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Many resting-state functional magnetic resonance imaging (rs-fMRI) studies 
have shown that the brain networks are disrupted in adolescent patients with 
juvenile myoclonic epilepsy (JME). However, previous studies have mainly 
focused on investigating brain connectivity disruptions from the perspective of 
static functional connections, overlooking the dynamic causal characteristics 
between brain network connections. In our study involving 37 JME patients 
and 35 Healthy Controls (HC), we  utilized rs-fMRI to construct whole-brain 
functional connectivity network. By applying graph theory, we delved into the 
altered topological structures of the brain functional connectivity network in 
JME patients and identified abnormal regions as key regions of interest (ROIs). 
A novel aspect of our research was the application of a combined approach 
using the sliding window technique and Granger causality analysis (GCA). This 
method allowed us to delve into the dynamic causal relationships between 
these ROIs and uncover the intricate patterns of dynamic effective connectivity 
(DEC) that pervade various brain functional networks. Graph theory analysis 
revealed significant deviations in JME patients, characterized by abnormal 
increases or decreases in metrics such as nodal betweenness centrality, degree 
centrality, and efficiency. These findings underscore the presence of widespread 
disruptions in the topological features of the brain. Further, clustering analysis 
of the time series data from abnormal brain regions distinguished two distinct 
states indicative of DEC patterns: a state of strong connectivity at a lower 
frequency (State 1) and a state of weak connectivity at a higher frequency 
(State 2). Notably, both states were associated with connectivity abnormalities 
across different ROIs, suggesting the disruption of local properties within the 
brain functional connectivity network and the existence of widespread multi-
functional brain functional networks damage in JME patients. Our findings 
elucidate significant disruptions in the local properties of whole-brain functional 
connectivity network in patients with JME, revealing causal impairments across 
multiple functional networks. These findings collectively suggest that JME is a 
generalized epilepsy with localized abnormalities. Such insights highlight the 
intricate network dysfunctions characteristic of JME, thereby enriching our 
understanding of its pathophysiological features.
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1 Introduction

Our brain is a network of numerous brain regions where 
information is continuously processed and transmitted between 
structurally and functionally connected areas. Studying the human 
brain as a network of interacting regions can provide new insights into 
large-scale neurotransmission in the brain. Research has found that 
the development of most neurological and psychiatric disorders is 
associated with impaired interconnections between neurons and 
synapses (Lehrer, 2009). Many brain disorders, such as Alzheimer’s 
disease (Greicius et al., 2004), schizophrenia (Liu et al., 2008), autism 
(Kennedy and Courchesne, 2008), attention-deficit/hyperactivity 
disorder (Tian et al., 2006) and epilepsy (Bettus et al., 2009), often 
present abnormalities in brain networks. Therefore, the study of brain 
networks helps us to gain a deeper understanding of the structure and 
function of the human brain. It also provides a scientific basis for 
understanding the pathogenesis of neurological and psychiatric 
disorders, as well as for the prevention, diagnosis and treatment of 
these disorders.

Juvenile myoclonic epilepsy (JME) is a common type of epilepsy 
syndrome in adolescents, accounting for 5%–10% of all epilepsy cases. 
It is also a common type of Idiopathic generalized epilepsy (IGE), 
making up approximately 26% of all IGE cases (Walsh et al., 2014). 
The neuropsychological assessment of JME patients revealed a decline 
in cognitive functioning (Chawla et  al., 2021), with impairments 
observed in tasks related to working memory, prospective memory, 
decision-making, and other cognitive functions (Wolf et al., 2015). 
Functional networks can assist in the non-invasive assessment of 
pathological and physiological changes in epilepsy syndromes and in 
analyzing the underlying causes of cognitive impairments (Garcia-
Ramos et al., 2021). With the advancement of resting-state functional 
magnetic resonance imaging (rs-fMRI) technology and the maturity 
of brain network research, researchers have made significant progress 
in analyzing the pathogenesis of JME. These progresses include a 
deeper understanding of the brain’s functional network connectivity 
in epilepsy, focusing on exploring both functional connectivity (FC) 
and effective connectivity (EC) within these networks. FC 
measurements can detect coherent spontaneous neuronal activities 
within a brain network (van den Heuvel and Hulshoff Pol, 2010). EC 
is a particular type of directionally-related functional connectivity 
based on statistical models and is used to explain the influence of one 
neural system on another (Friston, 2011). Studying both aspects helps 
us understand how pathological processes lead to neural damage.

The whole-brain functional connectivity analysis method is a 
data-driven approach that constructs a network of functional 
connections between different brain regions by calculating their 
correlations. Such methodologies have proven instrumental in 
uncovering functional connectivity aberrations within specific areas. 
For instance, the middle temporal gyrus, superior temporal sulcus, 
and medial thalamus in autism patients (Cheng et al., 2015). This 
evidence underscores the brain’s integrative nature, where the seamless 
execution of tasks necessitates a collaborative interplay among various 
regions. Building on this foundation, graph theory analysis emerges 
as a pivotal tool for delving into the whole-brain connectome’s 
topological attributes at a macroscopic scale. Whether in a resting 
state or engaged in cognitive activity, graph theory can help to nuance 
how brain networks are organized and adapted over time, including 
alterations associated with psychiatric disorders, which provides 

valuable insights into the complex network of neural interactions and 
the underlying mechanisms of neuropsychiatric disorders. Recent 
research advances have further solidified the role of graph theory in 
neurological research. Specifically, graph theory has been applied as a 
quantitative analysis method in epilepsy (Jiang et al., 2017). Lee et al. 
(2020) combined graph theory analysis, concluding that there are 
network abnormalities in the thalamus of JME patients. Despite the 
growing reliance on functional connectivity magnetic resonance 
imaging as a formidable technique for mapping large-scale brain 
networks, critiques regarding its limitations have emerged (Buckner 
et al., 2013). This highlights the need for a comprehensive approach in 
neuroscience research, focusing on both the topological properties of 
functional connectivity networks and the causal dynamics within 
disease-related brain regions. Based on this, methods for assessing 
effective connectivity are clearly indispensable. Such thorough 
investigation is crucial for advancing our understanding of neural 
mechanisms and improving strategies for disease prevention 
and treatment.

