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Using theta burst stimulation (TBS) to induce neural plasticity has played an 
important role in improving the treatment of neurological disorders. However, 
the variability of TBS-induced synaptic plasticity in the primary motor cortex 
prevents its clinical application. Thus, factors associated with this variability 
should be  explored to enable the creation of a predictive model. Statistical 
approaches, such as regression analysis, have been used to predict the effects 
of TBS. Machine learning may potentially uncover previously unexplored 
predictive factors due to its increased capacity for capturing nonlinear changes. 
In this study, we used our prior dataset (Katagiri et al., 2020) to determine the 
factors that predict variability in TBS-induced synaptic plasticity in the lower 
limb motor cortex for both intermittent (iTBS) and continuous (cTBS) TBS using 
machine learning. Validation of the created model showed an area under the 
curve (AUC) of 0.85 and 0.69 and positive predictive values of 77.7 and 70.0% 
for iTBS and cTBS, respectively; the negative predictive value was 75.5% for 
both patterns. Additionally, the accuracy was 0.76 and 0.72, precision was 0.82 
and 0.67, recall was 0.82 and 0.67, and F1 scores were 0.82 and 0.67 for iTBS 
and cTBS, respectively. The most important predictor of iTBS was the motor 
evoked potential amplitude, whereas it was the intracortical facilitation for cTBS. 
Our results provide additional insights into the prediction of the effects of TBS 
variability according to baseline neurophysiological factors.
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1 Introduction

Theta burst stimulation (TBS) modulates cortical excitability and 
induces cortical plasticity; these enhance motor functional recovery 
in patients with neurological disorders (Huang et al., 2005; Somaa 
et  al., 2022); however, inter-and intra-individual variability of 
TBS-induced plasticity prevents its clinical application (Terranova 
et al., 2018). Hence, to create a predictive model that may distinguish 
between responders and nonresponders to TBS according to the 
baseline neurophysiological status, it is necessary to examine the 
factors associated with this variability.

Previous meta-analysis has shown that individual differences in 
TBS effects on the upper limb motor cortex may be predicted based 
on the baseline amplitude of motor evoked potentials (MEP) elicited 
by transcranial magnetic stimulation (TMS) (Corp et  al., 2020). 
However, an effective model that can predict TBS-induced plasticity 
in the lower limb motor cortex has not yet been established. Notably, 
the lower limb representation within the motor cortex is positioned 
deeper than that of the hand. Moreover, the motor cortex layer is 
parallel to the sagittal plane, and the bilateral regions are close to each 
other (Huang et al., 2018). Hence, the factors that may predict the 
effects of TBS may also differ as the induction of electric fields by TBS 
varies between the leg and hand regions.

Despite our previous results, no significant neurophysiological 
factors that effectively classify responders and nonresponders to TBS 
of the lower limb motor cortex have been identified (Katagiri et al., 
2020). One difficulty contributing to this result may be attributed to 
the nonlinear interindividual variability observed in TBS-induced 
plasticity. Previous meta-analyses have demonstrated a nonlinear 
negative relationship between changes in MEP following TBS and 
amplitudes of MEP at baseline measured to 120% of the resting motor 
threshold (RMT) or 1 mV, which represents the MEP amplitude on 
the rising phase of the stimulus–response curve wherein a roughly 
linear increase with TMS intensity before intervention can be observed 
(Rossini et  al., 2015; Corp et  al., 2020). Using linear or logistic 
regression analysis, which is designed for capturing linear changes, 
prior studies have attempted to predict the effects of TBS (López-
Alonso et al., 2014; Corp et al., 2020; Katagiri et al., 2020). However, 
this analysis is limited in cases wherein nonlinear relationships must 
be addressed as it attempts to fit a linear model to the dataset (Ray, 
2019). Therefore, employing analytical techniques that can capture 
nonlinear variations is essential for developing models that may 
accurately distinguish TBS responders from nonresponders.

