
Frontiers in Neuroscience 01 frontiersin.org

An analytical approach for
unsupervised learning rate
estimation using rectified linear
units
Chaoxiang Chen 1,2,3, Vladimir Golovko 4,5*,
Aliaksandr Kroshchanka 5, Egor Mikhno 5, Marta Chodyka 4 and
Piotr Lichograj 4

1 School of Information Science and Technology, Zhejiang Shuren University, Hangzhou, China,
2 International Science and Technology Cooperation Base of Zhejiang Province: Remote Sensing
Image Processing and Application, Hangzhou, China, 3 Institute of Traditional Chinese Medicine
Artificial Intelligence Zhejiang Shuren University, Hangzhou, China, 4 Department of Computer
Science, John Paul II University in Biala Podlaska, Biala Podlaska, Poland, 5 Intelligent Information
Technologies Department, Brest State Technical University, Brest, Belarus

Unsupervised learning based on restricted Boltzmann machine or autoencoders
has become an important research domain in the area of neural networks. In
this paper mathematical expressions to adaptive learning step calculation for
RBM with ReLU transfer function are proposed. As a result, we can automatically
estimate the step size that minimizes the loss function of the neural network
and correspondingly update the learning step in every iteration. We give a
theoretical justification for the proposed adaptive learning rate approach, which
is based on the steepest descent method. The proposed technique for adaptive
learning rate estimation is compared with the existing constant step and Adam
methods in terms of generalization ability and loss function. We demonstrate
that the proposed approach provides better performance.

KEYWORDS

adaptive training step, RBM, deep learning, unsupervised learning, ReLU, activation
function, Adam

1 Introduction

During recent years many papers have been devoted to the study of restricted Boltzmann
machines (RBM) and more generally to that of deep learning, because it is a breakthrough
approach in the field of artificial intelligence (Hinton, 2002, 2010; Hinton et al., 2006; Hinton
and Salakhutdinov, 2006; Nair and Hinton, 2010; Krizhevsky et al., 2012; LeCun et al., 2015).
Deep learning has been developing very quickly in the last decade. As a result, various
successful applications of deep learning have been proposed in speech recognition, computer
vision, natural language processing, data visualization, etc. (Bengio et al., 2007, 2013, 2021;
Bengio, 2009; Larochelle et al., 2009; Erhan et al., 2010; Golovko et al., 2010; Glorot et al., 2011;
Mikolov et al., 2011; Hinton et al., 2012; Madani et al., 2018; Lamb et al., 2022; Verma et al.,
2022; Aguilera et al., 2023; Menezes et al., 2023; Chen et al., 2024).

One of the major and important problems in this domain is the selection of suitable
hyperparameters values to achieve significant performance of a neural network. Among
these parameters, the learning rate is of great importance because it has a significant impact
on the training efficiency of the neural network (Golovko, 2003; Cho et al., 2011; Duchi

OPEN ACCESS

EDITED BY

Anguo Zhang,
University of Macau, China

REVIEWED BY

Omid Memarian Sorkhabi,
University College Dublin, Ireland
Junyi Wu,
Fuzhou University, China

*CORRESPONDENCE

Vladimir Golovko
 vladimir.golovko@gmail.com

RECEIVED 28 December 2023
ACCEPTED 28 February 2024
PUBLISHED 08 April 2024

CITATION

Chen C, Golovko V, Kroshchanka A, Mikhno E,
Chodyka M and Lichograj P (2024) An
analytical approach for unsupervised learning
rate estimation using rectified linear units.
Front. Neurosci. 18:1362510.
doi: 10.3389/fnins.2024.1362510

COPYRIGHT

© 2024 Chen, Golovko, Kroshchanka,
Mikhno, Chodyka and Lichograj. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 08 April 2024
DOI 10.3389/fnins.2024.1362510

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1362510﻿&domain=pdf&date_stamp=2024-04-08
https://www.frontiersin.org/articles/10.3389/fnins.2024.1362510/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1362510/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1362510/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1362510/full
mailto:vladimir.golovko@gmail.com
https://doi.org/10.3389/fnins.2024.1362510
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1362510

Chen et al. 10.3389/fnins.2024.1362510

Frontiers in Neuroscience 02 frontiersin.org

et al., 2011; Krizhevsky and Hinton, 2012; Zeiler, 2012; Schaul et al.,
2013; Kingma and Ba, 2014; Ruder, 2016; Pouyanfar and Chen,
2017; Smith, 2017; Baydin et al., 2018; Takase et al., 2018; Arpit and
Bengio, 2019; Vaswani et al., 2019; Pesme et al., 2020; Carvalho
et al., 2021; Nakamura et al., 2021; Chen et al., 2022; Defazio et al.,
2023; Golovko et al., 2023; Wang et al., 2023). The choice of an
appropriate learning rate controls how well the neural network
adapts to the problem being solved and achieves a suitable minimum
of the loss function. So, for instance, for many applications the
learning rate has to be manually and carefully chosen, because
depending on this parameter the learning process can be divergent
or convergent. Therefore, to avoid these problems, learning step
should be defined and modified automatically during neural
network learning.

The neural networks community has been concerned with this
problem for many years, and currently there are only partial solutions
to selecting an appropriate learning rate. This situation gives rise to the
question of how we can obtain analytical expressions for learning rate
calculation. This question is addressed in the present paper. As a
result, an analytical approach to estimate the value of the learning step
has been proposed, based on the steepest descent approach. The
proposed approach capables to automatically defining and adjusting
the learning rate during the training of a neural network.

