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Unsupervised learning based on restricted Boltzmann machine or autoencoders 
has become an important research domain in the area of neural networks. In 
this paper mathematical expressions to adaptive learning step calculation for 
RBM with ReLU transfer function are proposed. As a result, we can automatically 
estimate the step size that minimizes the loss function of the neural network 
and correspondingly update the learning step in every iteration. We  give a 
theoretical justification for the proposed adaptive learning rate approach, which 
is based on the steepest descent method. The proposed technique for adaptive 
learning rate estimation is compared with the existing constant step and Adam 
methods in terms of generalization ability and loss function. We demonstrate 
that the proposed approach provides better performance.
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1 Introduction

During recent years many papers have been devoted to the study of restricted Boltzmann 
machines (RBM) and more generally to that of deep learning, because it is a breakthrough 
approach in the field of artificial intelligence (Hinton, 2002, 2010; Hinton et al., 2006; Hinton 
and Salakhutdinov, 2006; Nair and Hinton, 2010; Krizhevsky et al., 2012; LeCun et al., 2015). 
Deep learning has been developing very quickly in the last decade. As a result, various 
successful applications of deep learning have been proposed in speech recognition, computer 
vision, natural language processing, data visualization, etc. (Bengio et al., 2007, 2013, 2021; 
Bengio, 2009; Larochelle et al., 2009; Erhan et al., 2010; Golovko et al., 2010; Glorot et al., 2011; 
Mikolov et al., 2011; Hinton et al., 2012; Madani et al., 2018; Lamb et al., 2022; Verma et al., 
2022; Aguilera et al., 2023; Menezes et al., 2023; Chen et al., 2024).

One of the major and important problems in this domain is the selection of suitable 
hyperparameters values to achieve significant performance of a neural network. Among 
these parameters, the learning rate is of great importance because it has a significant impact 
on the training efficiency of the neural network (Golovko, 2003; Cho et al., 2011; Duchi 
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et al., 2011; Krizhevsky and Hinton, 2012; Zeiler, 2012; Schaul et al., 
2013; Kingma and Ba, 2014; Ruder, 2016; Pouyanfar and Chen, 
2017; Smith, 2017; Baydin et al., 2018; Takase et al., 2018; Arpit and 
Bengio, 2019; Vaswani et al., 2019; Pesme et al., 2020; Carvalho 
et al., 2021; Nakamura et al., 2021; Chen et al., 2022; Defazio et al., 
2023; Golovko et  al., 2023; Wang et  al., 2023). The choice of an 
appropriate learning rate controls how well the neural network 
adapts to the problem being solved and achieves a suitable minimum 
of the loss function. So, for instance, for many applications the 
learning rate has to be  manually and carefully chosen, because 
depending on this parameter the learning process can be divergent 
or convergent. Therefore, to avoid these problems, learning step 
should be  defined and modified automatically during neural 
network learning.

The neural networks community has been concerned with this 
problem for many years, and currently there are only partial solutions 
to selecting an appropriate learning rate. This situation gives rise to the 
question of how we can obtain analytical expressions for learning rate 
calculation. This question is addressed in the present paper. As a 
result, an analytical approach to estimate the value of the learning step 
has been proposed, based on the steepest descent approach. The 
proposed approach capables to automatically defining and adjusting 
the learning rate during the training of a neural network.

In our previous work (Golovko et  al., 2023), we  proposed an 
approach to estimate the learning rate of a single-layer perceptron 
with a rectified linear unit activation function (ReLU). The present 
article focuses on an adaptive learning step (ATS) for RBM with a 
ReLU. It is the simplest activation function, which is a piecewise linear 
function consisting of two straight lines. ReLU is not a saturated 
activation function with unlimited output, unlike other activation 
functions. It has been noted in existing literature that using a ReLU 
network generally improves performance (Vaswani et al., 2019; Wang 
et al., 2023). As stated in the article (Nair and Hinton, 2010) rectified 
linear units can improve RBM. As well is known a RBM can be applied 
for deep neural networks learning (LeCun et  al., 2015). The 
conventional approach to RBM learning usually uses constant or 
empirically varying learning step (Cho et al., 2011). Currently, there 
are no analytical expressions to estimate the learning rate, which can 
be automatically defining and adjusting the learning rate during the 
training of a RBM network. As a rule, there are only empirical and 
heuristic approaches to set learning rate.