The effective connectivity methods reflect the dynamic 
information flow processes between functional brain modules and the 
interactions between different brain regions. Many studies have 
supported this using a similar technique to perform brain network 
assessments and diagnose brain diseases. Using rs-fMRI, researchers 
conducted a practical connectivity analysis to examine the related 
changes of idiopathic generalized epilepsy within the major 
neurocognitive brain networks (Wei et al., 2016). However, it is well 
known that functional interactions in the brain are highly dynamic 
rather than static (Lurie et al., 2020). As a new method, dynamic 
effective connectivity (DEC) is more suitable for studying the directed 
spontaneous spatiotemporal reorganization of neuronal activity, 
which is a crucial source of brain fluid dynamics (Zarghami and 
Friston, 2020). It effectively addresses the issue of previous dynamic 
studies that only characterize functional connectivity FC based on the 
temporal correlation between brain signals, thus ignoring the causal 
influence between brain regions (Friston, 2011). This approach may 
provide more robust evidence for diagnosing, prognosis, and treating 
neurological and psychiatric disorders. Researchers used the Granger 
causality analysis (GCA)-based DEC method and found changes in 
the default mode network in patients with juvenile myoclonic epilepsy 
(Zhang et al., 2020). Combining FC and DEC methods to study the 
aberrant brain functional networks in JME patients is undoubtedly 
meaningful for neuroscience and psychiatry.

The main purpose of this study was to investigate the differences 
in the topological properties of brain networks between Healthy 
Controls (HC) and JME patients, as well as the differences in causal 
effects between abnormal brain regions. To this end, we  first 
constructed a whole-brain functional connectivity network of the 
subjects. Then, we calculated the global and nodal properties of the 
brain networks and identified abnormal brain regions based on the 
nodal properties. Subsequently, we took the abnormal brain regions 
in different networks as regions of interest and extracted the time 
series of the regions of interest for dynamic effective connectivity 
analysis. We performed dynamic analysis by sliding window method, 
after which K-means clustering was used to obtain two effective 
connectivity states, and finally GCA was used to characterize the 
abnormal causal links between the respective brain regions in the two 
different states. By this method, we  can further understand the 
abnormal activity of the dynamic brain in JME patients. This analysis 
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provides new perspectives for understanding seizures and cognitive 
deficits in JME patients.

2 Materials and methods

2.1 Participants

Our study included 72 participants, with 37 JME patients 
recruited from the Epilepsy Center of the Second Hospital of Lanzhou 
University and 35 HC recruited from the local community. The 
diagnosis of JME was based on the classification criteria for epilepsy 
of the International League Against Epilepsy (ILAE; Engel, 2001). A 
routine MRI scan is normal, and routine scalp EEG shows 4–6 Hz 
generalized spike–wave discharges (GSWDs). Patients are excluded if 
they have the following features: (1) history of taking antiepileptic 
drugs, (2) other neurological or psychiatric diseases, (3) other 
developmental disorders such as autism and intellectual disability, (4) 
acute physical illnesses that affect the scan. The National Hospital 
Seizure Severity Scale (NHS3) score is usually used to measure the 
severity of epileptic seizures. This score is mainly related to the 
objective clinical events of epileptic seizures (O'Donoghue et  al., 
1996). The subjects were informed of the content and purpose of the 
study, and all subjects signed an informed consent form. The study 
was approved by the Medical Ethics Committee of the Second Hospital 
of Lanzhou University. Specific demographic characteristics are shown 
in Table 1.

2.2 Magnetic resonance imaging 
acquisition and data preprocessing

MRI data was acquired at the Second Hospital of Lanzhou 
University using a Siemens Verio 3.0 T scanner (Siemens, Erlangen, 
Germany) with 16 head coils. Participants were instructed to remain 
still and avoid any specific mental activity during the scan. 
Additionally, they were asked to keep their eyes closed and relax while 
wearing noise-canceling earplugs to minimize any interference from 
the scanner noise. Use echo planar imaging sequence to obtain resting 
state functional images for each participant and set as follows: 
repetition time [TR] = 2,000 ms; echo time [TE] = 30 ms; flip 
angle = 90°; slice thickness = 4 mm; in-plane matrix resolution = 64 × 64; 
field of view [FOV] = 240 × 240 mm2; number of slices = 33; total 

volume = 200. For anatomical localization and normalization, a high-
resolution structural 3D T1-weighted image was obtained using a 
magnetization-prepared rapid gradient-echo sequence (TR = 1,900 ms; 
TE = 2.99 ms; flip angle = 90°; slice thickness = 0.9 mm; acquisition 
matrix = 256 × 256; field of view = 230 × 230 mm2).

Data preprocessing was performed using GRETNA software1 
based on SPM12.2 Specifically, the process involves discarding the first 
10 functional images, selecting 190 functional images for each subject. 
Due to the unsynchronized acquisition time of the whole head image 
data and the impact of head movement, slice timing correction and 
realignment are needed. We  have removed data with movement 
greater than 3 mm or rotation greater than 3° caused by head 
movement. Spatial normalization by DARTEL (warping individual 
functional images to the standard MNI space by applying the 
transformation matrix that can be derived from registering the final 
template file), spatial smoothing with a Gaussian kernel (full width at 
half-maximum of 6 mm), regressing out covariates (white matter, 
cerebral spinal fluid, and head-motion profiles were removed by 
multiple regression analysis to avoid noise signals), temporal linear 
detrending, and temporal bandpass filtering (0.01–0.08 Hz).

