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Background: Automatic segmentation of corneal stromal cells can assist

ophthalmologists to detect abnormal morphology in confocal microscopy

images, thereby assessing the virus infection or conical mutation of corneas,

and avoiding irreversible pathological damage. However, the corneal stromal

cells often su�er from uneven illumination and disordered vascular occlusion,

resulting in inaccurate segmentation.

Methods: In response to these challenges, this study proposes a novel approach:

a nnUNet and nested Transformer-based network integrated with dual high-

order channel attention, named U-NTCA. Unlike nnUNet, this architecture allows

for the recursive transmission of crucial contextual features and direct interaction

of features across layers to improve the accuracy of cell recognition in low-

quality regions. The proposed methodology involves multiple steps. Firstly,

three underlying features with the same channel number are sent into an

attention channel named gnConv to facilitate higher-order interaction of local

context. Secondly, we leverage di�erent layers in U-Net to integrate Transformer

nested with gnConv, and concatenate multiple Transformers to transmit

multi-scale features in a bottom-up manner. We encode the downsampling

features, corresponding upsampling features, and low-level feature information

transmitted from lower layers to model potential correlations between features

of varying sizes and resolutions. These multi-scale features play a pivotal role in

refining the position information and morphological details of the current layer

through recursive transmission.

Results: Experimental results on a clinical dataset including 136 images show

that the proposed method achieves competitive performance with a Dice score

of 82.72% and an AUC (Area Under Curve) of 90.92%, which are higher than the

performance of nnUNet.

Conclusion: The experimental results indicate that our model provides a cost-

e�ective and high-precision segmentation solution for corneal stromal cells,

particularly in challenging image scenarios.
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1 Introduction

Corneal stroma layer comprises collagen fibers, accounting

for 90% of the overall thickness of cornea. The corneal stroma

cells, as the major cell type of the stroma, produce proteins that

provide structure to the stroma and maintain the homeostasis

of cornea (Barrientez et al., 2019). The injury of stromal cells

tend to cause corneal irreversible damage (Barrientez et al., 2019).

Previous studies have shown that the segmentation of corneal

stromal cells provide the possibility to quantify cell density and

othermorphological changes (Arıcı et al., 2014). This process assists

ophthalmologists in intuitively acquiring geometric variations to

support clinical analysis (Al-Fahdawi et al., 2018). Consequently,

it enables the identification of deformities or erosion caused

by viruses, helping prevent irreversible pathological damage that

could lead to significant visual impairment or even blindness

in patients (Subramaniam et al., 2021). In particular, when

compared with healthy corneas, keratoconus presents a conical

protrusion and the stroma becomes significantly thinner (Lagali,

2020). Thus, the segmentation of stromal cells and the subsequent

morphological measurements are helpful for ophthalmologists to

judge the severity and progress of the disease.

The utility of automatic cell segmentation approaches

significantly enhances the efficiency of ophthalmologists, thereby

reducing the dependency on highly experienced experts (Shang

et al., 2022). Various widely employed algorithms, including

K-means clustering (Yan et al., 2012), edge detection (Pan et al.,

2015), and watershed (Sharif et al., 2012) have been utilized to

achieve automatic cell segmentation. Among them, watershed

stands out due to its ability to identify challenging regions

by incorporating distance transform, variance filtering, and

gradient analysis (Lux and Matula, 2020). Dagher and El Tom

(2008) proposed a hybrid snake-shape parameter optimization

by combining the watershed algorithm with active contour,

employing region merging and multi-scale techniques to alleviate

issues associated with insufficient segmentation. Al-Fahdawi et al.

(2018) employed Fourier transform to mitigate image noise and

combined watershed for endothelial cell boundary detection.

However, it is important to note that watershed approaches are

prone to cause over-segmentation and often require extensive

reliance on empirically tuned parameter settings.

Recent advancements in deep learning techniques provide

promising possibilities for achieving more accurate cell

segmentation performance. Many researchers have exploited

representative networks including U-Net (Ronneberger et al.,

2015), SegNet (Badrinarayanan et al., 2017), and DeepLab (Chen

et al., 2017) to segment and quantify cell morphological changes.