In our previous work (Golovko et al., 2023), we proposed an
approach to estimate the learning rate of a single-layer perceptron
with a rectified linear unit activation function (ReLU). The present
article focuses on an adaptive learning step (ATS) for RBM with a
ReLU. It is the simplest activation function, which is a piecewise linear
function consisting of two straight lines. ReLU is not a saturated
activation function with unlimited output, unlike other activation
functions. It has been noted in existing literature that using a ReLU
network generally improves performance (Vaswani et al., 2019; Wang
et al., 2023). As stated in the article (Nair and Hinton, 2010) rectified
linear units can improve RBM. As well is known a RBM can be applied
for deep neural networks learning (LeCun et al., 2015). The
conventional approach to RBM learning usually uses constant or
empirically varying learning step (Cho et al., 2011). Currently, there
are no analytical expressions to estimate the learning rate, which can
be automatically defining and adjusting the learning rate during the
training of a RBM network. As a rule, there are only empirical and
heuristic approaches to set learning rate.

Therefore, in this paper we investigate the calculation of adaptive
learning rate for a RBM, which is based on the steepest descent
technique (Golovko et al., 2000, 2023; Golovko, 2003). This approach
is based on minimizing the loss function to calculate the adaptive
learning step. Since derivation an accurate analytical expression for
estimating the learning rate using steepest descent approach is a very
difficult task, most scientists use the steepest descent method together
with the line search approach. However, as we will show in this article,
it is possible to derive exact expressions for the RBM learning rate
using the ReLU activation function. The adaptive learning rate
approach permits to compute the learning step at each time. An
advantage of the proposed approach is that we can automatically
estimate a specific learning rate value for each batch or each example
from the training data set.

Further, we perform stacking ReLU RBM into a deep neural
network. As a result, we can train deep neural networks using
unsupervised and SGD techniques.

The major contribution of this paper is novel mathematical
expressions for adaptive learning rate calculation, if we use RBM with
ReLU transfer function. The proposed approach is based on steepest
descent technique and allows to estimate the ATS at each iteration of
the learning algorithm. We have shown, using a set of experiments,
that the proposed adaptive learning rate can improve performance
with respect to learning quality and generalization ability.

In the present study we proceed as follows. Section 2 introduces
the related work in this area. In Section 3 we consider different
representations of RBM. Section 4 deals with learning rules for RBM
with ReLU. In section 5 we propose the adaptive learning step
calculation for RBM. Section 6 demonstrates the results of
experiments, and finally we give our conclusion.

2 Related work

In the following, a brief overview of related works in this area is
presented. It is well known that there are the two principal techniques
for learning of deep neural networks (DNN): learning with pretraining
using a greedy layer wise approach and stochastic gradient descent
approach (SGD), including its various modifications. If we do not use
pretraining of DNN, then it is necessary to use a rectified linear unit
(ReLU) transfer function, because of the vanishing gradient problem
(LeCun et al., 2015).

RBM can be used as building blocks for deep neural networks,
where every layer of neural network is trained as RBM in an
unsupervised manner (Hinton, 2002, 2010; Hinton et al., 2006; Hinton
and Salakhutdinov, 2006; Nair and Hinton, 2010). By stacking RBMs
in this way, one can obtain a suitable initialization of a deep neural
network for further training using a backpropagation algorithm.

For smaller data sets, unsupervised pretraining helps to prevent
overfitting (LeCun et al., 2015). As stated in paper (LeCun et al., 2015):
“Although at present the supervised training with ReLU is used mainly
for deep neural networks learning, we expect unsupervised learning
to become far more important in the longer term. Human and animal
learning is largely unsupervised: we discover the structure of the world
by observing it, not by being told the name of every object.”
Consequently, unsupervised learning is of great importance.
Therefore, we consider in this work the different representations of
RBM and study estimation of an adaptive learning rate.

Currently the most methods for learning rate estimation are
oriented to the SGD approach (Duchi et al., 2011; Zeiler, 2012; Schaul
et al., 2013; Kingma and Ba, 2014; Ruder, 2016; Pouyanfar and Chen,
2017; Smith, 2017; Baydin et al., 2018; Takase et al., 2018; Vaswani
et al., 2019; Nakamura et al., 2021; Chen et al., 2022; Defazio et al.,
2023; Wang et al., 2023). If the SGD approach is used, then, as a rule,
an initial learning rate is selected manually, and further during the
learning, the training rate is decreased over time, using different rules.
We have not found any works as concerns analytical expressions for
the learning rate estimation. There are various approaches to learning
rate estimation using different versions of SGD. Let us consider these
approaches shortly.

Existing works related to learning rate selection are based mostly
on learning rate schedule or line search approach. So, for instance the
estimation of adaptive learning rate using line search approach is
proposed in Vaswani et al. (2019) and Wang et al. (2023). As
mentioned earlier, as a rule, the line search approach is used in

https://doi.org/10.3389/fnins.2024.1362510
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chen et al. 10.3389/fnins.2024.1362510

Frontiers in Neuroscience 03 frontiersin.org

conjunction with the steepest descent technique. However, such an
approach is computationally expensive and time consuming.
Furthermore, as will be shown in this paper, it is possible to obtain for
RBM with ReLU precise expressions for the learning rate instead of
using line search. Learning rate scheduling is a very popular approach
and is used in various gradient descent optimization algorithms,
namely, Adagrad, Adadelta, RMSprop, and Adam. The primary
shortcoming associated with learning rate schedules is their
dependence on predefined initial learning rate.