2.3 Overview of functional connectivity 
and dynamic effective connectivity analysis

The analysis workflow of this study is illustrated in Figure  1. 
Specifically, within this framework, there are six main analysis steps. 
First, whole-brain functional connectivity analysis is performed on 
the preprocessed functional data by calculating Pearson correlation 
coefficients between brain regions to construct the whole network. 
Secondly, graph theory analysis on the whole-brain functional 
connectivity network will be performed to compute global and local 
properties that identify abnormal brain network conditions and 
regions. Then, using a sliding window approach, the time series of the 
identified abnormal brain areas are divided into a set of windows, and 
Granger causality analysis (GCA) is applied to construct causal 
influence matrices among the ROIs for each window. Afterwards, a 
k-means clustering method is implemented to cluster all the matrices 
into discrete EC states, representing transient causal influence patterns 
during the data acquisition. Subsequently, we evaluated the intergroup 
differences in the causal influence flow resulting from the abnormal 
connections between brain regions in specific states for both patient 
and healthy control groups. Finally, correlations between JME 
symptom severity and abnormal brain regions and causal influence 
flow were further assessed.

2.4 Whole brain functional network 
construction

After data preprocessing, the whole-brain functional network was 
constructed. When constructing a brain network using imaging data, 
the first step is usually to define nodes and then build edges between 

1 www.nitrc.org/projects/gretna/

2 http://www.fil.ion.ucl.ac.uk/spm

TABLE 1 Demographic and clinical characteristics of the participants.

JME (n =  37) HC (n =  35) P-value

Age (years) 19.62 ± 7.17 22.20 ± 6.14 0.11a

Sex (males/

females)

20/17 13/22 0.15b

Handedness 

(right/left)

37/0 35/0 -

Duration of 

epilepsy (months)

48.97 ± 47.32 - -

NHS3 total score 6.26 ± 4.63 - -

aRepresents a two-sample t-test, brepresents a chi-square test; the values are presented as 
mean ± standard deviation. NHS3, national hospital seizure severity scale; JME, juvenile 
myoclonic epilepsy; HC, healthy control.
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them. One standard method to define brain nodes is by using 
anatomical atlases based on brain structures to define fixed spatially 
meaningful regions of interest (ROIs). GRETNA software is used to 
generate brain networks (Wang et al., 2015). Network node definition 
is as follows: Based on the Automated Anatomical Labeling (AAL) 
template, the entire brain is divided into 90 cortical and subcortical 
ROIs, with 45 regions in each hemisphere, each representing a node 
in network analysis. In the current study, we only focused on these 90 
brain regions. The definition of network edge is as follows: The average 
time series of each ROI for all participants was obtained by averaging 
the time series of all voxels within the ROI. Subsequently, by 
calculating the Pearson correlation coefficient between the time series 
of all possible pairs of brain regions, a 90 × 90 correlation matrix was 
constructed for each participant. Further, Fisher’s r-to-z 
transformation is applied to correlation matrices (Liu et al., 2017), 
converting each correlation matrix into a binarized matrix with 
sparsity values. When the Pearson correlation coefficient is greater 
than the sparse value, it is considered that there is a corresponding 
edge in the brain network (Lu et al., 2017; Wang et al., 2020).

In our study, we applied a sparsity threshold to all correlation 
matrices ranging from 0.10 to 0.34, with an interval of 0.01. Previous 
research has emphasized the criteria for selecting the range of sparsity 
values (Lu et al., 2017). The minimum sparsity was chosen to ensure 
that the average degree of all nodes in each threshold network was 
more significant than 2log(N), where N = 90 is the number of nodes 
used in the study. The maximum sparsity was selected to ensure that 
the small-world scalar (sigma) of each threshold network for all 
participants exceeded 1.1.

2.5 Graph theory analyses

After constructing the whole brain functional network, 
we  computed global and regional brain connectivity measures. 

We calculated six global metrics to characterize the global properties 
of the brain functional network: clustering coefficient (Cp), 
characteristic path length (Lp), normalized clustering coefficient 
(gamma, the ratio of Cp between the real and random networks), 
normalized characteristic path length (lambda, the ratio of Lp between 
real and random networks), global efficiency (Eglob) and local efficiency 
(Eloc). The small-world properties of a network were characterized by 
gamma and lambda. Typically, a small-world network should meet the 
following criteria: gamma ≫ 1 and lambda ≈ 1 (Watts and Strogatz, 
1998), or sigma = gamma/lambda > 1 (Humphries et al., 2006). Three 
nodal parameters, node degree centrality, node efficiency, and node 
betweenness centrality were adopted to describe the nodal properties 
of the brain functional networks (Achard and Bullmore, 2007). 
Betweenness centrality is a measure for global efficiency of network 
topology or resource utilization. So higher betweenness centrality 
indicates more efficient information flow (Zhou and Lui, 2013). 
Degree centrality measures a node’s connections with other nodes in 
the network. A higher degree of centrality means more connections. 
The node efficiency represents the efficiency of a given node, 
indicating the efficiency of parallel information transmission in the 
network. In addition, we computed the area under the curve (AUC) 
for each network metric. The AUC index has been utilized in previous 
brain network studies to provide a summarized scalar for brain 
network topological features independent of individual threshold 
selection, and it is susceptible sensitive in detecting topological 
changes related to brain disorders (He et al., 2009; Wang et al., 2009).