Fabijańska (2018) trained the U-Net to differentiate pixels

surrounding cell boundaries and skeletons, finally obtain the

segmenation results via binarizing a boundary probability

map. Vigueras-Guillén et al. (2019) introduced a local sliding

window in UNet and generated probability labels to enhance the

contrast between positive samples and background. Subsequently,

they proposed a plug-and-play attention mechanism called

feedback non-local attention to assist in inferring occluded cell

regions (Vigueras-Guillén et al., 2022). Given the challenges

of boundary discontinuity encountered when neural networks

predict ambiguous cell boundaries, some studies considered

combining the advantages of CNN and watershed. Lux

and Matula (2020) integrated label-controlled watershed

and convolutional networks to segment densely distributed

cells, incorporating segmentation function criteria to describe

object boundaries.

The CNN-based models are suitable for segmenting large cells,

but for cells exhibiting artifacts within their bodies, complex post-

processing algorithms are essential for separating cells that are

in proximity, or for reconstructing fragmented cells to form a

complete cellular structure. On the other hand, the segmentation

performance of CNN decreases when facing cells of different

sizes within the same field of view. With the popularity of

Transformer (Vaswani et al., 2017), some studies have introduced

Transformer with a global perspectives to support the segmentation

process (Zhang et al., 2021; Zhu et al., 2022). Zhang et al.

(2021) proposed a multi-branch hybrid transformer (MBT-Net)

based on edge information, which utilized Transformer and

residual connection to establish long-term dependencies between

space and channels. Additionally, it also incorporated body edge

branches to provide edge position. Zhu et al. (2022) designed a

domain adaptive Transformer for atomy aware landmark detection

for multi-domain learning. Oh and Jeong (2023) introduced a

diffusion model-based data synthesis method aimed at mitigating

variance among nuclear classes in tasks related to cell nucleus

segmentation. To alleviate the learning bias caused by artificially

designed disturbances in semi-supervised models, Zhou et al.

(2023) proposed a consistency training method based on wavelet

to address low-frequency and high-frequency information. Wang

et al. (2023) introduced a two-stage knowledge distillation method

designed to prevent the accumulation of errors resulting from

noise artifacts.

Previous methods frequently employed Transformer to model

dependency relationships among features within the layer of

same size. Simultaneously, a feature within a specific layer only

interacts directly with its adjacent feature layers, making it

difficult to transmit hierarchical difference information of features.

This poses a challenge to integrating multi-scale information

from non adjacent layers at the macro scale. Our method

leverages Transformer to model the hierarchical relationships

among features across different layers, with the aim of reducing

the deviation and loss of edge pixels caused by interpolation

and sampling between features in different layers. We recursively

convey context information across different feature layers within

the structure of nnUNet. This approach allows for the acquisition of

high-dimensional semantic relationships between pixel points and

their neighbors from various perspective. Our contributions can be

summarized as follows:

• We propose a Transformer-based network called U-NTCA

to segment corneal stromal cell. It integrates with dual

high-order channel attention and allows for the recursive

transmission of crucial contextual features to better preserve

detailed cell information.

• We introduce a high-order channel attention mechanism

that extends the spatial interaction among pixels from

second-order to higher-order. This procedure enables feature
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FIGURE 1

Example of di�erent types of corneal stromal cells.

interaction within a low computational complexity by

recursively increasing the channel width.

• We design a novel transformer-based method that combines

a channel attention to generate multi-scale features. This

facilitates direct feature transmission across non-adjacent

layers in the network.

2 Dataset

All study subjects were scanned with a laser scanning corneal

confocal microscopy HRTIII (Heidelberg Engineering, Heidelberg,

Germany) at the affiliated Eye Hospital of Wenzhou Medical

University. The study adhered to the tenets of the Declaration

of Helsinki, and was approved by the Institutional Review Board

of the Affiliated Eye Hospital of Wenzhou Medical University.