Therefore, in this paper we investigate the calculation of adaptive 
learning rate for a RBM, which is based on the steepest descent 
technique (Golovko et al., 2000, 2023; Golovko, 2003). This approach 
is based on minimizing the loss function to calculate the adaptive 
learning step. Since derivation an accurate analytical expression for 
estimating the learning rate using steepest descent approach is a very 
difficult task, most scientists use the steepest descent method together 
with the line search approach. However, as we will show in this article, 
it is possible to derive exact expressions for the RBM learning rate 
using the ReLU activation function. The adaptive learning rate 
approach permits to compute the learning step at each time. An 
advantage of the proposed approach is that we  can automatically 
estimate a specific learning rate value for each batch or each example 
from the training data set.

Further, we  perform stacking ReLU RBM into a deep neural 
network. As a result, we  can train deep neural networks using 
unsupervised and SGD techniques.

The major contribution of this paper is novel mathematical 
expressions for adaptive learning rate calculation, if we use RBM with 
ReLU transfer function. The proposed approach is based on steepest 
descent technique and allows to estimate the ATS at each iteration of 
the learning algorithm. We have shown, using a set of experiments, 
that the proposed adaptive learning rate can improve performance 
with respect to learning quality and generalization ability.

In the present study we proceed as follows. Section 2 introduces 
the related work in this area. In Section 3 we  consider different 
representations of RBM. Section 4 deals with learning rules for RBM 
with ReLU. In section 5 we  propose the adaptive learning step 
calculation for RBM. Section 6 demonstrates the results of 
experiments, and finally we give our conclusion.

2 Related work

In the following, a brief overview of related works in this area is 
presented. It is well known that there are the two principal techniques 
for learning of deep neural networks (DNN): learning with pretraining 
using a greedy layer wise approach and stochastic gradient descent 
approach (SGD), including its various modifications. If we do not use 
pretraining of DNN, then it is necessary to use a rectified linear unit 
(ReLU) transfer function, because of the vanishing gradient problem 
(LeCun et al., 2015).

RBM can be used as building blocks for deep neural networks, 
where every layer of neural network is trained as RBM in an 
unsupervised manner (Hinton, 2002, 2010; Hinton et al., 2006; Hinton 
and Salakhutdinov, 2006; Nair and Hinton, 2010). By stacking RBMs 
in this way, one can obtain a suitable initialization of a deep neural 
network for further training using a backpropagation algorithm.

For smaller data sets, unsupervised pretraining helps to prevent 
overfitting (LeCun et al., 2015). As stated in paper (LeCun et al., 2015): 
“Although at present the supervised training with ReLU is used mainly 
for deep neural networks learning, we expect unsupervised learning 
to become far more important in the longer term. Human and animal 
learning is largely unsupervised: we discover the structure of the world 
by observing it, not by being told the name of every object.” 
Consequently, unsupervised learning is of great importance. 
Therefore, we consider in this work the different representations of 
RBM and study estimation of an adaptive learning rate.

Currently the most methods for learning rate estimation are 
oriented to the SGD approach (Duchi et al., 2011; Zeiler, 2012; Schaul 
et al., 2013; Kingma and Ba, 2014; Ruder, 2016; Pouyanfar and Chen, 
2017; Smith, 2017; Baydin et al., 2018; Takase et al., 2018; Vaswani 
et al., 2019; Nakamura et al., 2021; Chen et al., 2022; Defazio et al., 
2023; Wang et al., 2023). If the SGD approach is used, then, as a rule, 
an initial learning rate is selected manually, and further during the 
learning, the training rate is decreased over time, using different rules. 
We have not found any works as concerns analytical expressions for 
the learning rate estimation. There are various approaches to learning 
rate estimation using different versions of SGD. Let us consider these 
approaches shortly.