Supervised machine-learning methods for investigating large and 
complex datasets are novel approaches in natural science (Jordan and 
Mitchell, 2015; Vu et al., 2018; Albizu et al., 2020; Tozlu et al., 2020; 
Wessel et al., 2021). Machine learning can capture nonlinear changes, 
allowing for the prediction of the effects of noninvasive brain 
stimulation (NIBS) from data that cannot be captured by regression 
analysis, in contrast to linear relationships.

Employing nonlinear analysis through machine learning is a 
promising option for secondary analysis of our existing dataset 
(Katagiri et al., 2020). In the literature, associations between the effects 
of NIBS and neurophysiological parameters, including short-interval 
intracortical inhibition (SICI), intracortical facilitation (ICF), and the 
coefficient of variation of the MEP (MEP-CV), have been reported 
(Hordacre et al., 2017; Li et al., 2019; Katagiri et al., 2020). Additionally, 
the slope of the recruitment curve (RC) is a predictor of variability in 

the amplitude of the test MEP (Sarkar et al., 2022). By incorporating 
these factors, machine-learning techniques may effectively identify 
responders and nonresponders, subsequently complementing the 
traditional linear regression approach used in previous studies. In this 
study, the primary objective was to employ machine learning to our 
prior dataset for secondary analysis and to reveal the determining 
factors at baseline for each TBS response. Machine learning was used 
to create an optimized ensemble model for predicting TBS responses 
in the lower limb motor cortex.

2 Materials and methods

2.1 Subjects

This study enrolled 48 healthy participants who were recruited for 
a previous study (Katagiri et  al., 2020). The full details of the 
procedure, TBS setting, and electromyography results were reported 
in a previous study (Katagiri et  al., 2020). Responders and 
nonresponders were derived by two-step cluster analysis of the mean 
changes in MEP immediately after each TBS (Katagiri et al., 2020). 
We used the changes of MEP as the criterion for defining responders 
based on reports indicating that TBS application to M1 modulates the 
motor cortex, with MEP serving as the primary outcome measure of 
corticospinal excitability (Huang et  al., 2005). All participants 
provided written informed consent before participation. This study 
was approved by the ethics committee of the Faculty of Health Science, 
Juntendo University (approval number: 20-020), and was performed 
in accordance with the Declaration of Helsinki.

2.2 Data preprocessing and 
machine-learning modeling

To resolve the class imbalance within the dataset, synthetic 
minority oversampling technique (SMOTE) with a k-neighbor 
parameter set to 5 was employed. Additionally, the Pycaret library 
(version 3.1.0) was used to improve the procedural efficiency of our 
methodology. This library streamlined the implementation of diverse 
machine-learning models, resulting in a systematic and 
expedited workflow.

During the machine-learning modeling phase, the training 
dataset was meticulously configured by allocating 70% of the data for 
training (train_size). Using the normalized parameter, feature 
standardization was performed. Elimination of highly collinear 
features depended on binary determination based on a specific 
threshold. Additionally, preservation of label equilibrium during data 
splitting was ensured.

Our methodology incorporated k-fold cross-validation, with the 
parameter fold indicating the number of folds employed. This 
methodological care was created to refine the model for optimal 
accuracy. The integration of Pycaret not only facilitated seamless 
comparisons among multiple machine-learning models but also 
enabled the construction of an optimized ensemble model, with 
classifiers encompassing decision trees, random forest, gradient 
boosting, support vector machine, and k-nearest Neighbors.

The performance of the model was evaluated using the area under 
the curve (AUC), confusion matrix, and determination of feature 
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importance, providing insights into the model’s efficacy 
and robustness.

Incorporating Pycaret into our procedural framework streamlined 
the machine-learning pipeline, ensuring efficiency without 
compromising the stringency of model evaluation. This combination 
of sophisticated techniques and tools remarkably enriched the depth 
and breadth of our analytical approach (Moharekar et  al., 2022; 
Katsuki et al., 2023).

To evaluate the performance of the learning models, the following 
metrics were obtained in this study. A score approaching 1 indicated 
a higher performance.

AUC: The receiver operating characteristic (ROC) curve shows 
the trade-off between the model’s true positive and false positive rates. 
AUC represents the area under the ROC curve, with a higher AUC 
value suggesting superior model performance.