All the participants provided a written informed consent after

receiving an explanation of the risks/benefits of the study. The

dataset utilized for this study on corneal stromal cells includes

136 images, each with a resolution of 384 × 384. The training

dataset contains 96 images, while the testing dataset consists of

40 images. The segmentation labels of this dataset was manually

annotated by one senior ophthalmologist using the ITK-SNAP

software. During training, the data augmentation operations used

in the training images include rotation, increasing contrast, adding

noise, translation, and flipping. This dataset comprises corneal

stromal cells source from three conditions: healthy corneas (named

as “normal”), corneas with keratoconus (named as “cone”), and

corneas that have been eroded by viruses (named as “HSK”). In

general, these cells are presented in three different types. The first

type exhibits a clear field of view and clear cell structure; The second

type shows that the blood vessels in the background traverse the

majority of visual field, causing partial occlusion of some corneal

TABLE 1 The distribution of di�erent types of cells in the test set.

Occlued
cell

Blurred
cell

Clear
cell

All fields
of view

Normal

cell

4 4 16 24

Cone 2 2 6 10

HSK 4 0 2 6

All cell

types

10 6 24 40

cells. The third type of image has severe blurriness, resulting in

unclear cell edge morphology. Figure 1 shows typical examples of

the corneal cell dataset. Table 1 provides a detailed description of

the distribution of cells of different types in the test set.

3 Methodology

3.1 nnUNet

In medical image segmentation, researchers often develop

specific algorithms tailored to address distinct research tasks and

solve targeted problems. This practice, however, can result in

weak generalization and robustness for general models. nnUNet is

proposed to specifically solve such issues of semantic segmentation

tasks in medical imaging. It places a greater emphasis on aspects

such as pre-processing, training, and post-processing procedures,

with a primary focus on images. By systematically modeling various

configuration strategies as a set of fixed parameters (learning rate

and batch size), it proves adaptable to a range of medical image

segmentation tasks.
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The network architecture of nnUNet is the same as that of

UNet, following the encoder-decoder paradigm, which comprises

a series of dense convolutional blocks. Skip connections are

employed between the encoder and decoder. By concatenating the

generated features for use as complementary information, efficient

feature mapping occurs between internal blocks, establishing

convolutional and nonlinear connections. It is noteworthy that

nnUNet, aiming to enhance stability and adaptability during

training while avoiding limitations imposed by batch size,

substitutes the original ReLU activation functions in UNet

with leaky ReLUs. In addition, it replaces the more popular

batch normalization with Instance normalization. This adaptation

improves nnUNet with a stronger adaptive capability, effectively

resolving training instability stemming from variations in imaging

methods, sizes, and voxel spacing. This enables nnUNet to be

employed across a variety of scenarios.

3.2 U-NTCA network

Considering nnUNet’s outstanding data processing capability

and parameter adaptive adjustment, we utilize it as a backbone

network and enhance it to improve information interaction

between pixels and the utilization of feature information. Figure 2

shows the overall structure of the proposed U-NTCA network.

First, to highlight the relationship between neighboring pixels, our

focus is on the three adjacent feature layers in the UNet. For the

three feature layers with the same channel, we conduct feature

dimension transformations on their heights and widths. The

transformed outputs are used as inputs for the proposed gnConv

channel attention, facilitating higher-order operations. This process

fosters efficient interaction between neighboring pixel regions.

Subsequently, the enhanced features are integrated into the current

aggregated features, which are then fed into the nested transformer

to aid in generating full-resolution features. Additionally, the

recursive transfer of underlying feature information mitigates

ambiguity and reduces information loss resulting from the

sampling process.

3.2.1 gnConv high order attention mechanism
To enhance the interactive capabilities local context across

varying resolutions, we introduce gnConvmodule (Rao et al., 2022),

which achieves explicit higher-order spatial interaction strategies

within neighborhood. gnConv is a module that implements

channel attention through a combination of gated convolution

and recursive strategy. It consists of three components: standard

convolution, linear projections, and element-wise multiplications.

It inherits the translation equivariant of standard convolution,

thereby introducing inductive biases and avoiding the asymmetry

arising from local attention.