So, for instance, the Adagrad method (Duchi et al., 2011) divides
the learning rate at each step by the norm of all previous gradients. The
other approaches, such as Adadelta and Adam are based on Adagrad
and as a result the learning rate decreases during training (Kingma and
Ba, 2014; Ruder, 2016). In Pesme et al. (2020), the optimization process
of SGD is divided into two stages: transient stage and stationary stage.
It should be noted that the learning step is reduced during the stationary
phase. In Smith (2017), scheduling learning rate is performed for each
iteration. In Baydin et al. (2018), the hypergradient descent approach is
proposed in order to find appropriate learning step. In Nakamura et al.
(2021), ATS technique is proposed, which is based on a combination of
reducing and increasing the learning rate.

As regards analytical learning rate at the pretraining stage, we have
not found any works as concerns the learning rate estimation.
Substantially, all known approaches are based again not on analytical
expressions for calculating the learning rate, but on empirical
approaches and the policy of changing the learning step. So, for
instance, in Cho et al. (2011) for RBM is proposed an approach to
automatically adjust the learning rate by maximizing a local likelihood
estimate. However, as a result, the learning rate is chosen based on the
previous learning rate and a small constant, that leads again in manual
selection of the initial parameters.

In this paper we propose to use steepest descent approach to
derive learning rate. Such learning rate can only be obtained for linear
and ReLU activation functions. When using the sigmoid activation
function, we can only receive approximate expressions for the learning
rate using the Taylor series expansion (Golovko et al., 2000; Golovko,
2003). Since this is a very complicated problem, as mentioned before,
most of the scientists use the steepest descent method together with
the line search approach.

Our previous work (Golovko et al., 2023) reported an adaptive
learning rate for a single-layer perceptron with a ReLU activation
function. Let us consider the simplest neural network, namely single
layer perceptron (SLP). In the case of a single-layer perceptron with
ReLU activation function, the expressions for calculating the adaptive
learning step was obtained for the first time in the work (Golovko
et al., 2023) based on the proof of the following theorems:

Theorem 1: For a single-layer perceptron with a ReLU activation
function in the case of online learning, the value of the adaptive
learning step is calculated based on the following expression Eq. (1):

α t
r t b r t S t e

r t b
j
m

j j j j j

j
m

j j
() =

+() +() () −()
+()

=

=

∑
∑

1

1

2 2

1 1

1

(1)

b r t y e x tj j j j

i

n
i= () −() + ()











=
∑1

1

2
,

where r t
r e t
r e tj

j

j
+() = () ≥

() <





1

0

0

1

2

, ;

, .

Here r1 and r2 denotes corresponding slopes of the ReLU function;
e tj () is desired output for j-th unit; n and m denotes the number of
input and output unit, S tj (), y tj () are weighted sum and output of
the j-th unit.

It should be noted, that 1 2r r≠ and 0 < r2 < 1.
Theorem 2: For a single-layer perceptron with a ReLU activation

function in the case of batch learning, the value of the adaptive
learning step is calculated based on the following expression Eq. (2):

α t
r t S t e r t bk

L
j
m

j
k

j
k

j
k

j
k

j
k

k
L

j

() =
+() () −() +()()= =

= =

∑ ∑

∑
1 1

1 1

1

1

1 1

mm
j
k

j
kr t b∑ +()()1

2

(2)

b r t y e x t x tj
k

p

L

j
p

j
p

j
p

i

n
i
k

i
p= () −() + () ()











= =
∑ ∑

1 1

1

1 ,

whereL1 is batch size and r t
r e t

r e t
j
k

k
j
k

k
j
k

+() = () ≥
() <






1

0

0

1

2

, ;

, .

As stated in Golovko et al. (2023), the above expressions Eqs. (1, 2)
can significantly increase the learning quality of a single-layer
perceptron and achieve an optimal solution to the problem. The
proposed approach was generalized to unsupervised pretraining of
deep neural network (Golovko et al., 2023), using autoencoder method.
The primary goal of the present work is to obtain the analytical
expressions to learning rate estimation for restricted Boltzmann
machine with ReLU activation function.

3 Restricted Boltzmann machine

In this section we consider different representation of RBM from
structure and learning point of view.

Let us consider a conventional restricted Boltzmann machine
(Hinton, 2010), which has bipartite structure consisting of two layers:
a visible layer containing n units and hidden layer containing m units
(Figure 1).

In the RBM structure, each neuron in visible layer is connected to
all the units in the hidden layer, using bidirectional weights W. RBM
can be used as main building blocks for deep neural networks (Hinton,
2002, 2010; Hinton et al., 2006; Nair and Hinton, 2010). Usually the
states of visible and hidden units are defined using a probabilistic
version of the sigmoid activation function according to Eqs. (3, 4):

p y x

e
S w x Tj S j

i

n
ij i j

j
| ,() =

+
= +−

=
∑1

1 1
(3)

p x x
e

S w y Ti S i
j

m
ij j i

i
| ,() =

+
= +−

=
∑1

1 1
(4)

https://doi.org/10.3389/fnins.2024.1362510
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chen et al. 10.3389/fnins.2024.1362510

Frontiers in Neuroscience 04 frontiersin.org

FIGURE 2

Unfolded representation of RBM.