Existing works related to learning rate selection are based mostly 
on learning rate schedule or line search approach. So, for instance the 
estimation of adaptive learning rate using line search approach is 
proposed in Vaswani et  al. (2019) and Wang et  al. (2023). As 
mentioned earlier, as a rule, the line search approach is used in 
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conjunction with the steepest descent technique. However, such an 
approach is computationally expensive and time consuming. 
Furthermore, as will be shown in this paper, it is possible to obtain for 
RBM with ReLU precise expressions for the learning rate instead of 
using line search. Learning rate scheduling is a very popular approach 
and is used in various gradient descent optimization algorithms, 
namely, Adagrad, Adadelta, RMSprop, and Adam. The primary 
shortcoming associated with learning rate schedules is their 
dependence on predefined initial learning rate.

So, for instance, the Adagrad method (Duchi et al., 2011) divides 
the learning rate at each step by the norm of all previous gradients. The 
other approaches, such as Adadelta and Adam are based on Adagrad 
and as a result the learning rate decreases during training (Kingma and 
Ba, 2014; Ruder, 2016). In Pesme et al. (2020), the optimization process 
of SGD is divided into two stages: transient stage and stationary stage. 
It should be noted that the learning step is reduced during the stationary 
phase. In Smith (2017), scheduling learning rate is performed for each 
iteration. In Baydin et al. (2018), the hypergradient descent approach is 
proposed in order to find appropriate learning step. In Nakamura et al. 
(2021), ATS technique is proposed, which is based on a combination of 
reducing and increasing the learning rate.

As regards analytical learning rate at the pretraining stage, we have 
not found any works as concerns the learning rate estimation. 
Substantially, all known approaches are based again not on analytical 
expressions for calculating the learning rate, but on empirical 
approaches and the policy of changing the learning step. So, for 
instance, in Cho et al. (2011) for RBM is proposed an approach to 
automatically adjust the learning rate by maximizing a local likelihood 
estimate. However, as a result, the learning rate is chosen based on the 
previous learning rate and a small constant, that leads again in manual 
selection of the initial parameters.

In this paper we  propose to use steepest descent approach to 
derive learning rate. Such learning rate can only be obtained for linear 
and ReLU activation functions. When using the sigmoid activation 
function, we can only receive approximate expressions for the learning 
rate using the Taylor series expansion (Golovko et al., 2000; Golovko, 
2003). Since this is a very complicated problem, as mentioned before, 
most of the scientists use the steepest descent method together with 
the line search approach.

Our previous work (Golovko et al., 2023) reported an adaptive 
learning rate for a single-layer perceptron with a ReLU activation 
function. Let us consider the simplest neural network, namely single 
layer perceptron (SLP). In the case of a single-layer perceptron with 
ReLU activation function, the expressions for calculating the adaptive 
learning step was obtained for the first time in the work (Golovko 
et al., 2023) based on the proof of the following theorems:

Theorem 1: For a single-layer perceptron with a ReLU activation 
function in the case of online learning, the value of the adaptive 
learning step is calculated based on the following expression Eq. (1):
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Here r1 and r2 denotes corresponding slopes of the ReLU function; 
e tj ( ) is desired output for j-th unit; n and m denotes the number of 
input and output unit, S tj ( ), y tj ( ) are weighted sum and output of 
the j-th unit.

It should be noted, that 1 2r r≠  and 0 < r2 < 1.
Theorem 2: For a single-layer perceptron with a ReLU activation 

function in the case of batch learning, the value of the adaptive 
learning step is calculated based on the following expression Eq. (2):
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As stated in Golovko et al. (2023), the above expressions Eqs. (1, 2) 
can significantly increase the learning quality of a single-layer 
perceptron and achieve an optimal solution to the problem. The 
proposed approach was generalized to unsupervised pretraining of 
deep neural network (Golovko et al., 2023), using autoencoder method. 
The primary goal of the present work is to obtain the analytical 
expressions to learning rate estimation for restricted Boltzmann 
machine with ReLU activation function.

3 Restricted Boltzmann machine

In this section we consider different representation of RBM from 
structure and learning point of view.

Let us consider a conventional restricted Boltzmann machine 
(Hinton, 2010), which has bipartite structure consisting of two layers: 
a visible layer containing n units and hidden layer containing m units 
(Figure 1).