Accuracy: Accuracy reflects the proportion of correctly classified 
instances among all predictions and is calculated as (True Positives + 
True Negatives)/Total Data.

Precision: Precision indicates the proportion of instances 
predicted as positive that were indeed positive and is calculated as 
True Positives/ (True Positives + False Positives).

Recall: Recall represents the proportion of actual positive samples 
correctly identified as positive by the model as calculated as True 
Positives/ (True Positives + False Negatives).

F1 Score: The F1 Score is the harmonic mean of precision and 
recall and is calculated as 2 (Precision * Recall)/(Precision + Recall).

The results of these metrics will contribute to a comprehensive 
understanding of the learning models’ diagnostic efficacy. For this 
study, the learning model with the highest performance across all 
metrics was adopted.

To predict changes in motor cortex excitability after TBS, 
we assessed SICI, ICF, slope of RC, and MEP-CV. As inhibitory or 
facilitatory interneurons play an important role in TBS-induced 
plasticity of the cortical excitability of stimulated regions (Li et al., 
2019), we hypothesized that excitability by intracortical inhibition or 
facilitation before TBS may predict the interindividual variability of 
TBS-induced corticospinal excitability. We then applied a subthreshold 
conditioning paired-pulse paradigm to test SICI and ICF (Kujirai 
et al., 1993). The interstimulus intervals (ISIs) were set at 2.5 ms (SICI) 
and 10 ms (ICF), with 15 trials being recorded for each ISI and test 
stimulation. An ISI of 2.5 ms was selected to avoid mixing different 
SICI mechanisms (Fisher et al., 2002).

To explore the predictive factors of response to TBS, an RC was 
generated. TMS intensities increased by 20% per step, from 80 to 
200% of the active motor threshold. According to the data points, 
regression plots were fit to the approximately linear part of the RC, 
and the slope of the RC, which reflects the gain in MEP amplitude 
with increasing stimulus intensity, was then calculated (Hardwick 
et  al., 2014). Proton magnetic resonance spectroscopy showed a 
positive correlation between slope and cortical glutamate levels in the 
motor cortex, suggesting an association between glutamatergic 
neurotransmission and corticospinal excitability (Stagg et al., 2011; 
Rossini et al., 2015).

Additionally, we  calculated the MEP-CV as follows: 
MEP-CV = standard deviation (SD)/mean peak-to-peak MEP 
amplitude. MEP-CV is reportedly associated with the response to 
cTBS in the hand motor cortex area (Hordacre et al., 2017). Hence, for 
all TMS measurements, 15 stimuli were delivered every 5 s at each 

time point in pseudorandom timing. Raw waveforms wherein muscle 
contractions over 10 μV were mixed were rejected and remeasured. 
Considering the amplitude variability, the first waveform was removed 
from all TMS tests. Then, waveforms that exceeded ±2 SD, as 
calculated from the amplitudes of 14 waveforms, were removed.

Furthermore, International Physical Activity Questionnaire 
(iPAQ) was administered to each participant and incorporated into 
the analysis to evaluate physical activity factors. This decision was 
informed by prior research indicating that the routine physical activity 
level influences the efficacy of NIBS (Cirillo et al., 2009).

3 Results

3.1 Interindividual variability in TBS 
response

Based on our research (Katagiri et  al., 2020), two-step cluster 
analysis identified two clusters for both iTBS and cTBS. One cluster 
aligned with findings from a prior investigation on the effects of each 
TBS on the upper limb primary motor cortex (Huang et al., 2005), 
whereas the other exhibited either no effects or had effects in the 
opposite direction. We categorized the cluster demonstrating motor 
cortex excitability modulation similar to that in previous studies as 
“responders,” whereas the cluster that exhibited inconsistent 
modulation was the “nonresponders” (López-Alonso et al., 2014).