Unlike the conventional approach of using gnConv to directly

interact with attention, we perform a morphological operation on

feature x0 ∈ RH0×W0×C0 . This involves reshaping the dimensions

of width and height x ∈ RH×W×C, where H = W =
√
C0

and C = H0 × W0. This strategy aims to achieve high-order

interaction between global pixels across diverse fields of view. It

enables the network to learn the morphological characteristics and

distribution patterns from varying perspectives and directions. For

transformed feature x, we obtain mapping feature set φin (x) and

feature auxiliary set
{

qk
}n−1

k=0
with rich information embedding

through the application of operation φin. The operation increases

the feature dimension by two times, and then divides the expanded

dimension according to rule Ck. It can be written as

[p
HW×C0
0 , p

HW×C0
0 , ..., q

HW×Cn−1
n−1 ]

= φin (x) ∈ RHW×
(

C0+
∑

0≤k≤n−1 Ck

)

Subsequently, recursively execution of gated convolution is

performed, introducing the interaction between adjacent features

p0 and q0 through element-wise multiplications. This process

achieves a spatial mixing input function with adaptive self-attention

via

pk+1 = fk
(

qk
)

⊙ gk
(

pk
)

, k = 0, 1,..., n− 1

The channel dimension of each order can be written as

Ck =
C

2n−k−1
, 0 ≤ k ≤ n− 1

Unlike the way that Transformer achieves spatial global

interactions through mixing space tokens, gnConv incrementally

increases the channel width. It utilizes global computation of

convolution and fully connected layers to expand the spatial

interaction between pixels, progressing from second-order to

higher-order interactions within less complexity.

3.2.2 Transformer nested with channel attention
mechanism

In nnUNet, we transmit the features processed by gnConv

module as part of multi-scale features to Transformer. For

downsampling image xd ∈ RH×W×d and upsampling image xu ∈
RH×W×d, we flatten them to generate features xd ∈ Rd×HW and

xu ∈ Rd×HW . We utilize the gnConv to encode xu and generate

gn (xu) that interacts with neighboring pixels in a high-order space.

Then, xu, xd, and gn (xu) are sent to encoder to generate enhanced

x̂u through self-attention.

On one hand, the upsampling feature xu is sent into the

encoder, accompanied by its corresponding feature gn (xu) that has

undergone spatial point multiplication to facilitate higher-order

interactions. This prompts the network to devote more attention

to the decisive channels, implicitly reflecting the position of cells;

On the other hand, x̂u could bring more semantic information

by fully interacting with the multi-scale features xc transmitted

from lower layers in decoder, guiding xc to learn the constraint

relationship between pixels and their neighbors from multi-scale

perspectives. This aids in the inference of missing or incorrect cell

regions caused by rough interpolation process. The specific formula

for the attention mechanism is given as follows

Attention(Q,K,V) = softmax

(

QKT

√

dk

)

V
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FIGURE 2

Schematic diagram of the proposed U-NTCA network.

The upsampling feature xu, downsampling feature xd, and

enhanced feature x̂u are encoded into x̂u. x̂u contains information

from higher-order pixel and their highly reliable distribution.

At the same time, xu also benefits from their attention

interaction, creating conditions for comprehensive learning of the

morphological structure and layout information of corneal cells in

original image. The formula is written as follows

x̂u = xu + Attention
(

xu, xd, g
n (xu)

)

Subsequently, the joint multi-scale feature xc transmitted

from lower layers is updated to x̂c through the cross-attention

mechanism. x̂u and xd collaboratively guide x̂c in learning the

potential mapping relationship between low-resolution targets and

current targets of different scales. There is a size difference between

the concatenated features transmitted from the bottom layer and

the current layer features. We further feed the concatenated

features transmitted from the bottom layer into the decoder to

interact with the current layer features, exploring the implicit

correspondence between downsampling and upsampling features

between adjacent layers. We pass the concatenated multi-scale

features as a medium for direct interaction among different

layers. This approach facilitates the discrimination capability of

ambiguous pixels. The formula is given as

x̂c = xc + Attention
(

xc, x̂u, xd
)

The x̂c generated by xc after cross attention is fed into the FFN

(feedforward neural network) in residual form, which is a linear

neural network with the following formula

FFN
(

x̂c
)