In the RBM structure, each neuron in visible layer is connected to 
all the units in the hidden layer, using bidirectional weights W. RBM 
can be used as main building blocks for deep neural networks (Hinton, 
2002, 2010; Hinton et al., 2006; Nair and Hinton, 2010). Usually the 
states of visible and hidden units are defined using a probabilistic 
version of the sigmoid activation function according to Eqs. (3, 4):
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FIGURE 2

Unfolded representation of RBM.

FIGURE 3

Gibbs sampling.

It should be  noted that the variables at the hidden  
layer are independent given the state of the visible units, and vice 
versa as shown in expression Eq. (5):  
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The hidden units of the RBM can be  interpreted as feature 
detectors which capture the regularities of the input data. The 
traditional way of getting the training rule is to maximize the function 
of log-likelihood of the input data distribution P(x). In other words, it 
is necessary to reproduce the distribution of input data as closely as 
possible using the states of hidden units. The main properties of 
conventional RBM are the following: symmetric weights in the hidden 
and visible layers; Gibbs sampling during the training and stochastic 
neurons. Next, we will consider a RBM that is characterized only by 
the first two properties, and the neurons are not stochastic.

Let us consider unfolded representation of the RBM using three 
layers (visible, hidden and visible; Golovko et al., 2015, 2016) as shown 
in Figure 2. Such a representation of RBM is equivalent to PCA or 
autoencoder neural network, where the hidden and last visible layer 
is, respectively, compression and reconstruction layer.

Let us consider the Gibbs sampling using CD-k. In this case we can 
represent Gibbs sampling for above structure as shown in Figure 3.

Next, we will consider Gibbs sampling for CD-1. Let x(0) is the 
input data, that enter at the visible layer at time 0. Then the output of 
the hidden layer is defined as follows Eqs. (6, 7):

FIGURE 1

Restricted Boltzmann machine.
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The reconstruction layer reproducts the data from the hidden 
layer. As a result we can obtain x(1) at time 1 using Eqs. (8, 9):
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After this, x(1) enters the visible layer and we  can obtain the 
output of the hidden layer the following way Eqs. (10, 11):
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As mentioned before the conventional approach of getting the 
training rule is to maximize the function of log-likelihood of the input 
data distribution. In Golovko et al. (2015, 2016), we have proposed an 
alternative approach in order to obtain RBM learning rule, which is 
based on the minimization of mean square error (MSE). As stated in 
Golovko et al. (2016) the primary goal of training RBM is to minimize 
the reconstruction mean squared error (MSE) in the hidden and 
visible layers simultaneously. The MSE in the hidden layer is 
proportional to the difference between the states of the hidden units 
at the various time steps. Then in case of CD-1 the MSE in the hidden 
layer is defined as shown in expression Eq. (12):
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Similarly, the MSE in the inverse layer is proportional to the 
difference between the states of the inverse units at the various time 
steps Eq. (13):
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where L is the number of training patterns.
Then the main purpose of the training RBM is to minimize the total 

mean squared error (MSE), which is defined as the sum of errors Eq. (14):
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The following theorem is proved in Golovko et al. (2016).
Theorem 3: Maximization of the log-likelihood input data 

distribution P(x) in the space of synaptic weights of the restricted 
Boltzmann machine is equivalent to special case of minimizing the 
reconstruction mean squared error in the same space.

As a result, the following training rule was obtained for online 
learning Eq. (15):
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then can be obtained the conventional learning rule Eq. (16):
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We have seen in this section, that depending on the loss 
function can be obtained different learning rules with derivatives 
and without derivatives of activation function with respect to 
weighted sum. In further we  will use the learning rule 
with derivatives.

4 Learning of RBM with ReLU

In this section, we consider the definition of ReLU activation 
function and RBM learning rule. As noted earlier, we consider RBM 
with deterministic neurons and for learning we will use the expressions 
given in the previous section. First of all, let us define the ReLU 
activation function by the following way.

Definition: The ReLU activation function for j-th unit can 
be presented by the following way Eq. (17):
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Here r1 and r2 denote corresponding slopes of the ReLU function; 
1 2r r≠ ; 0 12≤ <r . Usually r1 1=  is used.