FIGURE 3

Gibbs sampling.

It should be noted that the variables at the hidden
layer are independent given the state of the visible units, and vice
versa as shown in expression Eq. (5):

P x y P x y
i

n
i| (|)() =

=
∏

1 (5)

P y x P y x
j

m
j| |() = ()

=
∏

1

The hidden units of the RBM can be interpreted as feature
detectors which capture the regularities of the input data. The
traditional way of getting the training rule is to maximize the function
of log-likelihood of the input data distribution P(x). In other words, it
is necessary to reproduce the distribution of input data as closely as
possible using the states of hidden units. The main properties of
conventional RBM are the following: symmetric weights in the hidden
and visible layers; Gibbs sampling during the training and stochastic
neurons. Next, we will consider a RBM that is characterized only by
the first two properties, and the neurons are not stochastic.

Let us consider unfolded representation of the RBM using three
layers (visible, hidden and visible; Golovko et al., 2015, 2016) as shown
in Figure 2. Such a representation of RBM is equivalent to PCA or
autoencoder neural network, where the hidden and last visible layer
is, respectively, compression and reconstruction layer.

Let us consider the Gibbs sampling using CD-k. In this case we can
represent Gibbs sampling for above structure as shown in Figure 3.

Next, we will consider Gibbs sampling for CD-1. Let x(0) is the
input data, that enter at the visible layer at time 0. Then the output of
the hidden layer is defined as follows Eqs. (6, 7):

FIGURE 1

Restricted Boltzmann machine.

https://doi.org/10.3389/fnins.2024.1362510
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chen et al. 10.3389/fnins.2024.1362510

Frontiers in Neuroscience 05 frontiersin.org

y F Sj j0 0() = ()() (6)

S x Tj

i
ij i j0 0() = () +∑ω

(7)

The reconstruction layer reproducts the data from the hidden
layer. As a result we can obtain x(1) at time 1 using Eqs. (8, 9):

x F Si i1 1() = ()() (8)

S y Ti
j
ij j i1 0() = () +∑ω

(9)

After this, x(1) enters the visible layer and we can obtain the
output of the hidden layer the following way Eqs. (10, 11):

y F Sj j1 1() = ()() (10)

S x Tj

i
ij i j1 1() = () +∑ω

(11)

As mentioned before the conventional approach of getting the
training rule is to maximize the function of log-likelihood of the input
data distribution. In Golovko et al. (2015, 2016), we have proposed an
alternative approach in order to obtain RBM learning rule, which is
based on the minimization of mean square error (MSE). As stated in
Golovko et al. (2016) the primary goal of training RBM is to minimize
the reconstruction mean squared error (MSE) in the hidden and
visible layers simultaneously. The MSE in the hidden layer is
proportional to the difference between the states of the hidden units
at the various time steps. Then in case of CD-1 the MSE in the hidden
layer is defined as shown in expression Eq. (12):

E y yh
l

L

j

m
j
k

j
k

1
1

2
1 0

1 1

2

() = () − ()()
= =
∑∑

(12)

Similarly, the MSE in the inverse layer is proportional to the
difference between the states of the inverse units at the various time
steps Eq. (13):

E x xv

l

L

i

n
i
k

i
k

1
1

2
1 0

1 1

2

() = () − ()()
= =
∑∑(

(13)

where L is the number of training patterns.
Then the main purpose of the training RBM is to minimize the total

mean squared error (MSE), which is defined as the sum of errors Eq. (14):

E E Es h v= () + ()1 1

 (14)

The following theorem is proved in Golovko et al. (2016).
Theorem 3: Maximization of the log-likelihood input data

distribution P(x) in the space of synaptic weights of the restricted
Boltzmann machine is equivalent to special case of minimizing the
reconstruction mean squared error in the same space.

As a result, the following training rule was obtained for online
learning Eq. (15):

 ω ω αij ij
j j j i

i i
t t

y y F S x
x x

+() = () −
() − ()() ()() ()

+ () − ()()
′

1
1 0 1 1

1 0 ′′ ()() ()










F S yi j1 0 (15)

T t T t x x F Si i i i i+() = () − () − ()() ()()′1 1 0 1α

T t T t y y F Sj j j j j+() = () − () − ()() ()()′1 1 0 1α

where α is learning rate.
It is easy to show, that if

′ ′()() = ∂ ()

∂ ()
= () = ∂ ()

∂ ()
=F S

y
S

F S
x
Sj

j

j
i

i

i
1

1

1
1

1

1
1(,

then can be obtained the conventional learning rule Eq. (16):

ω ω αij ij i j i jt t x y x y+() = () + () () − () ()()1 0 0 1 1 ,

T t T t y yj j j j+() = () + () − ()()1 0 1α

 (16)

 T t T t x xi i i i+() = () + () − ()()1 0 1α .

We have seen in this section, that depending on the loss
function can be obtained different learning rules with derivatives
and without derivatives of activation function with respect to
weighted sum. In further we will use the learning rule
with derivatives.

4 Learning of RBM with ReLU

In this section, we consider the definition of ReLU activation
function and RBM learning rule. As noted earlier, we consider RBM
with deterministic neurons and for learning we will use the expressions
given in the previous section. First of all, let us define the ReLU
activation function by the following way.

