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1 Introduction

Robot-assisted therapy is an effective treatment option for improving motor function

in patients with neurological injury such as stroke, spinal cord injury, and cerebral

palsy. Robot-assisted training facilitates improvements in motor performance necessary

for completing activities of daily living. Active robotic training that takes the user’s

voluntary effort (or intent) into account can achieve better outcomes compared to passive

training (Hu et al., 2009). Robots for active training are often driven by motion intents

extracted from surface electromyography (EMG) signals. Compared with conventional

proportional (Hu et al., 2009) or on-off (Hu et al., 2013) control strategies, myoelectric

pattern recognition (Lu et al., 2017b) has the advantage of simultaneously controlling

multiple degrees of freedom, an essential feature for increasing control of dexterity.

Unfortunately, despite the wide application of myoelectric pattern recognition in

prosthesis control in amputees, relatively few have used it in patients with neurological

injury, possibly because of the challenges associated with interference from spasticity.

Spasticity and other types of muscle “overactivity” including spasms, clonus, and repetitive

involuntary (spontaneous) motor unit activity associated with neurological injuries remain

obstacles to robot-assisted therapy. For example, due to finger flexor spasticity and its

associated involuntary activation, stroke survivors often flex their fingers during intended

finger extension attempts (Kamper and Rymer, 2001). Among various treatment options,

botulinum toxin therapy is often used and found to be effective at reducing spasticity.

Although the relation between botulinum toxin treatment and motor function recovery

is not clearly established (Ghasemi et al., 2013; Levy et al., 2019; Li et al., 2021),

botulinum toxin therapy has demonstrated to be able to adequately suppress finger flexor

spasticity and facilitate hand function in a subgroup of stroke survivors (Lee et al., 2018).

Furthermore, the effectiveness of combining robot-assisted therapy and botulinum toxin

treatment on motor function recovery has been reported (Gandolfi et al., 2019; Hung et al.,

2021).

In the following sections, we discuss some of the confounding effects of spasticity

(involuntary activity) and potential benefits of botulinum toxin treatment for facilitating

myoelectric pattern recognition robot-assisted stroke rehabilitation.
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2 Botulinum toxin treatment may
improve voluntary muscle onset
detection compromised by
involuntary motor unit activity

After a stroke, involuntary motor unit activity is often observed

at rest, particularly after a contraction, and may be interspersed

with voluntary activity. It is technically challenging to selectively

remove or reduce involuntary spikes using conventional signal

processing methods because both involuntary and voluntary spikes

have similar temporal and spatial characteristics. One common

strategy for detection of voluntary muscle activity onset is based

on amplitude measurements such as the root mean square or

mean absolute value. A data instant with amplitude greater than

a preset threshold is considered as the onset of muscle activity

(Lu et al., 2017a,b). However, a resting data segment contaminated

with involuntary discharges can be mistaken as active EMG and

falsely trigger the robot. Although the chance of false triggering can

be reduced by increasing the preset threshold, it may increase the

rejection rate of voluntary motions, especially when there is severe

muscle weakness.

Based on the observation that involuntary spikes sometimes

have relatively stable firing rates and amplitude patterns (likely

from the same motor units), several signal processing approaches

have been proposed to overcome their influence on muscle onset

detection (Zhang and Zhou, 2012; Liu et al., 2014a,b). These

methods have not been tested in practical implementation of

myoelectric control, due to some limitations. For example, sample

entropy was reported to be able to detect muscle onset even if

there are involuntary discharges (Zhang and Zhou, 2012). However,

it is still unclear how to determine the global tolerance for the

calculation of sample entropy in the case of real-time control.

Therefore, muscle onset detection strategies applied in robot-

assisted therapy are generally vulnerable to involuntary motor unit

discharges, especially in patients with muscle weakness. Related

to muscle onset detection, myoelectric pattern recognition is

designed to extract motion intents from data segments that contain

voluntary EMG signals. It is possible that involuntary motor unit

discharges (either at rest or after the execution of a motion) are

misclassified as voluntary motion intents. One strategy is to include

the rest condition as a pattern in the candidate patterns, which

are then recognized by the pattern recognition algorithm (Geng

et al., 2013). Such a strategy can also be interfered because time

domain (e.g., root mean square value) and frequency domain (e.g.,

mean and median power frequencies) features are sensitive to

involuntary discharges.