The above definition of the activation function allows the use of 
any slope of straight lines and generalizes the conventional definition 
of ReLU and leaky ReLU activation functions.

Then we can obtain the following derivatives Eq. (19):
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Using the previous results Eq. (15), we can write the following 
equations for online learning Eq. (20):
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If we apply the batch learning and batch size is L1,
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Thus, in this section, we have derived learning rules for RBM with 
ReLU activation function. Further we will use given above expressions 
Eq. (21) for RBM learning.

5 Materials and methods

In this section we address adaptive learning rate estimation for 
RBM with ReLU activation function. Since the RBM network has 
symmetric weights in the hidden and visible layers, we should derive 
the optimal training step for the two layers.

The learning step is called adaptive, which is chosen at each 
stage of the algorithm in such a way in order to minimize the total 
mean squared error (Golovko et al., 2000; Golovko, 2003; Golovko 
et al., 2023). We will use the steepest descent approach in order 
to obtain the expression for adaptive learning rate. Accordingly, 
to steepest descent approach, the learning step α is selected so as 
to minimize the mean square error of the new parameters 
Eq. (22):
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where y t x tj
k

i
k

1 1 1 1, ,+( ) +( ),  are the outputs of the hidden and 
visible layer at the next time t +1 after updating the RBM 
trainable parameters.

As a result, at each step of learning algorithm we should choose 
the value of learning rate in such a way that, when modifying weights 

and thresholds to guarantee a minimum of the mean squared error 
for each batch or each example from the training data set.

Theorem 4: For an RBM network with a ReLU activation function 
in the case of batch learning, the value of the adaptive learning step, 
that minimizes the mean squared error for each batch is calculated 
based on the following expression:
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where the corresponding terms are determined according to the 
expressions Eqs. (24–32):
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Proof: We should find adaptive learning rate by minimizing the 
following loss function Eq. (33):
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The output of the hidden and visible layer at the next time t +1 
after updating trainable parameters can be defined as according to 
the expressions Eq. (34):
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Let us consider at the beginning the weighted sum of the hidden 
layer at the next time t +1
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Substituting corresponding expression for weights and threshold 
updating from Eq. (21) in Eq. (35) we can obtain Eq. (36)
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where bj is defined using Eq. (37)
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We will use a similar approach for the visible layer. Then the 
weighted sum of the visible layer can be defined as follows:
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Substituting corresponding expression from Eq. (21) in Eq. (38) 
we can write obtain Eq. (39)
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Where bj is defined using Eq. (40)
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As a result, we can obtain the final expressions regarding output 
of the hidden and visible layer Eq. (41)

 
y t r t S bj
k

j
k

j
k

j
k

1 1 1 1 1, ,+( ) = +( ) ( ) −( )α
 

(41)

 
x t r t S bi
k

i
k

i
k

i
k

1 1 1 1 1, , .+( ) = +( ) ( ) −( )α

Differentiating the loss function Es  with respect to α we can 
obtain Eq. (42)
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As a result, we can obtain the following final expression Eq. (43):
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Since in accordance with Eq. (44)
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we have found the minimum of the cost function. Thus the 
theorem is proved.

As follows from the proven theorem, the adaptive learning rate 
minimizes the mean squared error of the network under updating 
weights and thresholds.

The major difficulty arises in the computing of 
r t r tj
k

i
k

1 1 1 1, ,+( ) +( ), , because it is desired parameters of ReLU 
transfer function. Since the desired outputs of the hidden and visible 
layer correspondingly y jk 0( ) and xik 0( ) then we can write Eq. (45)
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Theorem 5: For RBM network with a ReLU activation function in 
the case of online learning, the value of the adaptive learning step, that 
minimizes the mean squared error for each pattern is defined as 
follows Eq. (46):
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where the corresponding terms are calculated based on 
Eqs. (47–55)
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TABLE 1 Evolution of the reconstruction error (MSE) for artificial data.