2.6 Dynamic effective connectivity 
estimation

2.6.1 Granger causality analysis
After identifying the abnormal brain nodes through graph theory 

analysis, they were used as regions of interest (ROIs) to extract the time 

FIGURE 1

Analysis flowchart.
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series data of all ROI. In this study, the causal influences among the time 
courses of ROIs were evaluated using the GCA method. Granger 
causality estimation assessed the causal effects of the ROIs on other 
regions (X to Y effect) and the Y to X effect. Unlike other methods of 
EC measurement, GCA quantifies the causal influence between multiple 
brain regions in a data-driven manner, without the need to predefine 
any models (Deshpande and Hu, 2012). Granger causality analysis was 
conducted using the MATLAB toolbox DynamicBC.3 Granger causality 
is usually used for fMRI data analysis through vector autoregressive 
modeling, and in GCA, the expression of the joint autoregressive model 
for the time seriesYt and Xt is as follows (Eqs 1, 2):

 
Y A X B Y CZ Et

k

p

k t k
k

p

k t k t t� � � �
�

�� �
�

�� �� �
1 1  

(1)

 
X A Y B X C Z Et

k

p

k t k
k

p

k t k t t� � � ��
�

�
�� �

�

�
�� �

�� �
1 1  

(2)

where Ak  and Ak′  are signed-path coefficients, Bk and Bk′  are 
autoregression coefficients, Et and Et′ are residuals, and Zt  represents 
covariates. The time series Xt asignificantly causes the time  
series Yt if the signed-path coefficient Ak is significantly larger (Zang 
et al., 2012).

2.6.2 Sliding window approach
The DEC of ROIs was estimated using the most common 

method for analyzing brain connectivity dynamics in previous 
studies, i.e., the sliding window method. Our study used a sliding 
window size of 22 TR (44 s) and a step size of 1 TR. There were 169 
windows (190 TRs) per participant throughout the scan. In 
particular, a window size of 22 TRs was chosen because it has been 
shown to provide a good cutoff between kinetic detection ability 
and the quality of correlation matrix estimates (Allen et al., 2014). 
Using the time course of all ROIs within each window, 169 EC 
matrices of size n × n were obtained for each participant, 
representing the dynamics of EC between ROIs during resting-state 
data collection. Previous studies have shown that a window size of 
30 to 60 s is sufficient to capture fluctuations in rs-fMRI connectivity 
stably (Preti et al., 2017).

2.6.3 Clustering analysis and dynamic effective 
connectivity analysis

K-means clustering is used to identify short-term recurring 
connectivity patterns, which are predicted by a large-scale neural 
connectivity model. The K-means algorithm is an unsupervised 
clustering algorithm that is widely used due to its simplicity and 
accuracy. For a given set of samples, the algorithm partitions the 
samples into k clusters based on the distance between the samples. The 
nodes within each cluster are connected as tightly as possible, while 
the distance between clusters is maximized. Therefore, the objective 
of the K-means algorithm is to minimize the squared error 
E (Li et al., 2020) (Eq. 3):

3 www.restfmri.net/forum/DynamicBC
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where x  is all the sample vectors in the sample set, Ci is the sample 
set of samples whose sample vectors belong to the ith  category, and µi  
is the mean vector of the cluster, also known as the center of mass, 
which is an important property in cluster analysis and is usually 
obtained by calculating the mean of all the points in the cluster. The 
center of mass matrix µi  (Jiao et al., 2021) of the data can be obtained 
by the following expression (Eq. 4):
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Since the samples are high-dimensional data, we used the L1 
distance function (Manhattan distance; Wang et  al., 2016) to 
determine the similarity of the sample data. The smaller the L1 
distance, the more similar the two data are. The Manhattan distance 
expression is given below (Eq. 5):

 
c x x y yi j i j� � � �| || |

 (5)

where c is the Manhattan distance, xi and yi are the coordinate of 
the node i in the plane, and x j and y j  are the coordinate of the node j .

We used the k-means clustering method to cluster all matrices into 
discrete connectivity states, representing transient patterns of causal 
influences during the data collection. The Silhouette Coefficient and 
Calinski-Harabaz index were used to estimate the optimal number of 
clusters. The Silhouette Coefficient is the most commonly used 
evaluation metric for clustering algorithms. It is defined for each 
sample and measures the average distance between the sample and all 
other points within the same cluster and the average distance between 
the sample and all points in the next nearest cluster. The Calinski-
Harabaz index, on the other hand, measures the ratio between the 
separation and compactness of the dataset. It calculates the separation 
of the dataset by measuring the sum of squared distances between each 
class center point and the dataset’s center point, and it measures the 
compactness of the data by summing the squared distances between 
each point and its class center. Finally, under the determined two 
connectivity states, we analyzed the causal influence flow of abnormal 
brain network nodes and compared them between the patient and 
control groups. We calculated two weighted degree measures, including 
in-weighted degree and out-weighted degree, the most commonly used 
measures of causal influence flow (Stevens et al., 2009). In each state, 
we computed the in-weighted degree measure for a node, which is the 
sum of the strength of influence from any other node to that node. 
Additionally, we defined the out-weighted degree measure for a node 
as the sum of the influence strength from that node to any other node.

2.7 Statistical analysis

For statistical analyses of demographic and clinical characteristics 
between the two groups, the Chi-square test was used for gender and the 
two-sample t-test for age. To compare the topological properties of the 
functional brain network (including small-world properties, network 
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efficiency, and node parameters) between JME patients and HC, a series 
of two-sample t-tests were performed for all parameters within a 
predefined range of sparsity thresholds (from 0.10 to 0.34). Similarly, 
two-sample t-tests were conducted for between-group differences in the 
DEC parameters, which consisted of the flow of causal influences 
between ROIs in a given state. In addition, Spearman’s correlation 
analysis was applied to investigate the relationship between abnormal 
brain topological properties and changes in DEC parameters and clinical 
characteristics (including duration of epilepsy and NHS3 scores) in JME 
patients. To control for potential confounding effects, we integrated age 
and sex as covariates in our two-sample T-test analysis. This approach is 
essential to ensure a more accurate and reliable comparison between the 
two groups, thereby improving the validity of our findings. Statistical 
analyses were performed using SPSS 21.0 and corrected for multiple 
comparisons using a false discovery rate (FDR; p < 0.05).