Regarding our previous report (Katagiri et  al., 2020), 27% of 
participants (13/48) showed a significant increase in MEP amplitude 
at Post-0 of the iTBS protocol, while 63% (30/48) showed a significant 
decrease in MEP amplitude after the cTBS protocol. Furthermore, 
73% of the participants (35/48) were classified as nonresponders to 
iTBS, while 38% (18/48) were nonresponders to cTBS. Moreover, 21% 
of the participants (10/48) were identified as responders to both TBS 
protocols. The mean percentage of baseline MEP (SD) for each cluster 
immediately after TBS was 125.5% (16.4%) for responders to iTBS, 
104.1% (27.4%) for nonresponders to iTBS, 79.4% (13.5%) for 
responders to cTBS, and 106.4% (15.2%) for nonresponders to 
cTBS. The normalized MEP amplitudes in iTBS responders were 
significantly higher than those in iTBS nonresponders at Post-0 
(p < 0.001). Additionally, the normalized MEP amplitudes in cTBS 
responders were significantly lower than those in cTBS nonresponders 
at Post-0 (p < 0.001).

3.2 Predictions of interindividual variability 
in the TBS response

The learning models demonstrated excellent performance on the 
iTBS and cTBS datasets. In both models, the Extra Tree model 
emerged as the best learning model. For the Extra Tree model, 
optimization was performed by maximizing AUC, and the evaluation 
metrics at the optimized points are presented in Table 1. Notably, iTBS 
exhibited superior performance.

The results emphasize that Extra Tree models were optimized 
based on AUC considerations. The ROC curves and corresponding 
AUC values for the performance of the Extra Tree model on each 
dataset are shown in Figure 1. With the AUC as the optimization 
metric, the resulting AUCs were 0.69 for cTBS and 0.85 for iTBS.
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The confusion matrices that show the response of the test data for 
the two Extra Tree models are shown in Figure 2. The true positive 
rates were 77.7 and 70.0%, whereas the true negative rates were both 
75.5% when applied to unknown data not used for training.

The importance of each feature in label classification is shown in 
Figure 3. For cTBS, the most important feature, as indicated by ICF, 
was the excitability of intracortical neurons mediating the primary 
motor cortex. Conversely, for iTBS, the most important feature was 
the MEP amplitude, which was an index of excitability in the 
corticospinal pathway. In both learning models, variables, such as 
activity levels from the iPAQ, and information from categorical 
variables, such as gender or foot dominance, provided limited insights.

4 Discussion

To the best of our knowledge, this study is the first to predict the 
effects of TBS on cortical excitability in the lower limb motor cortex 
using a machine-learning model. Our results show that the effects of 
iTBS on the lower limb motor cortex are based on the MEP amplitude 
and degree of intracortical excitability, whereas those of cTBS are 
based on the degree of ICF and SICI. These findings suggest the 
potential use of machine learning to assist decision making regarding 

the application of TBS to the lower limb motor cortex in patients with 
neurological disorders.

4.1 Differences in the prediction of 
machine-learning models and statistical 
analysis

Logistic regression analysis has been used to predict the variability 
in the TBS effects on the lower limb motor cortex (Katagiri et al., 
2020), but no significant factors were identified. In contrast, this study 
employed machine learning using the Extra Trees model, allowing for 
the exploration of multiple predictors. Furthermore, by using a small 
dataset that was not used for training, our machine-learning algorithm 
allowed Extra Trees to identify TBS responders and nonresponders 
with >70% accuracy according to the baseline neurophysiological 
characteristics. To the best of our knowledge, no studies have also used 
machine-learning methods incorporating baseline neurophysiological 
factors as features to predict the variability of MEP changes 
following TBS.

Logistic regression relies on the assumption of linearity in the logit 
for continuous variables (Stoltzfus, 2011). Meanwhile, machine-
learning methods, including Extra Trees, effectively capture nonlinear 
relationships and interactions (Nusinovici et al., 2020). The results of 
this study show that by comprehensively capturing nonlinear 
neurophysiological relationships, Extra Trees can identify influences 
that logistic regression analyses may miss. This also suggests that 
machine learning could help interpret neurophysiological data, 
revealing factors of TBS effects that traditional statistical methods may 
not fully capture. The exploration of machine learning for predicting 
MEP variability after NIBS is a novel approach in this field of study.

TABLE 1 The table depicits the Accuracy, Precision, Recall, and F1 scores 
for each TBS’s Extra Trees model.

