.

FIGURE 2

Network architecture of 3D-CAM. The upper part depicts the overall structure of 3D-CAM, including the specific configuration of the Location Filtering 
Module. The lower part depicts the detailed structure of the Contextual Information Module.
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2.3.2 Contextual information module
When a 2D slicing-based strategy is used to process 3D data, the 

connection between different 2D slices is usually ignored, which leads 
to the loss of some spatial information. Therefore, to comprehensively 
capture data features and conduct a holistic analysis, we propose a 
Contextual Information Module, depicted in specific structure as 
illustrated in Figure 2.

When inserting a Contextual Information Module at the l th 
layer of a neural network with a depth of L to extract features, 
each input slice, following the initial l  layers of the neural 
network, generates a collection of feature maps denoted as (4). 
Fi
l( )  denotes the set of feature maps obtained by extracting the i

th input slice in the l th layer of the neural network. N  denotes the 
number of feature maps in the l th layer, and fi j

l
,
( ) denotes the j th 

feature map extracted from the ith input slice after passing 
through l  layers of the neural network.

 
F f f fi
l

i
l
i
l

i N
l( ) ( ) ( ) ( )= …{ }, , ,1 2

, , ,

 
(4)

When the network acquires Fi
l( ), its adjacent slices features Fi

l
−
( )

1  
and Fi

l
+
( )

1  are also acquired at the same time and stored in the 
contextual feature module.

Next, to enhance the neural network’s attention to the overall 
features as well as to capture the spatial correlation between slices, 
we introduce attention mechanism. We compute the similarity 
between the feature map fi j

l
,
( ) obtained from the current slice and 

the feature maps fi j
l
−
( )
1,

 and fi j
l
+
( )
1,

 of its adjacent slices. The 
Structural Similarity Index (SSIM) (Wang et al., 2004) is used here 
as a similarity measure. SSIM is an effective image similarity 
metric and its computation includes the consideration of statistics 
such as mean, variance and covariance. The SSIM formula (5) for 
calculating the similarity between two feature maps A and B is 
as follows:

 

SSIM ,A B
c c

c c
A B AB

A B A B
( ) = +( ) +( )

+ +( ) + +( )
2 21 2

2 2
1

2 2
2

µ µ σ

µ µ σ σ
 

(5)

In this formula, Aµ  and Bµ  denote the pixel mean values of 
feature maps A and B, 2

Aµ  and 
2
Bµ denote their respective pixel 

variances, σ AB is their pixel covariance, and c1 and c2 are constants 
introduced for stability.

Based on the aforementioned SSIM formula, we define the weight 
(6) as the average value of the similarity between the feature map fi j

l
,
( ) 

and its adjacent slices of the feature maps fi j
l
−
( )
1,

, fi j
l
+
( )
1,

. The formula 
for this weight is as follows:

 
ωi j
l i j

l
i j
l

i j
l
i j
lf f f f

,

, , , ,( ) −
( ) ( ) ( )

+
( )

=
( ) + ( )SSIM , SSIM ,

1 1

2  
(6)

In this formula, SSIM ,f fi j
l

i j
l

−
( ) ( )( )1, ,

 denotes the similarity between 

feature maps fi j
l

,
( ) and fi j

l
−
( )
1,

, while SSIM ,f fi j
l
i j
l

, ,

( )
+
( )( )1

 denotes the 

similarity between feature maps fi j
l

,
( ) and fi j

l
+
( )
1,

. The introduction of 
such weights aims to make the network paying more attention to the 
consistency of overall features while capturing spatial correlations 
between slices.

In order to better capture the correlation between feature maps, 
we specially design a neural network (7, 8) structure to dynamically 
adjust the original weight ωi j

l
,
( ). This structure comprises two linear 

layers and two activation functions. Here, W1 and b1 denote the weight 
matrix and bias terms of the first linear layer, and ReLU denotes the 
activation function of the first layer. W2 and b2 denote the weight 
matrix and bias terms of the second linear layer, and Sigmoid denotes 
the activation function of the second layer. The formulas are 
as follows:

 
( ) ( )( )1 1, ,ReLU .l l
i j i jh W bω= +

 
(7)

 
( ) ( )( )2 2, ,Sigmoidl l
i j i jW h bω ′ = ⋅ +

 
(8)

Then, applying the adjusted weight ωi j
l
,
( )′  to the original feature 

map, the weighted feature map (9) can be obtained.