Definition: The ReLU activation function for j-th unit can
be presented by the following way Eq. (17):

y t F S t r t S tj j j j() = ()() = () () (17)

where r tj () is defined by the following way Eq. (18):

r t

r S t
r S tj

j

j
() = () ≥

() <





1

2

0

0

, ;

, .

(18)

Here r1 and r2 denote corresponding slopes of the ReLU function;
1 2r r≠ ; 0 12≤ <r . Usually r1 1= is used.

The above definition of the activation function allows the use of
any slope of straight lines and generalizes the conventional definition
of ReLU and leaky ReLU activation functions.

Then we can obtain the following derivatives Eq. (19):

https://doi.org/10.3389/fnins.2024.1362510
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chen et al. 10.3389/fnins.2024.1362510

Frontiers in Neuroscience 06 frontiersin.org

′

′

()() = ∂ ()
∂ ()

= ()

()() = ∂ ()
∂ ()

= (

F S
y
S

r and

F S
x
S

r

j
j

j
j

i
i

i
i

1
1
1

1

1
1
1

1))
(19)

Using the previous results Eq. (15), we can write the following
equations for online learning Eq. (20):

 ω ω αij ij
j j j i

i i i
t t

y y r x
x x r

+() = () −
() − ()() () ()

+ () − ()() (
1

1 0 1 1

1 0 1)) ()










y j 0 (20)

T t T t x x ri i i i i+() = () − () − ()() ()1 1 0 1α

T t T t y y rj j j j j+() = () − () − ()() ()1 1 0 1α

If we apply the batch learning and batch size is L1,

ω ω αij ij
p

L j
p

j
p

j
p

i
p

i
p

t t
y y r x

x
+() = () −

() − ()() () ()
+ () −=

∑1
1 0 1 1

11

1

xx r yi
p

i
p

j
p

0 1 0()() () ()















(21)

T t T t x x ri i
p

L

i
p

i
p

i
p+() = () − () − ()() ()

=
∑1 1 0 1

1

1

α

T t T t y y rj j
p

L

j
p

j
p

j
p+() = () − () − ()() ()

=
∑1 1 0 1

1

1

α

Thus, in this section, we have derived learning rules for RBM with
ReLU activation function. Further we will use given above expressions
Eq. (21) for RBM learning.

5 Materials and methods

In this section we address adaptive learning rate estimation for
RBM with ReLU activation function. Since the RBM network has
symmetric weights in the hidden and visible layers, we should derive
the optimal training step for the two layers.

The learning step is called adaptive, which is chosen at each
stage of the algorithm in such a way in order to minimize the total
mean squared error (Golovko et al., 2000; Golovko, 2003; Golovko
et al., 2023). We will use the steepest descent approach in order
to obtain the expression for adaptive learning rate. Accordingly,
to steepest descent approach, the learning step α is selected so as
to minimize the mean square error of the new parameters
Eq. (22):

α t E y t x ts j

k
i
k() = +() +()()min , , ,1 1 1 1

(22)

where y t x tj
k

i
k

1 1 1 1, ,+() +(), are the outputs of the hidden and
visible layer at the next time t +1 after updating the RBM
trainable parameters.

As a result, at each step of learning algorithm we should choose
the value of learning rate in such a way that, when modifying weights

and thresholds to guarantee a minimum of the mean squared error
for each batch or each example from the training data set.

Theorem 4: For an RBM network with a ReLU activation function
in the case of batch learning, the value of the adaptive learning step,
that minimizes the mean squared error for each batch is calculated
based on the following expression:

α t
c c

r t

k
L

j
m

j
k

k
L

i
n

i
k

k
L

j
m

j
k

() =
+

+()()
= = = =

= =

∑ ∑ ∑ ∑

∑ ∑
1 1 1 1

1 1

2

1 1

1

1 1, bb

r t b

j
k

k
L

i
n

i
k

i
k

()
+ +()() ()= =∑ ∑

2

1 1

2 2
1

1 1,

(23)

where the corresponding terms are determined according to the
expressions Eqs. (24–32):

c r t S y r t bj
k

j
k

j
k

j
k

j
k

j
k= +() () − ()() +()1 1 1 0 1 1, ,

(24)

c r t S x r t bi
k

i
k

i
k

i
k

i
k

i
k= +() () − ()() +()1 1 1 0 1 1, ,

(25)

b f zj
k

j
k

j
k= +

 (26)

f r y y x xj
k

p

L

j
p

j
p

j
p

i

n
i
k

i
p= () () − ()() + () ()











= =
∑ ∑

1 1

1

1 1 0 1 1 1

(27)

z y x x x rj
k

p

L

j
p

i

n
i
k

i
p

i
p

i
p= () () () − ()() ()

= =
∑ ∑

1 1

1

0 1 1 0 1

(28)

 b f zi
k

i
k

i
k= + , (29)

f r x x y yi
k

p

L

i
p

i
p

i
p

j

m
j
k

j
p= () () − ()() + () ()











= =

∑ ∑
1 1

1

1 1 0 1 0 0

(30)

z x y y y ri
k

p

L

i
p

j

m
j
k

j
p

j
p

j
p= () () () − ()() ()

= =
∑ ∑

1 1

1

1 0 1 0 1

(31)

r t
r y

r y
r t

r x
j
k j

k

j
k i

k i
k

1 1
0 0

0 0
1 1

01

2

1
,

, ;