= max
(

0, x̂cW1 + b1
)

W2 + b2

The process of generating x̃c through a FFN is written as

x̃c = x̂c + FFN
(

x̂c
)

We fuse the advanced multi-scale feature x̃c generated by

decoder with upsampling feature of current layer in proportion to

form x̃u, providing more low-level local contextual information to

the upsampling feature xu that has information loss. x̃u is given by

x̃u = αxu + (1− α) x̃c

3.2.3 Recursive transmission of multi-scale
features in U-shaped structures

We recursively implement the nested mechanism consisting

of gnConv and Transformer to deliver multi-scale features

from different layers. Figure 3 displays the strategy of recursive

transmission. In the process of generating upsampling features at

full resolutions, we need to consider cascaded features transmitted

from lower layers.

For the upsampling feature of the i + 1 layer, its multi-scale

feature xi+1
u consists of the downsampling feature xi+1

c of the i layer,

the advanced encoding feature xiu, the decoding multi-scale feature

xi
d
, x̃ic and gn

(

xiu
)

. Thus, xi+1
c (i > 1) is formulated as

xi+1
c = H

(

xid, x̂
i
u, x

i
c, g

n
(

xiu
))

, i = 2, 3, 4

For the lowest level features, the composition of its multi-scale

features is illustrated in the following formula

xi+1
c = H

(

xid,φ
(

xiu
)

,ϕ(xiu), g
n
(

xiu
))

, i = 1
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FIGURE 3

Schematic diagram of recursive transmission strategy.

with φ
(

xiu
)

and ϕ
(

xiu
)

denote the intermediate steps in gnConv.

Although both gnConv and nested Transformer leverage

attention to improve cell pixel segmentation, they have inherent

distinctions: (1) gnConv attention operates at a high-dimensional

level, facilitating information exchange among different channels.

It processes a feature internally and allocates more attention to

pivotal channels to obtain a optimal combination. This method

enhances the ability to distinguish pixel positions and effectively

filtering out background interference; (2) To enhance the network’s

ability to infer positional relationships among global features and

similarities between features, the Nested Transformer are inserted

at the bottleneck layer of the network and functions between

different aggregated features. It is connected to the decoder during

the upsampling phase, progressively propagating features from

different scales. This results in obtaining distribution and layout

constraints of corneal cells in a 2D plane, especially for challenging

cells with weak luminance and blurred boundaries.

4 Experiments

4.1 Parameter settings

The experiments were conducted using PyTorch 1.7.1 on a

GeForce RTX 3090 with 24GB of RAM. For the parameterization

of gnConv, the number of iteration layers was set to n = 3,

and the input features had a width (W) and height (H) of 22.

The input feature channels followed the normal form rule 9 ×
22i (i = 1, 2, 3, 4). Regarding the converter network parameters, the

overfitting value for the converter identification header was set to

0.1, and the forward feedback value was set to 2048. For the nested

network features across different layers, the first three layers had

484 channels, and the fourth layer consisted of 256 channels. The

training process employed a 5-fold cross validationmethod, further

dividing the training and validation sets of the images in an 8:2

ratio. The fusion ratio of up-sampled features to corresponding

multi-scale features was set to 3:7.

4.2 Evaluation metrics

In this experiment, we employ Dice, Acc, recall, pre (precision)

and AUC as evaluation metrics to assess the segmentation

performance. Dice quantifies the similarity between two samples,

with values ranging from [0,1]. Pre (precision) denotes the

proportion of correctly identified positive samples among all

predicted positive samples, while recall represents the percentage of

positive samples that were correctly predicted among all predicted

samples. To clearly reflect the model’s superior segmentation

ability, Acc directly reflects the classification accuracy of the

classifier. AUC quantifies the area under the ROC (Receiver

Operating Characteristic) curve.