 

( )
( ) ( )
, ,,

l
l l

i j i ji jf fω ′= ⋅

 (9)

After that, each feature map in Fi
l( )  is weighted based on the 

previously mentioned steps to form a new set (10) of feature maps:

 

( ) ( ) ( ) ( )
,1 ,2 ,, , ,

l

l l l l

i i i i NF f f f
  = … 
  


 



 
(10)

By introducing the attention mechanism, we adjust the weight of 

each feature map. The new set of feature maps 
( )l
iF
  contains more 

spatially relevant and globally consistent features. It is conducive to 
better integrating spatial information into the feature extraction 
process, improving the perceptual ability and performance of 
the network.

In order to better incorporate the spatial information into the 
feature extraction network, we embed the feature maps fi

l
−
( )
11,

 and 
fi j
l
+
( )
1,

 of adjacent slices together into the network, so as to 
comprehensively considering the contribution of adjacent slices 
features to the current features. We  use weights α, β to perform 
weighted summation on the feature map sets Fi

l
−
( )

1 , Fi
l( )  and Fi

l
+
( )

1  to 
obtain the final feature (11) after enhancement, where α is a smaller 
weight than β to emphasize the importance of the current slice. The 
formula of Wi

l( ) is:

 
( ) ( ) ( ) ( )

1 1
l l l l

i ii iW F F Fα β α− += ⋅ + ⋅ + ⋅
 (11)
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This approach efficiently integrates the features of adjacent slices 
into the current feature maps, enhancing the capacity for global 
information representation of features.

After processing in the Contextual Information Module, we obtain 
a set of enhanced feature maps. These feature maps contain more 
spatial information and help the network to focus more on overall 
feature consistency while taking into account the importance of 
different features. Using similarity information to enhance the 
perception of spatial correlation can improve the feature representation 
capability of the network.

2.3.3 Location filtering module
In order to improve the classification performance and integrate 

the 2D classification information into 3D classification results, this 
paper introduces a Location Filtering Module. In many 3D medical 
datasets, such as the dataset used in this paper, the slices at both ends 
usually contain less image information. Therefore, we want to filter the 
slice segments with more significant classification features located in 
the center location and vote them as key slice segments to obtain more 
accurate classification results.

First, we calculated the prediction accuracies of slices at different 
locations in the validation set. Let the number of 2D slices for each 
sample be N and the location number be i (from 1 to N). The accuracy 
of each location i is Acci (12). Here, Correcti  denotes the number of 
correctly predicted samples at location i, and Totali  denotes the total 
number of samples at location i.

 
Acc Correct

Totali
i

i
= ×100%

 
(12)

Next, we aim to find a contiguous segment among all possible slice 
segments where the average accuracy within that segment exceeds the 
threshold T . Additionally, this segment should be the longest among 
all possible segments, in order to retain as much information as 
possible while maintaining a high level of accuracy. This selected 
segment can be  considered as the key slice segment and will 
be involved in subsequent voting and analyses. The formula to find 
this segment (13) is shown below:

 
S L k Acc k Tj k

l j

j k

l, argmax( ) = >
























=

+ −

∑, · ·1

1

 
(13)

In this equation, j  and k  are parameters used to search for the 
longest segment. j  represents the starting position, while k  represents 
the length of the segment. 1 ·( ) is an indicator function that returns 1 
if 

l j

j k

lAcc k T
=

+ −

∑ >
1

·
 and 0 otherwise. Through this step, we  finally 

identify the region of interest with a starting position S and length L 
with high prediction accuracy and use it as the key prediction segment.

Next, we adopt a voting mechanism to integrate the prediction 
results of each 2D slice located at the key slice segment aforementioned 
(14). The specific formula is as follows:

 
P c

N
c c

i

N
i( ) = =( )

′ =

′

∑1 1
1  

(14)

In this equation, P c( )  denotes the probability that the final 
weighted voting prediction result is class c. ′N  denotes the total 
number of filtered slices in the key slice segment. 1 ·( )  is an 
indicator function, which indicates 1 when c ci = , and 0 otherwise. 
ci  denotes the prediction category of the ith slice. Finally, 3D 
prediction results can be  obtained based on the prediction 
probability P c( ).