, ,
,

,
+() = () ≥

() <





+() = (() ≥

() <







0

0 02

;

, .r xik

(32)

Proof: We should find adaptive learning rate by minimizing the
following loss function Eq. (33):

E y t y

x t

s
k

L

j

m
j
k

j
k

k

L

i

n
i
k

= +() − ()()

+ +

= =

= =

∑∑

∑∑

1

2
1 1 0

1

2
1

1 1

2

1 1

1

1

,

, 11 0
2

() − ()()xik
(33)

The output of the hidden and visible layer at the next time t +1
after updating trainable parameters can be defined as according to
the expressions Eq. (34):

https://doi.org/10.3389/fnins.2024.1362510
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chen et al. 10.3389/fnins.2024.1362510

Frontiers in Neuroscience 07 frontiersin.org

x t r t S t

y t r t S
i
k

i
k

i
k

j
k

j
k

j
k

1 1 1 1 1 1

1 1 1 1 1

, , , ,

, , ,

+() = +() +()
+() = +() tt +()1 (34)

Let us consider at the beginning the weighted sum of the hidden
layer at the next time t +1

S t t x T tj
k

i

n
ij i

k
j1 1 1 1 1

1

, +() = +() () + +()
=
∑ω

(35)

Substituting corresponding expression for weights and threshold
updating from Eq. (21) in Eq. (35) we can obtain Eq. (36)

S t S bj
k

j
k

j
k

1 1 1, +() = () −α (36)

where bj is defined using Eq. (37)

b r y y x xj
k

p

L

j
p

j
p

j
p

i

n
i
k

i
p= () () − ()() + () ()











= =
∑ ∑

1 1

1

1 1 0 1 1 1

 + () () () − ()() ()
= =
∑ ∑
p

L

j
p

i

n
i
k

i
p

i
p

i
py x x x r

1 1

1

0 1 1 0 1
(37)

We will use a similar approach for the visible layer. Then the
weighted sum of the visible layer can be defined as follows:

S t t y T ti
k

j

m
ij j

k
i1 1 1 0 1

1

, +() = +() () + +()
=
∑ω

(38)

Substituting corresponding expression from Eq. (21) in Eq. (38)
we can write obtain Eq. (39)

S t S bi
k

i
k

i
k

1 1 1, +() = () −α (39)

Where bj is defined using Eq. (40)

b r x y yxi
k

p

L
p p p

j

m
k

i
p

i i i j= () () − ()() + () ()










= =

∑ ∑
1 1

1

1 1 0 1 0 0

 + () () () − ()() ()
= =
∑ ∑
p

L
p

j

m
k p p p

i j j j jx y y ry
1 1

1

1 1 0 10
(40)

As a result, we can obtain the final expressions regarding output
of the hidden and visible layer Eq. (41)

y t r t S bj
k

j
k

j
k

j
k

1 1 1 1 1, ,+() = +() () −()α

(41)

x t r t S bi
k

i
k

i
k

i
k

1 1 1 1 1, , .+() = +() () −()α

Differentiating the loss function Es with respect to α we can
obtain Eq. (42)

dE
d

r t S r t b ys

k

L

j

m
j
k

j
k

j
k

j
k

j
k

α
α= +() () − +() − ()()

= =
∑∑

1 1

1

1 1 1 1 1 0, ,

 − +()() + +() ()
−= =

∑∑r t b
r t S

r
j j

k

L

i

n
i
k

i
k

i
k1 1

1 1

11 1

1

,
,α tt b x

r t b

i
k

i
k

i
k

i
k

+() − ()












− +()() =
1 0

1 1 0 ,

(42)

As a result, we can obtain the following final expression Eq. (43):

α t

r t S y r t bk
L

j
m

j
k

j
k

j
k

j
k

j
k

k() =

+() () − ()() +()

+

= =

=

∑ ∑1 1

1

1

1 1 1 0 1 1, ,

LL
i
n

i
k

i
k

i
k

i
k

i
k

k
L

j
m

r t S x r t b1

1

1

1 1

1 1 1 0 1 1∑ ∑

∑ ∑
=

= =

+() () − ()() +(), ,

rr t b

r t b

j
k

j
k

k
L

i
n

i
k

i
k

1 1

1 1

2 2

1 1

2 2
1

,

,

+()() ()
+ +()() ()= =∑ ∑

(43)

Since in accordance with Eq. (44)

d E
d

s
2

2
0

α
>

(44)

we have found the minimum of the cost function. Thus the
theorem is proved.

As follows from the proven theorem, the adaptive learning rate
minimizes the mean squared error of the network under updating
weights and thresholds.