3 Results

3.1 Intergroup differences in global 
network properties

At the defined threshold level, the brain functional networks of all 
participants exhibit significantly higher clustering coefficients (gamma 
> 1) and nearly identical characteristic path lengths (lambda ≈ 1) 
compared to comparable random networks. The results demonstrate 
that all participants in this study possess typical small-world 
characteristics (sigma = gamma/lambda > 1; Figure 2). The two data 
groups did not show significant differences in the small-world 
parameter in the two-sample t-test (Figure 3). Under the given sparsity 
conditions, there were no significant changes in the statistical 
comparison of global efficiency (Eglob) and local efficiency (Eloc) between 
the JME patient group and the healthy control group (Figure 4).

3.2 Intergroup differences in regional 
network properties

Changes in node properties (node betweenness centrality, 
node degree centrality, and node efficiency) were found in 

multiple brain regions of JME patients (p < 0.05, FDR corrected; 
Figure 5; Table 2). Compared with the healthy control group, the 
node betweenness centrality of left Median cingulate and 
paracingulate gyri (DCG.L) and left Lenticular nucleus, pallidum 
(PAL.L) is decreased in JME patients. In contrast, the node 
betweenness centrality of the left Middle frontal gyrus, orbital 
part (ORBmid.L), right Posterior cingulate gyrus (PCG.R), right 
Superior occipital gyrus (SOG.R), and right Angular gyrus 
(ANG.R) is increased (Figures  5A, 6A). Meanwhile, the node 
degree centrality of left Anterior cingulate and paracingulate gyri 
(ACG.L), left Median cingulate and paracingulate gyri (DCG.L), 
left Lenticular nucleus, pallidum (PAL.L), and left Superior 
temporal gyrus (STG.L) is decreased in JME patients. In contrast, 
the node degree centrality of the right Hippocampus (HIP.R), 
right Superior parietal gyrus (SPG.R), and right Angular gyrus 
(ANG.R) is increased (Figures 5B, 6B). The node efficiency of the 
left Median cingulate and paracingulate gyri (DCG.L), left 
Lenticular nucleus, pallidum (PAL.L), and left Superior temporal 
gyrus (STG.L) is decreased. In contrast, the node efficiency of the 
right Hippocampus (HIP.R), right Superior parietal gyrus 
(SPG.R), and right Angular gyrus (ANG.R) is increased 
(Figures 5C, 6C; please refer to Table 2 for the corresponding 
brain regions).

Figures  5, 6 show that the ANG.R demonstrates increased 
characteristics in terms of node betweenness centrality, degree 
centrality, and efficiency. This suggests that ANG.R is an essential 
region for increased network properties. DCG.L and PAL.L are 
significant regions where the node properties are decreased.

3.3 Effective connectivity patterns in 
dynamic states

The clustering analysis results for JME patients in each 
connection state are shown in Figure 7. It can be observed that 
there are two states in the patient group, and the DEC patterns 
(cluster centroids) among the ROIs differ significantly between 
these two states. Specifically, in state 1, the DEC mode exhibits 
strong mutual influence but with a lower overall occurrence rate 
(27.27%). In contrast, in state 2, the DEC mode exhibits weak 

FIGURE 2

Within the defined threshold range, the normalized clustering coefficient (Gamma) and small-worldness (Sigma) of the JME group and HC group are 
significantly higher than 1, and the normalized characteristic path length (Lambda) is approximately equal to 1, indicating that all participants meet the 
typical characteristics of the small-world index. JME, juvenile myoclonic epilepsy; HC, healthy controls.
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mutual influence but with a higher overall occurrence rate 
(72.73%). Each matrix represents the cluster’s centroid, reflecting 
the data’s effective connection state and the number and 
percentage of occurrences.

3.4 Causal impact flow for specific states

The intergroup differences in causal influence flow between ROIs 
in each state are shown in Figure 8. In state 1, JME patients showed 
increased EC from SPG.R to ANG.R, and decreased EC from STG.L 
to PAL.L, DCG.L to SOG.R, and DCG.L to SPG.R compared to the 
HC group. In state 2, JME patients showed increased EC from SOG.R 
to ACG.L and HIP.R to STG.L, and decreased EC from SOG.R to 
PAL.L compared to HC group (p < 0.05, FDR corrected). We have also 
observed that in state 1, these changes in EC are located between the 
sensorimotor network (SMN), the attention network (AN), the 
subcortical regions, and the visual network (VN), with the SMN and 
subcortical regions playing a regulatory role between the networks. In 
state 2, the changes in EC are located between the subcortical regions, 
SMN, VN, and the default mode network (DMN), with the VN 
playing an important role.

3.5 Relationship with clinical disease 
severity

We first examined the correlation between abnormal brain regions 
and clinical characteristics (including duration of epilepsy and NHS3 
score), as shown in Figure  9, we  found that node betweenness 
centrality of ANG.R was significantly positively correlated with NHS3 
(r = 0.3622, p = 0.0276, FDR-corrected), and node betweenness 
centrality of PAL.L was significantly positively correlated with NHS3 
(r = 0.3599, p = 0.0287, FDR corrected). No significant correlation was 
found between duration of epilepsy and abnormal brain regions. In 
addition, we found no significant correlation between either clinical 
characteristic and DEC parameters.