3 Results

In order to verify the reliability of the proposed method in this 
paper and to propose new methods for automatic diagnosis of PD and 
MSA, we conducted the following experiments.

3.1 Model selection and performance 
comparison

We applied our proposed innovative framework, 3D-CAM, to 
the classification tasks of PD and MSA. Specifically, we applied 
the two innovative modules, the Contextual Information Module 
and the Location Filtering Module, to specific layers of the 
classical model in order to enhance its performance. To ensure 
consistency, we inserted the Contextual Information Module in 
the layers corresponding to the 32 × 32 feature maps of each 
model. Additionally, we  have investigated several families of 
classical convolutional neural network models, including 
EfficientNet (Tan and Le, 2020), DenseNet (Huang et al., 2018), 
ResNet (He et al., 2016), and Inception (Szegedy et al., 2015) as 
backbones. In order to identify the model with the best 
performance in our task, we compared multiple versions in each 
model family. Finally, we  selected the best-performing model 
from each family for further analysis. The experimental results 
are detailed in Table 1.

In our experiments, we  observe that different feature 
extraction networks can be embedded into 3D-CAM, while all of 
them show different degrees of improvement in classification 
accuracy. We also find that for our task, ResNet34-based 3D-CAM 
shows the best performance with 85.71% accuracy on the test  
set.

TABLE 1 Comparative experimental results of different models.

Model Accuracy Recall Precision

Inception 65.71% 68.18% 75.00%

Inception +3D-CAM 77.14% 77.27% 85.00%

DenseNet 68.57% 72.73% 76.19%

DenseNet +3D-CAM 80.00% 81.82% 85.71%

EfficientNet 71.72% 68.18% 83.33%

EfficientNet 

+3D-CAM

82.86% 86.36% 86.36%

ResNet 71.42% 72.73% 80.00%

ResNet + 3D-CAM 85.71% 86.36% 90.48%

The best-performing results are highlighted in bold.
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3.2 Ablation experiments

To verify the effect of our proposed two modules on the model 
performance, we conducted ablation experiments. On the currently 
best-performing model, we gradually removed these two modules and 
obtained two sets of ablation experimental results, as detailed in 
Table  2. Here, Module 1 represents the Contextual Information 
Module, and Module 2 represents the Location Filtering Module.

The results of the ablation experiments showed that the removal 
of either module resulted in a significant decrease in model 
performance. This validates the importance of both modules to the 
model performance. These results strongly support the validity of our 
proposed modules and confirm their positive impact on the overall 
model performance.

3.3 Optimal insertion location analysis of 
the contextual information module

In order to determine the optimal insertion location of the 
Contextual Information Module, we  conducted additional 
experiments. On the base of the currently best-performing model, 
we  adjusted the insertion location of the Contextual Information 
Module and observed its effect on the model performance. 
We attempted to insert the modules at locations with different feature 
map sizes and recorded the optimal performance of the model 
performance in each case, as shown in Table 3.

The results above show that inserting the Contextual Information 
Module after a feature map of 32×32 size can bring the maximum 
performance improvement to the model with an accuracy of 85.71%. 
The ROC curve of the best-performing model is shown in Figure 3, 
with an AUC value of 0.85. This result also demonstrates the impact 
of different insertion locations of the Contextual Information Module 

on the model performance. These results strongly support the 
necessity of exploring the optimal insertion location for the Contextual 
Information Module and provide important ideas for improving the 
model performance.

In summary, through all the aforementioned experiments, 
we have successfully determined the optimal model for this task. This 
process not only validates the effectiveness of the proposed innovative 
modules, but also provides an effective method for the automatic 
classification of PD and MSA.

4 Discussion

Our experimental results demonstrate that the deep learning 
framework 3D-CAM can effectively classify PD and MSA based on 
medical images, achieving a classification accuracy of 85.71% and an 
AUC value of 0.85. This outcome shows the capability of our research 
method to learn disease-related image features from medical imaging 
data in an effective manner.