The major difficulty arises in the computing of
r t r tj
k

i
k

1 1 1 1, ,+() +(), , because it is desired parameters of ReLU
transfer function. Since the desired outputs of the hidden and visible
layer correspondingly y jk 0() and xik 0() then we can write Eq. (45)

r t
r y

r y
r t

r x
j
k j

k

j
k i

k i
k

1 1
0 0

0 0
1 1

01

2

1
,

, ;

, ,
,

,
+() = () ≥

() <





+() = (() ≥

() <







0

0 02

;

, .r xik

(45)

Theorem 5: For RBM network with a ReLU activation function in
the case of online learning, the value of the adaptive learning step, that
minimizes the mean squared error for each pattern is defined as
follows Eq. (46):

α t
c c

r t b r t b
j
m

j i
n

i

j
m

j j i
n
i i

() =
+

+() + +()
= =

= =

∑ ∑
∑ ∑

1 1

1

2 2

1

2 2
1 1 1 1, ,

(46)

where the corresponding terms are calculated based on
Eqs. (47–55)

c r t S y r t bj j j j j j= +() () − ()() +()1 1 1 0 1 1, ,

 (47)

c r t S x r t bi i i i i i= +() () − ()() +()1 1 1 0 1 1, ,

 (48)

b f zj j j= +

 (49)

f r y y xj j j j

i

n
i= () () − ()() + ()











=
∑1 1 0 1 1

1

2

(50)

z y x x x rj j

i

n
i i i i= () () () − ()() ()

=
∑0 1 1 0 1

1
(51)

 b f zi i i= + (52)

f r x x yi i i i
j

m
j= () () − ()() + ()











=

∑1 1 0 1 0

1

2

(53)

https://doi.org/10.3389/fnins.2024.1362510
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chen et al. 10.3389/fnins.2024.1362510

Frontiers in Neuroscience 08 frontiersin.org

TABLE 1 Evolution of the reconstruction error (MSE) for artificial data.

Number of epochs α  =  3e − 1 α  =  3e − 2 α  =  3e − 3 α  =  3e − 4 α  =  3e − 5 ATS

10 0.2223 0.0974 0.1394 0.1393 0.1862 0.1001

20 0.2240 0.0975 0.0982 0.1392 0.1653 0.0903

30 0.2241 0.0982 0.0983 0.1392 0.1537 0.0902

40 0.2230 0.0972 0.0982 0.1392 0.1474 0.0737

50 0.2231 0.0972 0.0982 0.1391 0.1422 0.0753

z x y y y ri i
j

m
j j j j= () () () − ()() ()

=
∑1 0 1 0 1

1
(54)

r t

r y
r y

r t
r x

j
j

j
i

i
1 1

0 0

0 0
1 1

0 01

2

1
,

, ;

, ,
,

, ;
+() = () ≥

() <





+() = () ≥

rr xi2 0 0, .() <





(55)

This theorem is proved by the same approach.
It should be noted that the proposed expressions for calculating

the learning step are valid when 2 0.r ≠ If 2 0r ≠ , then in accordance
with RBM learning rule Eq. (21), the training is performed only in the
area where weighted sum is greater than 0, since the gradient of this
function is 0, if weighted sum less than 0. In that case, we can simplify
the expressions for learning rate.

Corollary: For RBM network with a ReLU activation function and
r r1 21 0= =, in the case of online learning, the value of the adaptive
learning step is calculated based on the following expression Eqs. (56–58):

α t
y y b x x b

b

j
m

j j j i
n

i i i

j
m

j i

() =
() − ()() + () − ()()

+

= =

= =

∑ ∑
∑

1 1

1

2

1

1 0 1 0

nn
ib∑ 2

(56)

Where

b y y x y x x yj j j
i

n
i j i i j= () − ()() − () () () − () ()()

=
∑1 0 1 0 0 1 1

1

(

(57)

b x x y y x x yi i i
j

n
j j i i j= () − ()() − () () () − () ()()

=
∑1 0 0 0 0 1 1

1

(

(58)

In a similar way, we can obtain an expression for the adaptive step
calculation when using batch learning. The proposed expressions allow
to estimate the learning rate after presenting every batch or pattern to
the neural network and based on the minimization of loss function.
Adaptive training step approach permits to choose automatically step
for every batch or pattern from training data set. The performance of
proposed approach is discussed in the next section.

6 Experiments

This section summarizes numerical results obtained by the
application of adaptive and constant learning rate. In order to evaluate
the performance of the proposed approach we will conduct various
experiments using RBM and deep neural network. In all experiments,

we will use batch learning with adaptive rate Eq. (23). In that case the
weights and thresholds of the network will be modified based on rule
Eq. (21) presented in this paper. For experiments, we will use both an
artificial and the MNIST dataset. The primary aim of this section is to
compare learning of neural network with and without proposed
training approach with adaptive learning rate. The experiments are
divided into 2 groups. The first experiments focuses on the RBM
network and the second on deep multilayer neural network.

6.1 RBM results

Let us consider the use of an adaptive learning step for a RBM
network. To evaluate the effectiveness of adaptive learning rate we will
use two datasets.

6.1.1 Artificial dataset
The artificial data x lie on a one-dimensional manifold (a helical

loop) embedded in three dimensions (Scholz et al., 2008) and were
generated from a uniformly distributed factor t in the range [0.05, 0.95]:

x

x

x

t

t

t

1

3

2

= +

= +

= +













sin() ,

cos()

.

,

π µ

π µ

µ

where μ – Gaussian noise with mean 0 and standard deviation 0.05.
The primary goal of the experiment is to study the performance

of ATS for data compression and reconstruction. Then the RBM will
consist of 3 visible and 1 hidden unit. The training dataset consists of
1,000 samples. The size of the test patterns is also 1,000. The batch size
equal 8 and the parameters of ReLU function are the following:
r r1 21 0 01= =, . . We trained the RBM network using only clean data
and tested using noisy data. The evolution of reconstruction error vs.
epoch of RBM learning is provided in Table 1. As can be seen from the
table the adaptive learning rate has obvious excellence compared to
constant steps. The plots of the reconstruction accuracy vs. epoch for
learning and testing using the best constant and adaptive rate are
presented in Figures 4, 5. It should be noted here that testing is
performed after each learning epoch. As follows from the presented
figures, the adaptive learning rate has the evident advantage compared
to the fixed learning rate, namely, the best performance in terms of
learning quality and generalization ability.