Number of epochs α  =  3e − 1 α  =  3e − 2 α  =  3e − 3 α  =  3e − 4 α  =  3e − 5 ATS

10 0.2223 0.0974 0.1394 0.1393 0.1862 0.1001

20 0.2240 0.0975 0.0982 0.1392 0.1653 0.0903

30 0.2241 0.0982 0.0983 0.1392 0.1537 0.0902

40 0.2230 0.0972 0.0982 0.1392 0.1474 0.0737

50 0.2231 0.0972 0.0982 0.1391 0.1422 0.0753
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This theorem is proved by the same approach.
It should be noted that the proposed expressions for calculating 

the learning step are valid when 2 0.r ≠  If 2 0r ≠ , then in accordance 
with RBM learning rule Eq. (21), the training is performed only in the 
area where weighted sum is greater than 0, since the gradient of this 
function is 0, if weighted sum less than 0. In that case, we can simplify 
the expressions for learning rate.

Corollary: For RBM network with a ReLU activation function and 
r r1 21 0= =,  in the case of online learning, the value of the adaptive 
learning step is calculated based on the following expression Eqs. (56–58):
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In a similar way, we can obtain an expression for the adaptive step 
calculation when using batch learning. The proposed expressions allow 
to estimate the learning rate after presenting every batch or pattern to 
the neural network and based on the minimization of loss function. 
Adaptive training step approach permits to choose automatically step 
for every batch or pattern from training data set. The performance of 
proposed approach is discussed in the next section.

6 Experiments

This section summarizes numerical results obtained by the 
application of adaptive and constant learning rate. In order to evaluate 
the performance of the proposed approach we will conduct various 
experiments using RBM and deep neural network. In all experiments, 

we will use batch learning with adaptive rate Eq. (23). In that case the 
weights and thresholds of the network will be modified based on rule 
Eq. (21) presented in this paper. For experiments, we will use both an 
artificial and the MNIST dataset. The primary aim of this section is to 
compare learning of neural network with and without proposed 
training approach with adaptive learning rate. The experiments are 
divided into 2 groups. The first experiments focuses on the RBM 
network and the second on deep multilayer neural network.

6.1 RBM results

Let us consider the use of an adaptive learning step for a RBM 
network. To evaluate the effectiveness of adaptive learning rate we will 
use two datasets.

6.1.1 Artificial dataset
The artificial data x lie on a one-dimensional manifold (a helical 

loop) embedded in three dimensions (Scholz et al., 2008) and were 
generated from a uniformly distributed factor t in the range [0.05, 0.95]:
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where μ – Gaussian noise with mean 0 and standard deviation 0.05.
The primary goal of the experiment is to study the performance 

of ATS for data compression and reconstruction. Then the RBM will 
consist of 3 visible and 1 hidden unit. The training dataset consists of 
1,000 samples. The size of the test patterns is also 1,000. The batch size 
equal 8 and the parameters of ReLU function are the following: 
r r1 21 0 01= =, . . We trained the RBM network using only clean data 
and tested using noisy data. The evolution of reconstruction error vs. 
epoch of RBM learning is provided in Table 1. As can be seen from the 
table the adaptive learning rate has obvious excellence compared to 
constant steps. The plots of the reconstruction accuracy vs. epoch for 
learning and testing using the best constant and adaptive rate are 
presented in Figures  4, 5. It should be  noted here that testing is 
performed after each learning epoch. As follows from the presented 
figures, the adaptive learning rate has the evident advantage compared 
to the fixed learning rate, namely, the best performance in terms of 
learning quality and generalization ability.

6.1.2 MNIST dataset
In this section we will use the MNIST dataset, which contains 

60,000 hand-written digit images for training, and 10,000 images for 
testing. Data in MNIST are grayscale images with size 28 × 28. Before 
training the images are normalized to be zero-mean.
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Let us model the RBM network. This simulation is used to 
illustrate the compression and reconstruction properties of restricted 
Boltzmann machine. Let us model the RBM network which consist of 
784 neurons of visible and 128 units of hidden layers. The main goal 
of such modeling is to compress and reconstruct MNIST data. The 
parameters of experiments are shown in Table 2. We used original 
images from MNIST dataset and before representation to RBM only 
centering is performed.

The evolution of reconstruction square error Eq. (13) is shown in 
Table 3. Here div. Denotes divergence of learning. The analysis of the 
data in this table indicates that learning with a constant rate is 
unstable. For instance, if α = 1e − 4, the neural network cannot 
be trained. As can be seen only training with a constant learning rate 
(3e − 7) leads to a positive result.