We speculate that the reason why the 3D-CAM framework 
performs well in experiments and outperforms other classical deep 
learning models is because it is specifically designed for PD and MSA 
classification tasks. It not only learns features from the current slice 
but also integrates key features from adjacent slices. At the same time, 
by utilizing attention mechanisms, it allows the network to focus 
more on overall features and the segment of slices that contain 
crucial features.

Recently, several studies have shown promising results in the 
diagnosis of PD and MSA using machine learning methods, such 
as Chen et al. (2017), Pang et al. (2020), Bu et al. (2023), and Chen 
et al. (2023). Among them, the dataset volume used by Pang et al. 
(2020) is comparable to our research, making it highly relevant. 
They obtained an AUC value of 0.862 in the classification task of 
PD and MSA on the test set, slightly higher than our result of 
0.85. Although their results slightly outperforms the one 
we proposed, the approach by Pang et al. (2020) relies on manually 
selecting key feature slices and segmenting regions of interest, 
which greatly increases the subjectivity and complexity of the 
classification process. Moreover, the features extracted by 
machine learning methods are selected from a fixed set, which 

TABLE 2 Ablation experiments.

Model Accuracy Recall Precision

ResNet 71.42% 72.73% 80.00%

ResNet + Module 1 74.29% 72.73% 84.21%

ResNet + Module 

1 + Module 2

85.71% 86.36% 90.48%

The best-performing results are highlighted in bold.

TABLE 3 Experimental results inserted by the Module 1 at different 
locations on the optimal model.

Feature map 
size at the 
Module 1 
insertion 
point

Accuracy Recall Precision

64 × 64 80.00% 81.82% 85.71%

32 × 32 85.71% 86.36% 90.48%

16 × 16 82.86% 81.82% 90.00%

8 × 8 74.29% 77.27% 80.95%

The best-performing results are highlighted in bold.

FIGURE 3

ROC curve.
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also presents limitations. The other studies based on machine 
learning methods mentioned above also suffer from these issues.

Some researchers have attempted to diagnose PD and MSA 
through deep learning methods, such as Huseyn (2020) and Rau 
et al. (2023). Among them, Huseyn (2020) proposed an innovative 
deep learning model, achieving an accuracy of about 88% in the 
classification task of PD and MSA, slightly higher than our 
proposed model’s accuracy of 85.71%. However, the 
aforementioned deep learning methods still rely on manually 
selecting key feature slices and segmenting regions of interest, 
which does not allow for fully automated classification and 
diagnosis of diseases. In addition, neurodegenerative diseases 
affect the entire brain of patients, and relying solely on local brain 
information within the regions of interest limits exploration of 
lesion features in other brain regions.

Compared to previous studies, 3D-CAM framework has 
achieved significant progress in the classification of PD and 
MSA. It no longer rely on manual selection of slices and regions 
of interest, successfully achieving fully automated classification. 
This method significantly reduces the investment of manpower 
and time. Additionally, by conducting direct analysis of global 
brain data instead of restricting to specific regions of interest, it 
enables the capture of more comprehensive feature information 
from the entire brain, leading to a significant enhancement in 
diagnostic accuracy and efficiency.

However, despite the promising results achieved by our approach, it 
is important to note some potential limitations. Firstly, although we have 
conducted our research using a large amount of data, the outcomes are 
still constrained by the current dataset. In the future, with the increase of 
data volume, we are expected to further optimize the model to obtain 
more reliable and comprehensive diagnostic results. Secondly, our study 
has focused solely on the classification tasks of PD and MSA, and 
applications to other neurological disorders have not been explored. 
Therefore, future research can further investigate the applicability of this 
framework in classifying other diseases.

In conclusion, our research has proposed an effective deep 
learning framework that offers a reliable solution for the classification 
of PD and MSA based on medical imaging, achieving satisfactory 
classification accuracy. This study offers strong support for early 
detection of neurodegenerative diseases and has broad prospect for 
clinical application. Additionally, our research provides new ideas 
and tools for the diagnosis and treatment of neurodegenerative 
diseases, and is expected to provide solid support for the future 
advancement of related fields.
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