4 Discussion

The human brain is a complex and interconnected network 
known for its efficient small-world structure, featuring high local 
clustering and short path length (Achard et al., 2006). The current 
study found that the brain networks of JME patients still exhibit small-
world characteristics. Previous neuroimaging studies in epilepsy also 
found that patients with idiopathic generalized epilepsy or temporal 
lobe epilepsy demonstrated a small-world property of the functional 
and structural networks (Liao et al., 2010; Zhang et al., 2011). This 
means that despite abnormalities in neuronal activity, the 
organizational structure of the brain network in epileptic patients 
remains relatively stable. Global efficiency reflects the overall 
information transfer efficiency of the entire network, focusing on the 
overall information transfer capability. While local efficiency reflects 
the communication efficiency between neighboring nodes after a node 
is removed, focusing on the local communication capability after the 
node is disconnected. Compared with HC, our study did not find 
significant changes in the overall and local efficiencies of brain 
networks in JME patients. This suggests that the overall and local 
information transfer efficiencies in the brains of JME patients remain 
relatively stable. This is consistent with previous research. When 
studying the large-scale brain structural network in JME, researchers 
found no differences in global network characteristics between the 
two patient groups (Caeyenberghs et al., 2015). These results suggest 

FIGURE 3

Differences in small-world metrics (Gamma, Lambda, and Sigma) of brain functional networks between JME and HC groups. Error bars represent 
standard errors. JME, juvenile myoclonic epilepsy; HC, healthy controls.

FIGURE 4

The difference in network efficiency between JME and HC groups. 
The error bars represent standard error. JME, juvenile myoclonic 
epilepsy; HC, healthy controls. Eglob, global efficiency; Eloc, local 
efficiency.
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that the brain functional networks of JME patients do not differ 
significantly from those of healthy individuals and still possess 
efficient information processing capabilities.

Concerning node property analysis, the decrease in node 
properties associated with JME primarily occurred in the paralimbic 
regions (ACG.L, DCG.L), basal ganglia (PAL.L), and temporal lobe 
(STG.L). On the other hand, the increase in nodal network properties 
associated with JME primarily occurred in the frontal lobe 
(ORBmid.L), paralimbic regions (PCG.R, HIP.R), occipital lobe 
(SOG.R), and parietal lobes (SPG.R, ANG.R). Some brain regions, 
known as network hubs, play a core role in supporting the integration 
of brain network functions, which are involved in various psychiatric 
and neurological disorders. Research has investigated the 
developmental processes of core network hubs in the prenatal, infancy, 
childhood, and adolescence periods using graph theory measures of 
node centrality in brain networks. It has been found that during 
adolescence, core network hubs are widely distributed in the frontal 
lobe, temporal, and subcortical regions. Damage to these core hubs 
may significantly impact brain network function (Winding et  al., 
2023). The abnormalities at the regional level in the brain networks of 
JME patients suggest that the information transmission and 
integration of nodes throughout the network are disrupted.

The temporal pole is part of the parahippocampal area and is 
a transitional region from the surrounding cortex to the neocortex 
(Munoz-Lopez et al., 2010). It is functionally connected to the 
hippocampus and adjacent neocortex and is involved in the 
occurrence of epilepsy (Liu et al., 2016). In studies using fMRI to 
investigate resting-state brain networks, the temporal pole is 
considered part of the auditory network and is involved in 
auditory processing (Damoiseaux et al., 2006). We found that the 
node efficiency of STG.L was reduced in JME patients, which may 
be the main reason for the abnormalities of the auditory network 
and the impact on auditory function in patients. The cingulate gyri 
are located in the medial pericallosal region of each frontal lobe. 
Due to their diffusely projecting connectivity, the cingulate gyrus 
plays a crucial role in seizure propagation. A literature search of 
published cases of tonic–clonic seizures showed that 5 cases 
originated in the cingulate gyrus (Pearce, 2004). This is consistent 
with our findings of abnormalities in ACG and PCG. DCG.L is 
part of the cingulate gyrus and is involved in behavior, motor, and 
somatosensory functions, especially in emotion, information 
transmission, and cognitive processing (Oane et al., 2020). Voxel-
based morphometric analysis revealed that changes in gray matter 
volume occurred in DCG.L in patients with JME, which could lead 
to impaired cognitive function in these patients (Kazis et  al., 
2021). Node efficiency quantitatively describes the importance of 
a node in the whole network, the higher the node efficiency, the 
more important the node is and the more likely it is to become a 
hub node. Comparative analysis of node efficiencies revealed that 
in JME, the regions with increased node efficiencies were located 
in the SPG.R and ANG.R of the parietal lobe. This suggests that 
the increased importance of these two regions in the functional 
network of the brain in JME makes them more likely to become 
hub nodes. This finding is consistent with the findings of Vollmar 
et al. (2011). Wang et al. (2014) found that the node parameters of 
ANG.R and HIP.R were altered in TLE patients by studying the 
topological properties of the whole-brain functional network in 
temporal lobe epilepsy (TLE) patients. This is consistent with our 
results. The hippocampus and angular gyrus play crucial roles in 

FIGURE 5

Brain regions showed significant differences in node betweenness 
centrality (A), node degree centrality (B), and node efficiency (C) in 
specific brain regions between the JME group and HC groups. The 
red sphere indicates that the JME group’s node attributes have 
improved compared to the HC group. The blue sphere represents a 
relative decrease in node attributes of the JME group compared to 
the HC group. Abbreviations are shown in Table 2.
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memory storage and emotion regulation, and changes in these 
parameters may be  associated with memory deficits in 
epilepsy patients.