Hence, the learning algorithms with constant training step can 
diverge if the learning parameters are not chosen appropriately, as 

FIGURE 4

Plot of reconstruction accuracy versus epoch for learning using adaptive and constant learning rates.

FIGURE 5

Plot of reconstruction accuracy versus epoch for testing using adaptive and constant learning rates.
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TABLE 2 Parameters of experiments.

Number of pretraining epoch Batch size r1 r2

8 128 1 0.01

TABLE 3 Evolution of the reconstruction error (MSE) for MNIST.

Number of epochs α  =  1e − 4 α  =  3e − 5 α  =  3e − 6 α  =  3e − 7 ATS

1 0,126 0.095 0.073 0.073787208 0.070819163

2 0,178 0.111 0.074 0.073663836 0.070752306

3 0,213 0.125 0.075 0.073577446 0.070733909

4 div. 0.138 0.077 0.073518835 0.070713023

5 div. 0.154 0.081 0.073481718 0.070700173

6 div. 0.171 0.087 0.073461681 0.070700861

7 div. 0.199 0.098 0.073455503 0.070687373

8 div. 0.232 0.115 0.073460822 0.070678658

shown in Table 3. Therefore, we should select the constant learning 
rate very carefully.

Also it should be remarked, that learning with ATS have shown 
the result after first epoch better than with constant step at any epoch. 
After 8 epochs have obtained the best result with reconstruction error 
of 0.070678658. The best result using constant step is 0.073455503. 
This result was obtained after 8 epochs. As can be seen, the adaptive 
learning rate has a significant advantage in comparison with the 
constant learning stage. The evolution of reconstruction error is 
presented in Figure 6.

6.2 Deep multilayer perceptron

Let us consider the analysis of the proposed approach for a deep 
multilayer neural network using the MNIST dataset. We have used for 

experiments deep perceptron with ReLU activation function which 
has the following structure: 784-1600-1600-800-800-10. The 
parameters of experiments are shown in Table 4. The results of our 
experiments are shown in Table 5. Pretraining is performed using only 
1–3 epochs.

The evolution of mean squared error for different approaches is 
presented in Figure 7. Finally, we have the following experimental 
results, which are shown in Table 5. The smallest test error without 
using ATS and pretraining is 0.002531. If we use ATS the smallest test 
error is 0.002299. The smallest test error for pretraining with constant 
step is 0.002392. As in the previous case, the table shows that learning 
with a constant rate can be unstable. As a result, a learning algorithm 
with a constant learning step may be divergent. Tables 6–8 show the 
predictive performance of different learning approaches for MNIST 
classification. As can be  seen, in general the ATS approach 
outperformed the learning technique with fixed learning rate. So, for 

FIGURE 6

Evolution of reconstruction error MSE for adaptive and constant learning rates.
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instance, the number of correct predictions using the adaptive rate 
(Table 6) is 6 and 9 more, respectively, compared to models with a 
constant step (Tables 7, 8). As can be seen the use of ATS permits to 
reduce the test error and correspondingly improve the 
generalization ability.

7 Conclusion and discussion

The learning of neural networks is a tricky task, which highly 
depends on suitable hyperparameters selection to achieve significant 
performance of a neural network. The choice of an appropriate 
learning rate is of great importance because it has a significant impact 
on the training efficiency. Depending on this parameter the learning 
process can be divergent or convergent.

We have not found any works as concerns exact analytical 
expressions for the learning rate estimation, based on the steepest 
descent technique. Such precise analytical expressions can only 
be obtained for linear and ReLU activation functions. When using the 
sigmoid activation function, we  can only receive approximate 
expressions for the learning rate using the Taylor series expansion. 

Since this is a very complicated problem, most of the scientists use the 
steepest descent method together with the line search approach.