4.3 Comparative analysis

To verify the effectiveness of the proposed method, we

compared the results of UNet++ (Zhou et al., 2018), Segformer (Xie

et al., 2021), SwinUNet (Cao et al., 2022) and TransUNet (Chen

et al., 2021) with the segmentation results of our method on

the test set, as shown in Table 2. We can clearly observe that

the proposed method outperforms other models in terms of

all metrics. In Dice measure, the improved nnUNet reaches

82.71%, which was 23.35% higher than UNet++, 20.73% higher

than Segformer, 10.85% higher than SwinUNet, 11.15% higher

than TransUNet and 0.95% higher than nnUNet, respectively.

Compared to nnUNet, the quantitative measurements of Dice,

Acc, recall, pre, and AUC are improved by 0.08%, 0.62%, 0.55%,

and 0.29%, respectively. It is demonstrated that our algorithm

meets the requirement of accurate localization, thereby validating
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TABLE 2 Comparison of experimental results of di�erent encoding strategies for multi-scale features.

Method Normal cell HSK Cone All

Dice (%) Acc (%) Dice (%) Acc (%) Dice (%) Acc (%) Dice (%) Acc (%)

UNet++ 62.2 95.24 61.51 94.98 45.44 95.76 59.36 95.25

Segformer 65.02 95.49 60.34 94.97 52.55 95.97 61.98 95.43

SwinUNet 75.22 96.37 68.6 95.61 63.82 96.67 71.86 96.23

TransUNet 73.96 96.32 69.9 95.79 64.7 96.59 71.56 96.23

nnUNet 85.31 97.61 78.99 96.63 72.2 97.21 81.76 97.35

Our 86.42 97.78 79.33 96.69 73.57 97.30 82.72 97.43

Bold value indicates the best performance among all the methods in comparison.

FIGURE 4

Comparison of visualization results of di�erent methods on test set. (A) Comparison on various indicators; (B) Comparison on Dice index.

the effectiveness of the improved model. The results on the three

classification datasets of Cell, HSK, and Cone intuitively show that

our algorithm achieved the optimal performance on the Dice and

Acc measures within these datasets. These results indicate that

our method contributes comprehensively to the improvement of

segmentation performance of nnUNet in multiple scenarios, rather

than solving a single segmentation challenge alone. Figure 4A

shows the comparison results of our method with other methods

on different metrics, while Figure 4B shows the Dice values on

the corneal test images of different methods. It can be intuitively

seen that our method has achieved the best in all indicators, and

at the same time, it outperforms other approaches in most of the

test images.

4.4 Comparisons of di�erent encoding
strategies

As shown in Figure 5, we performed two comparative

experiments to verify the influence of different encoding strategies

of gnConv and Transformer. To align with the dimension of

high-level features, our method applied a concatenation on

four smaller low-level features. In the comparative analysis

in Table 3, we initially expanded the dimension of four low-

level features via interpolation and then fused them with fixed

proportional weights. The comparisons in Table 3 reveals that the

concatenation strategy is superior to the interpolation strategy on

most of the evaluation metrics. The multi-scale features based

on concatenation achieve the performace of 82.72%, 97.43%

and 83.06% respectively on Dice, Acc and recall. These values

are respectively 0.29%, 0.11% and 2.51% higher than those

achieved via interpolation. The above performance demonstrates

the effectiveness of the concatenation strategy in conveying cell

morphology and position distribution. This capability improves the

localization of corneal cells with weaker contrast at upper layers,

while the features generated through the interpolation strategy

have certain information loss and ambiguous pixels, consequently

diminishing the segmentation accuracy.

4.5 Ablation experiments

The ablation experiment in Table 4 verifies the impact

of gnConv and Transformer in the proposed framework.

When leveraging only gnConv information to enhance feature

interactions, Dice and AUC were increased by 0.96% and 0.46%,

respectively; Moreover, by incorporating a recursive Transformer

into the U-shaped architecture of nnUNet, the improved

model achieved Dice and AUC values of 82.72% and 90.93%,

indicating further improvements accuracy. The experimental
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FIGURE 5

Schematic diagram of di�erent encoding strategies.

TABLE 3 Comparison of experimental results of di�erent encoding

strategies for multi-scale features.