Our study observed nodal characterization anomalies in an 
important component of the basal ganglia, PAL.L. Combining 
functional magnetic resonance imaging (MRI) and diffusion tensor 
imaging (DTI) analysis, significant reductions in gray matter volume 
and increased mean diffusivity (MD) were found in PAL.L and 
bilateral HIP of JME patients. These findings further support the 
notion that macrostructural and microstructural abnormalities in 
JME are not limited to the thalamus but also affect the basal ganglia 
and hippocampus. This provides further support for the 
pathophysiological hypothesis of JME involving the striatum-
thalamus-frontal network and suggests disease progression (Kim 
et  al., 2018). The occipital lobe is associated with photosensitive 
properties in JME patients, especially idiopathic occipital lobe epilepsy 
(Chilosi et al., 2006). Existing studies show that 30% of JME patients 
are photosensitive (Wolf and Goosses, 1986). As an essential 
component of the occipital lobe, the right superior occipital gyrus is 
involved in higher-level visual associative activity. Our results support 
the abnormal structural and functional properties of the 
abovementioned nodes. The orbitofrontal gyrus plays a crucial role in 
emotion regulation and cognitive control. Our study found an 
increased betweenness centrality in the ORBmid.L, which plays a 
crucial role in emotion regulation and cognitive control. It has been 
suggested that the onset of discharge in patients with JME is not 
bilaterally synchronized in some sense and that there is a limited focal 
cortical network for the onset and propagation of discharge, which 
mainly includes the frontal and temporal cortex, with the orbital 
frontal gyrus being particularly critical in the frontal cortex. In 
Holmes’ study of 10 patients with JME, the orbital frontal gyrus was 
consistently identified in the region of painful discharges across all 
patients, and notably, in 5 of these cases, it was also situated in the 
medial floor of the temporal lobe. This observation is consistent with 

the findings of Zhou (2021), who suggests that there are different 
frontotemporal thalamocortical networks implicated in patients with 
JME. Furthermore, it indicates the presence of focal cortical areas that 
modulate thalamocortical circuits during epileptic seizures, thereby 
underscoring the critical role of the orbital frontal gyrus in activating 
epileptic discharge networks in individuals with JME (Holmes 
et al., 2010).

From an EC perspective, the current work identifies two 
distinct dynamic states: a less frequent state characterized by 
strongly connected interactions between regions of interest (state 
1) and a more frequent state characterized by weakly connected 
interactions between regions of interest (state 2). The human brain 
is increasingly viewed as a dynamic neural system whose 
functionality depends on different connections between brain 
regions. It has been indicated that dynamic functional connectivity 
may reflect the abnormal hypoactive state of epilepsy patients and 
certain aspects of neural system functional capacity (Kucyi et al., 
2017; Zhou, 2021). Our findings and other dynamic state studies 
of psychiatric disorders, raise the importance of assessing transient 
aspects of connectivity (Damaraju et al., 2014; Yu et al., 2015). 
Brain connectivity is highly variable over time, which may 
represent the flexibility of functional coordination between 
different brain systems. By performing dynamic functional 
connectivity analysis on independent components belonging to 
different functional networks in Parkinson’s disease patients, two 
states were identified: a sparse state and a dense state. This suggests 
that different states can reflect different aspects of neural system 
function (Kim et al., 2017). Zhang et al. (2020) found two distinct 
connectivity states within the DMN in JME patients through their 
study on the DEC. They proposed that State 1 may represent an 
internal-oriented state that supports internally constructed 
representations, while State 2 may represent an external-oriented 
state that supports externally constrained representations. In our 
study, significant reductions in effective connectivity were found 

TABLE 2 Brain regions with abnormal node network characteristics displayed between JME and HC groups.

Brain regions P/t-values

Nodal betweenness 
centrality

Nodal degree 
centrality

Nodal efficiency

JME > HC

ORBmid.L 0.04/2.05 0.36/0.93 0.34/1.10

PCG.R 0.04/2.21 0.86/0.18 0.77/0.28

HIP.R 0.06/1.89 0.02/2.59 0.01/3.02

SOG.R 0.03/2.75 0.51/0.75 0.44/0.88

SPG.R 0.27/0.38 0.03/2.25 0.02/2.21

ANG.R 0.04/2.19 0.02/2.33 0.03/2.28

JME < HC

ACG.L 0.53/0.06 0.04/2.00 0.10/1.51

DCG.L 0.04/2.05 0.03/2.31 0.04/2.19

PAL.L 0.00/3.33 0.02/2.59 0.02/2.18

STG.L 0.31/0.96 0.02/2.29 0.03/2.09

Brain regions showing significant between-group differences (P < 0.05, FDR corrected, shown in bold font) in at least one of the three nodal network properties are exhibited in the table. HC, 
healthy controls; JME, Juvenile myoclonic epilepsy patients; R, Right; L, Left; ORBmid, Middle frontal gyrus, orbital part; PCG, Posterior cingulate gyrus; HIP, Hippocampus; SOG, Superior 
occipital gyrus; SPG, Superior parietal gyrus; ANG, Angular gyrus; ACG, Anterior cingulate and paracingulate gyri; DCG, Median cingulate and paracingulate gyri; PAL, Lenticular nucleus, 
pallidum; STG, Superior temporal gyrus.

https://doi.org/10.3389/fnins.2024.1363255
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ke et al. 10.3389/fnins.2024.1363255

Frontiers in Neuroscience 10 frontiersin.org

in both states compared to healthy controls, especially in state 1, 
where abnormalities in effective connectivity occurred between 
multiple cortical regions such as temporal, basal, limbic, and 
parietal lobes, which can lead to reduced information transfer and 
coordination between these regions, and this reduction in effective 
connectivity may have contributed to the more pronounced low 
brain in state 1 in patients. Activity. In addition, we found that in 
state 1, changes in effective connectivity were particularly 

associated with the three identified regions of significant 
abnormality. The decrease in effective connectivity was also 
significant compared to state 2. This suggests that state 1 exhibits 
more regions of significant abnormal firing and abnormal neuronal 
inhibition compared to state 2. The characteristics of state 1 can 
be  considered as a potential early warning signal for seizures. 
Therefore, monitoring and analyzing different brain states is 
beneficial for early diagnosis.