Accuracy Precision Recall F1

iTBS 0.762 0.818 0.818 0.818

cTBS 0.722 0.667 0.667 0.667

The comprehensive metrics showcase superior results for the iTBS.

FIGURE 1

Receiver operating characteristic curves for the two types of theta burst stimulation (TBS) using machine-learning models. In both cases, the Extra Tree 
model showed the best performance, and learning optimization was performed using the area under the curve (AUC) as the optimization metric. The 
results showed an AUC of 0.85 and 0.69 for iTBS and cTBS, respectively.
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4.2 Differences in predictors of variations 
in TBS patterns

In the iTBS condition, the MEP amplitude was identified as a 
crucial predictive factor, and the AUC of the model was good. In 
previous studies, MEP amplitude has been identified as an iTBS 
predictive factor, indicating that more significant effects would 
be associated with smaller amplitudes (Corp et al., 2020; Leodori et al., 
2021). Small amplitudes might imply facilitatory synaptic activity 
reduction on pyramidal neurons. In addition, Leodori and colleagues 
reported that beta oscillations, assessed using electroencephalography 
(EEG) are predictive factors also (Leodori et al., 2021). According to 
the metaplasticity theory, the plasticity of a neuron depends on its 

initial functional state (Suppa et al., 2016), indicating that neuronal 
oscillatory activity could influence individual responses to TMS. The 
prestimulus beta neural oscillations reportedly modulated test 
TMS-induced MEP amplitudes (Mäki and Ilmoniemi, 2010; Hussain 
et al., 2019). These findings suggest that the initial functional state of 
motor cortical facilitatory synaptic activity on the motor cortex might 
impact the subsequent iTBS effects.

Conversely, ICF was identified as a contributing factor in 
cTBS. However, it is essential to note that the AUC of the model was 
poor. The low AUC value could be attributed to the unclear origin of 
ICF and the insufficiency of predictive factors during creation of cTBS 
model. ICF is thought to reflect the activation of glutamate mediated 
N-methyl-d-aspartate excitatory interneurons in the motor cortex, 

FIGURE 2

Confusion matrix for the employed machine-learning model (Extra Trees) on the test data. Both models demonstrated relatively accurate classification 
of unknown data.

FIGURE 3

The importance of features in the learning of each model was assessed. The following features were used in the analysis: MEP amplitude, intracortical 
facilitation (ICF), short-interval intracortical inhibition (SICI), experiment time, the difference between resting and active motor thresholds (MT 
difference), coefficient of variation of MEP (MEP-CV), slope of the recruitment curve (RC), active motor threshold (AMT), International Physical Activity 
Questionnaire (IPAQ) scores, sex, and dominant leg. For iTBS, the importance of features associated with corticospinal excitability was emphasized. For 
cTBS, features related to intracortical excitability, including ICF and SICI, were highlighted as important.
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though the detailed mechanisms remain elusive (Rossini et al., 2015). 
It is indicated that ICF conditioning TMS specifically facilitates the 
P60 of TMS-evoked EEG potentials (Cash et  al., 2017). The 60 
components are linked to glutamatergic neurotransmission, mainly 
localized in the primary somatosensory cortex (Ahn and Fröhlich, 
2021; Belardinelli et al., 2021). These findings imply that the state of 
pre-existing glutamatergic neural components within the 
sensorimotor cortex might be crucial for subsequent cTBS effects.