Dice (%) Acc (%) recall (%) Pre (%)

Interpolation 82.43 97.32 80.54 85.20

Concatenation 82.72 97.43 83.06 83.28

Bold value indicates the best performance among all the methods in comparison.

results demonstrate that the improved nnUNet model improves

the results of Dice and AUC by 0.96% and 0.76% respectively,

affirming the effectiveness of the proposed method.

4.6 Qualitative evaluation

As illustrated in Figure 6, a detailed visualization comparison

is performed between nnUNet and our method on local image

patches. In Patch 1 (a), nnUNet exhibits a larger area of false

positives (magenta). In Patch 2 (a), nnUNet predicted more

false positive cell parts compared to our method which has a

more precise detection of cell boundary in patch 2 (b). The two

cells in patch 3 belong to the challenge case of low visibility.

Obviously, nnUNet missed one of the corneal stromal cells, while

our method which is capable of detecting both of the cells. Figure 7

visualizes the heatmap of TransUNet, nnUNet, and our method.

It can be intuitively seen that the TransUNet, which is designed

based on Transformer, has less cells in warm colors (such as red

and yellow) compared to the other two methods. However, it

shows a significantly larger number of cells in cold colors (cyan

and blue). In the heatmap of nnUNet, cells are predominantly

warm-colored, with clear classification boundaries for positive

and negative samples. The comparison between TransUNet and

nnUNet highlights the distinction between CNN and Transformer.

The latter focuses on the interaction between global context,

and thus it performs better at identifying more cells (in cyan)

that are difficult to recognize in a blurring condition. Our

algorithm effectively combines the advantages of both approaches.

As demonstrated in the two zoomed patches, our method not only

has high predictive scores (with more red area) for the majority of

cells in patch 1, but also successfully identifies a larger number of

cells (in cyan) that were overlooked by the nnUNet in patch 2.

Figure 8 discusses the segmentation visualization results of

different algorithms. In Image 1, the background vascular occlusion

results in some intact cells being segmented into small fragments.

nnUNet struggles to recognize some of the tiny cell fragments,

whereas the proposed U-NTCA network successfully extracts the

overall cell structures. Due to uneven illumination in Image 2,

some cell edges are blurry with significant feature differences.

This condition brings challenges for recognizing cells in dim

illumination. Nevertheless, our method is able to detect more cells

in low-contrast conditions. In Image 3, it can be observed that

severe background interference obscures cell edges. Although the

cells locate in areas with fair illumination, the accurate recognition

of cell morphology and structure remains a challenging task.

All the state-of-the-art approaches exhibit a notable disparity in

achieving precise cell recognition, while nnUNet and our method

outperforms the others in detecting a more complete cell contours.

5 Conclusion

The automatic and accurate segmentation of corneal stromal

cells are essentially important to the rapid identification of

abnormal lesions and timely prevention of the relevant diseases.

To deal with the low segmentation accuracy of the existed

methods under uneven illumination and occlusion, we designed

a nested Transformer incorporated with nnUNet to model

the implicit feature transmission across layers. The proposed

model generates low-level positional and morphological features

and are subsequently transmitted to upper layers to facilitate

multi-scale feature fusion. In our future research, we intend

to incorporate edge constraints to address challenges such as

incorrectly connected cells or cells with broken edges. We will also

further consider to establish a multi-task framework to achieve
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TABLE 4 The ablation results of di�erent modules.

gnConv Transformer Dice (%) Acc (%) Recall (%) Pre (%) AUC (%)

nnUNet × × 81.76 97.31 82.76 81.78 90.17

our X × 82.16 (+0.40) 97.36 (+0.05) 82.44 (-0.32) 82.73 (+0.95) 90.63 (+0.46)

X X 82.72 (+0.55) 97.43 (+0.07) 83.06 (+0.62) 83.28 (+0.55) 90.92 (+0.29)

Bold value indicates the best performance among all the methods in comparison.

FIGURE 6

A detailed visualization comparison between nnUNet and our algorithm on local image patches.

FIGURE 7

Heatmap visualization of di�erent methods.
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FIGURE 8

Example of overlapping results between di�erent algorithms and real cell regions.

cell segmentation and diseases classification simultaneously, to

promote computer-aided diagnosis.
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