FIGURE 6 (Continued)
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Anomalous causal links in the two states were found to exist 
between multiple cortical regions, particularly in the parietal lobe 
(right ANG, right SPG), the occipital lobe (right SOG), the limbic lobe 
(left DCG, right HIP, left ACG), and the basal ganglia (left PAL), they 
are located within different brain networks. These regions located 
within the basal ganglia network, VN, SMN and DMN, are important 
structures in the brain. They play a crucial role in motor control, 
emotional regulation, and cognitive processes, among other functions. 
Cognitive impairments and increased psychopathological risk in 
epilepsy may be attributed to disrupted causal relationships among 
core neurocognitive brain networks (Wei et al., 2016). The ANG and 
SPG are important areas of the parietal lobe, and the SPG plays a 
pivotal role in many sensory and cognitive processes, including motor 
sensory, visuospatial attention and socially relevant behavioral control. 
The ANG is associated with the processing of visual information and 
visual perception. It is involved in the discrimination, recognition and 
categorization of visual objects and in regulating spatial perception 
and attention. We found enhanced effective connectivity from the 
SPG.R to the ANG.R in our patients, which may imply increased 
information transfer between the SPG.R and the ANG.R and may 
contribute to more effective visual information processing and 
regulation of visual perception. The STG.L is the main region of the 
temporal lobe. Lee et al. (2014) explored the causal influence between 
cortical regions in JME patients by analyzing EEG data. They found 
that during the slow-wave descent phase, patients exhibited maximal 
outflow from the temporal cortex, and that reduced effective 
connectivity from STG.L to PAL.L in state 1 may be the main cause of 

maximal outflow from the temporal cortex. Similarly, alterations in 
effective connectivity in the hippocampus, temporal lobe, and 
prefrontal cortex are critical for understanding seizures. Previous 
studies based on mouse animal models have shown extensive cortical 
and subcortical functional network abnormalities in focal 
hippocampal seizures (Englot et  al., 2008). The temporal lobe is 
generally associated with language, auditory, memory, and emotional-
affective functions. And its particular function for language is 
interpretation and presentation in addition to language 
comprehension, that also contributes to social cognition and 
emotional processing. The hippocampus and temporal lobe are closely 
related. In state 2, we found that the connections from HIP.R to STG.L 
were enhanced. This result validates the theory that abnormal 
hippocampal activity and epileptic discharges are likely to affect the 
temporal lobe (Chassoux et al., 2004; Ritchey et al., 2015).

In addition, ample evidence suggests that multiple brain network 
functions are impaired in JME patients, including subcortical 
networks, DMN, SMN etc. (Zhong et al., 2018; Lee and Park, 2019). 
Jiang et al. (2018) studied the functional and causal connectivity of the 
AN and DMN in patients with refractory epilepsy. They found that 
frequent seizures in patients with refractory epilepsy may impair the 
cortex, disrupting the AN and DMN networks and leading to changes 
in functional and causal connectivity. Additionally, epileptic activity 
may disrupt network interactions and affect information exchange. 
The study found that multiple brain network nodes in JME patients 
have abnormal causal connections, indicating that seizures are not just 
a localized brain region problem but a systemic issue involving the 

FIGURE 6

Brain regions showed significant differences in node betweenness centrality (A), node degree centrality (B), and node efficiency (C) in specific brain 
regions between the JME group and HC groups. Error bars represent standard errors. JME: juvenile myoclonic epilepsy; HC: healthy controls, *p  <  0.05, 
***p  <  0.01, FDR-corrected.
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entire brain network. This provides significance for the diagnosis and 
treatment of the disease.

Finally, this study also found a significant correlation between the 
node betweenness centrality with significant anomalies and NHS3 
scores. The angular gyrus is involved in social cognition and language, 
and given its rich connectivity and location of multisensory 
information convergence, the angular gyrus resembles a cross-modal 
integrative hub (Seghier, 2013). The pallidum is located in the basal 
ganglia-thalamus-cortex neural network and is a central region for the 
induction of myoclonic seizures (Huh et  al., 2018). Through our 
analysis, we found that betweenness centrality in the angular gyrus and 
pallidum was significantly and positively correlated with NHS3 scores, 
speculating that the angular gyrus and pallidum may serve as potential 

targets for epilepsy therapy, with the potential to improve symptom 
control in patients with epilepsy by intervening in the functional 
activity or network connectivity of these regions. Similarly it has been 
shown that an increase in the number of high betweenness centrality 
in a population of patients with epilepsy serves as a marker of enhanced 
connectivity, and is similarly effective in identifying those patients who 
are more likely to have persistent seizures (Grobelny et al., 2018).

Our research is subject to the following limitations: Firstly, our 
sample size needs to be  increased, and further analysis of the 
connectivity abnormalities between brain networks should 
be conducted in a larger population of JME patients. Secondly, some 
studies have found that there are differences in susceptibility to epilepsy 
between males and females (Savic, 2014). In the future, we will consider 

FIGURE 7

Cluster analysis results of effective connectivity status of JME subjects. The total number and percentage of occurrences are listed above each 
centroid matrix.

FIGURE 8

Dynamic effective connectivity modes of different states, where the arrow indicates the direction of causal influence (p  <  0.05, FDR corrected). Warm 
and cool colored lines, respectively, represent the increase and decrease of effective connectivity (EC) in JME compared to HC.
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gender in investigating differences in brain functional networks 
between males and females with JME. Thirdly, a rough division of the 
whole brain into 90 regions based on the AAL template was used to 
construct functional brain networks. A previous study showed that 
different division schemes may lead to different results in graph theory 
metrics (Zalesky et al., 2010). In future studies we will choose a finer 
template, which will not only help to identify and extract regions of 
interest more accurately, but also explore the functional connectivity 
and interactions between different brain regions in more depth. 
Furthermore, although this research is dedicated to exploring brain 
network properties, our construction of network models has not 
directly accounted for white matter functionality. White matter 
functioning is indeed a significant part of brain networks. A body of 
research has shown that BOLD signals can be used to infer white 
matter function (Ji et al., 2017, 2019, 2023). Ignoring white matter 
function may potentially restrict the depth of our comprehension of 
the overall dynamics and functional aspects of brain networks. 
Therefore, it is imperative for future studies to introduce and effectively 
integrate white matter functional data into brain network models in 
order to improve their accuracy and thoroughness.
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