Given the above, botulinum toxin treatment is expected

to improve the performance of muscle onset detection due

to its effectiveness in reducing involuntary muscle activity.

Reliable muscle onset detection is essential for implementing

myoelectric control.

3 Botulinum toxin treatment may
improve classification performance

The myoelectric pattern recognition approach assumes that

surface EMG features are consistent for a given muscle activation

state associated with a particular task (motion intent) and different

from one task to another. Surface EMG signals generated by the

same motion intent in the presence or absence of spasticity may

differ (i.e., increased time-variability or decreased stability of the

EMG pattern). As a result, spasticity can degrade the performance

of myoelectric pattern recognition. Our previous study suggests

that EMG patterns extracted from post-stroke subjects are time-

variant, and such time-variation compromises online myoelectric

pattern recognition accuracy, whereas offline performance is less

sensitive (Lu et al., 2019). Recognition accuracy was found to be

less at low compared to moderate contraction strengths (Kopke

et al., 2020), probably because the proportion of EMG power from

involuntary discharges was higher at a low contraction strength. It

is noteworthy that real-time myoelectric pattern recognition relies

on EMG signals at the beginning of a motion intent (usually within

300ms). During this period, the contraction level is relatively

low and thus the performance of the muscle-machine interface

is more likely to be affected by spasticity. This is consistent with

our observation that the accuracy of real-time robot control (i.e.,

classification based on motion onset) was lower than the accuracy

of offline recognition (i.e., classification throughout a motion) (Lu

et al., 2019).

By reducing themuscle overactivity, botulinum toxin treatment

is expected to facilitate myoelectric pattern recognition. In a study

evaluating the effect of botulinum toxin injections on motor

performance in chronic stroke subjects, it was found that both

spasticity and muscle strength were reduced by the injections

while motor performance of the weakened spastic muscle remained

at similar levels before and after injections (Chen et al., 2020).

Therefore, botulinum toxin treatment is promising to improve

myoelectric pattern recognition performance for implementing

real-time robotic control in stroke patients. It is likely that stroke

patients with poor control of the robotic hand using myoelectric

pattern recognition may achieve better control after botulinum

toxin treatment.

4 Botulinum toxin treatment may
improve range of motion

Some stroke patients have limited range of motion (ROM) on

the affected side because of spasticity and contracture (Pandyan

et al., 2003; Ro et al., 2020). Individual patients may have

different combinations of spasticity and contracture (Lindberg

et al., 2009). A longitudinal follow-up study of stroke patients

using biomechanical measurements has suggested severe spasticity

preceding contracture formation (Plantin et al., 2019). Attempts

to stretch a patient’s joint beyond the passive ROM may be

resisted and painful. As a result, the robot ROM during therapy

is usually set within the patient’s passive ROM, although training

with a larger ROM is potentially more beneficial. Depending

on robot design, the ROM setting in a training task can be

either preset (Lu et al., 2017b) or determined by the patient

and the amount of assistance (Song et al., 2013). A patient may

reach a larger ROM in both designs than through voluntary

efforts (i.e., active ROM). Limb movements are primarily driven

by the patient’s voluntary muscle contraction within the active

ROM (Feldman and Levin, 2016), whereas assistance becomes

necessary or dominant beyond the active ROM. Botulinum toxin
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treatment (on its own or with other treatments) may increase

both passive and active ROM (Marciniak et al., 2017; Lee et al.,

2018; Picelli et al., 2019; Santamato, 2022; Trompetto et al.,

2023), due in part to suppression of spasticity and associated

involuntary activation of spastic muscles (Ro et al., 2020; Lindsay

et al., 2021). It is possible to achieve the full ROM or at least

enlarge the ROM of the robot in both passive and active training

tasks. Therefore, botulinum toxin treatment may help release

muscle from the restrictions of spasticity and contractures. This

release should allow for more effective robotic training driven

by myoelectric pattern recognition, leading to better recovery

outcomes in stroke patients.

5 Summary

By reducing spasticity (overactivity), botulinum toxin

treatment is expected to improve muscle onset detection for

myoelectric control, as well as the performance of myoelectric

pattern recognition for implementing real-time robotic control

in stroke patients. Increased range of motion through botulinum

toxin treatment may similarly create better conditions for

enhanced myoelectric pattern recognition. These potential

benefits indicate that combined botulinum toxin and myoelectric

pattern recognition robotic training may be a promising stroke

rehabilitation therapy.
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