Our previous work (Golovko et al., 2023) reported an adaptive 
learning rate for a single-layer perceptron with a ReLU activation 
function. In this work, we extended this idea to obtain the learning 
rate for the RBM network. As a result, novel analytical expressions for 
learning step estimation have been proposed in this paper. The 
proposed approach for ATS estimation is based on minimization the 
mean squared error for each batch or each sample. The presented 
expressions are applied for restricted Boltzmann machine learning 
with ReLU activation function. We consider quasi-conventional RBM, 
namely we use symmetric weights in the hidden and visible layers, 
Gibbs sampling and deterministic units. We first demonstrate the 
proposed approach for ATS calculation is more effective and more 
efficient for RBM learning than the conventional RBM algorithm. 
Second, we show that such kind of RBM can be used for deep neural 
network pretraining using greedy layer wise algorithm. As a result, 
we can reach better generalization ability.

The main advantages of the proposed approach are the 
following: it is based on precise mathematical expressions 
obtained by minimizing the mean squared error for each batch 

TABLE 4 MNIST Classification Experiment Parameters.

Number of 
pretraining epochs

Number of fine-
tuning epochs

Batch size r1 r2
Initial α at the 

finetuning stage

3 50 128 1 0.01 3e − 4

TABLE 5 Testing a deep multilayer perceptron pertaining.

α  =  1e − 4 α  =  3e − 5 α  =  3e − 6 α  =  3e − 7 ADAM ATS

MSE div div 0.0024235 0.0024619 0.0024729 0.0022999

Precision macro 0.0098 0.0098 0.986 0.98562 0.98539 0.98656

Accuracy 0.0098 0.0098 0.986 0.9857 0.9854 0.9866

FIGURE 7

Evolution of MSE for adaptive and constant learning rates.
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or each pattern; it is capable of automatically defining and 
adjusting the learning rate during neural network training; it 
guarantees convergence to well-performing local minima. The 
disadvantage of the presented approach is higher computational 
complexity compared to constant step.

This work opens the way toward the following future research: 
define the conditions where such an learning rate can guarantee 
convergence to best-performing local minima and to study how this 
approach can be  extended to train a multilayer neural network 
without pretraining using RBM.

TABLE 6 Confusion matrix for MNIST classification using pretraining with ATS.

Predicted values

0 1 2 3 4 5 6 7 8 9

Actual values

0 974 0 0 0 0 0 1 2 2 1

1 0 1,130 0 1 0 1 1 2 0 0

2 2 0 1,015 2 2 0 0 5 5 1

3 0 0 1 998 0 3 0 4 3 1

4 1 0 1 1 966 0 2 1 0 10

5 2 0 0 5 0 877 2 1 4 1

6 4 2 0 0 1 4 947 0 0 0

7 1 2 6 0 0 0 0 1,013 2 4

8 1 0 1 3 1 0 0 5 960 3

9 1 2 1 4 7 3 0 4 1 986

TABLE 8 Confusion matrix for MNIST classification using pretraining with α  =  3e-7.

Predicted values

0 1 2 3 4 5 6 7 8 9

Actual values

0 974 1 0 1 0 1 1 1 1 0

1 0 1,126 3 0 0 2 3 0 1 0

2 0 1 1,021 2 1 0 1 4 2 0

3 0 0 4 999 0 1 0 1 0 5

4 1 1 3 0 964 0 3 3 0 7

5 2 0 0 3 1 881 1 1 2 1

6 6 2 0 1 4 4 940 0 1 0

7 2 1 5 3 0 0 0 1,015 2 0

8 3 0 2 6 1 3 1 2 952 4

9 4 2 0 3 6 4 0 3 2 985

TABLE 7 Confusion matrix for MNIST classification using pretraining with α  =  3e − 6.

Predicted values

0 1 2 3 4 5 6 7 8 9

Actual values

0 973 1 1 0 0 0 3 1 1 0

1 0 1,126 1 2 0 2 2 1 1 0

2 1 1 1,018 2 1 0 1 7 1 0

3 0 0 3 999 0 2 0 2 2 2

4 1 2 1 0 969 0 2 0 0 7

5 2 0 0 5 1 878 2 1 1 2

6 5 2 0 0 3 2 945 0 1 0

7 1 2 7 1 1 0 0 1,010 3 3

8 4 0 3 7 2 1 1 4 950 2

9 3 2 0 0 6 3 0 3 0 992
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