4.3 Differences in predictors of TBS to the 
upper and lower limb motor cortex

Similar to our findings with iTBS application on the lower limb 
motor cortex, a meta-analysis on the effects of iTBS on the upper limb 
motor cortex revealed that the baseline MEP amplitude, age, muscle, 
and time of day may predict MEP changes after TBS (Corp et al., 2020). 
Additionally, the baseline MEP amplitude and time point predicted the 
MEP response following cTBS (Corp et al., 2020). Meanwhile, our 
study emphasized the significance of indicators reflecting intracortical 
excitability such as SICI and ICF, implying that inhibitory or facilitatory 
interneurons play important roles in TBS-induced plasticity in 
stimulated brain regions (Suppa et al., 2016; Li et al., 2019). Our initial 
research showed significant changes in SICI for both iTBS and cTBS 
applications to the lower limb motor cortex (Katagiri et al., 2020). 
Notably, a previous meta-analysis did not provide definitive conclusions 
on the long-term effects of TBS on SICI or ICF (Chung et al., 2016). 
The previous study by Di Lazzaro et  al. (2001) suggests potential 
contributions from anatomical distinctions between the upper and 
lower limb motor cortices to diverse SICI circuit activation patterns. 
The conditioning TMS pulse of SICI appears to target distinct cortical 
layers in the upper and lower limb cortices due to I-wave composition-
related differences (Di Lazzaro et al., 2001). These results suggest a 
potential difference in the origin of inhibition between the lower and 
upper limb motor cortices, and the SICI effects could potentially 
contribute to the observed discrepancy between our results and those 
of a previous study (Corp et al., 2020).

4.4 Clinical implications

According to the baseline neurophysiological characteristics of 
healthy participants before intervention, the Extra Trees model 
accurately classified responders to TBS. Interventions for post-stroke 
motor dysfunction in the upper and lower limbs using TBS are 
currently based on interhemispheric competition models (Chieffo 
et al., 2016; Huang et al., 2022; Vink et al., 2023). In the future, these 
models may improve post-stroke paralysis by customizing iTBS and 
cTBS to an individual’s responsiveness.

4.5 Limitations

Recognized contributors to plasticity after NIBS, including 
genetics, gender, and neural circuitry anatomy (Suppa et al., 2016; 

Huang et al., 2017), were not considered in our analysis, resulting in a 
notable limitation (Suppa et al., 2016; Huang et al., 2017). Future 
studies should address this limitation by including these important 
factors and more thoroughly examining the complex influences on 
neurophysiological outcomes particularly in the context of 
transcranial brain stimulation.

The study’s exclusive focus on healthy participants introduced 
a limitation concerning the generalizability of findings to 
individuals with specific neurological disorders such as lower limb 
paralysis. Additionally, the effects of NIBS may manifest differently 
in diverse populations (Huang et  al., 2017; Ghasemian-Shirvan 
et  al., 2020; Baharlouei et  al., 2023). Therefore, caution should 
be  observed when extrapolating our results to individuals with 
neurological disorders.

This study had a small sample size, which could limit the accuracy 
of the results. It only included 48 participants, indicating that this 
study was underpowered. However, we attempted to overcome this 
limitation by implementing analytical methods, such as random 
sampling and SMOTE. This study was a preliminary exploration that 
established the groundwork for future investigations targeting 
patients with central nervous system disorders. Subsequent studies 
will aim to validate the predictive factors identified in this study for 
effective outcome prediction.

4.6 Conclusion

Our results show that changes in cortical excitability after iTBS to 
the lower limb motor cortex may be  accurately predicted using 
machine learning, whereas cTBS might be  less precise. Predictive 
factors include corticospinal excitability for iTBS and intracortical 
excitability for cTBS. These findings suggest that the effects of TBS on 
the lower limb motor cortex are influenced by changes in cortical 
interneuron activity, which may vary depending on the TBS pattern. 
The findings also provide valuable insights into the diverse individual 
responses to TBS within the lower limb motor cortex while proposing 
solutions for interindividual variability. Finally, these results should 
contribute to the future application of TBS in the rehabilitation of 
patients with neurological conditions affecting the lower limbs.
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Glossary

AMT active motor threshold

AUC area under the curve

cTBS continuous theta burst stimulation

EEG electroencephalography

ICF intracortical facilitation

I-wave indirection wave

ISI interstimulus interval

iTBS intermittent theta burst stimulation

MEP motor evoked potential

MEP-CV coefficient of variation of motor evoked potential

NIBS noninvasive brain stimulation

RC recruitment curve

RMT resting motor threshold

ROC receiver operating characteristic

SICI short-interval intracortical inhibition

SMOTE synthetic minority oversampling technique

tDCS transcranial direct current stimulation

TBS theta burst stimulation

TMS transcranial magnetic stimulation
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