6.1.2 MNIST dataset
In this section we will use the MNIST dataset, which contains

60,000 hand-written digit images for training, and 10,000 images for
testing. Data in MNIST are grayscale images with size 28 × 28. Before
training the images are normalized to be zero-mean.

https://doi.org/10.3389/fnins.2024.1362510
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chen et al. 10.3389/fnins.2024.1362510

Frontiers in Neuroscience 09 frontiersin.org

Let us model the RBM network. This simulation is used to
illustrate the compression and reconstruction properties of restricted
Boltzmann machine. Let us model the RBM network which consist of
784 neurons of visible and 128 units of hidden layers. The main goal
of such modeling is to compress and reconstruct MNIST data. The
parameters of experiments are shown in Table 2. We used original
images from MNIST dataset and before representation to RBM only
centering is performed.

The evolution of reconstruction square error Eq. (13) is shown in
Table 3. Here div. Denotes divergence of learning. The analysis of the
data in this table indicates that learning with a constant rate is
unstable. For instance, if α = 1e − 4, the neural network cannot
be trained. As can be seen only training with a constant learning rate
(3e − 7) leads to a positive result.

Hence, the learning algorithms with constant training step can
diverge if the learning parameters are not chosen appropriately, as

FIGURE 4

Plot of reconstruction accuracy versus epoch for learning using adaptive and constant learning rates.

FIGURE 5

Plot of reconstruction accuracy versus epoch for testing using adaptive and constant learning rates.

https://doi.org/10.3389/fnins.2024.1362510
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chen et al. 10.3389/fnins.2024.1362510

Frontiers in Neuroscience 10 frontiersin.org

TABLE 2 Parameters of experiments.

Number of pretraining epoch Batch size r1 r2

8 128 1 0.01

TABLE 3 Evolution of the reconstruction error (MSE) for MNIST.

Number of epochs α  =  1e − 4 α  =  3e − 5 α  =  3e − 6 α  =  3e − 7 ATS

1 0,126 0.095 0.073 0.073787208 0.070819163

2 0,178 0.111 0.074 0.073663836 0.070752306

3 0,213 0.125 0.075 0.073577446 0.070733909

4 div. 0.138 0.077 0.073518835 0.070713023

5 div. 0.154 0.081 0.073481718 0.070700173

6 div. 0.171 0.087 0.073461681 0.070700861

7 div. 0.199 0.098 0.073455503 0.070687373

8 div. 0.232 0.115 0.073460822 0.070678658

shown in Table 3. Therefore, we should select the constant learning
rate very carefully.

Also it should be remarked, that learning with ATS have shown
the result after first epoch better than with constant step at any epoch.
After 8 epochs have obtained the best result with reconstruction error
of 0.070678658. The best result using constant step is 0.073455503.
This result was obtained after 8 epochs. As can be seen, the adaptive
learning rate has a significant advantage in comparison with the
constant learning stage. The evolution of reconstruction error is
presented in Figure 6.

6.2 Deep multilayer perceptron

Let us consider the analysis of the proposed approach for a deep
multilayer neural network using the MNIST dataset. We have used for

experiments deep perceptron with ReLU activation function which
has the following structure: 784-1600-1600-800-800-10. The
parameters of experiments are shown in Table 4. The results of our
experiments are shown in Table 5. Pretraining is performed using only
1–3 epochs.

The evolution of mean squared error for different approaches is
presented in Figure 7. Finally, we have the following experimental
results, which are shown in Table 5. The smallest test error without
using ATS and pretraining is 0.002531. If we use ATS the smallest test
error is 0.002299. The smallest test error for pretraining with constant
step is 0.002392. As in the previous case, the table shows that learning
with a constant rate can be unstable. As a result, a learning algorithm
with a constant learning step may be divergent. Tables 6–8 show the
predictive performance of different learning approaches for MNIST
classification. As can be seen, in general the ATS approach
outperformed the learning technique with fixed learning rate. So, for

FIGURE 6

Evolution of reconstruction error MSE for adaptive and constant learning rates.

https://doi.org/10.3389/fnins.2024.1362510
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chen et al. 10.3389/fnins.2024.1362510

Frontiers in Neuroscience 11 frontiersin.org

instance, the number of correct predictions using the adaptive rate
(Table 6) is 6 and 9 more, respectively, compared to models with a
constant step (Tables 7, 8). As can be seen the use of ATS permits to
reduce the test error and correspondingly improve the
generalization ability.

7 Conclusion and discussion

The learning of neural networks is a tricky task, which highly
depends on suitable hyperparameters selection to achieve significant
performance of a neural network. The choice of an appropriate
learning rate is of great importance because it has a significant impact
on the training efficiency. Depending on this parameter the learning
process can be divergent or convergent.

We have not found any works as concerns exact analytical
expressions for the learning rate estimation, based on the steepest
descent technique. Such precise analytical expressions can only
be obtained for linear and ReLU activation functions. When using the
sigmoid activation function, we can only receive approximate
expressions for the learning rate using the Taylor series expansion.

Since this is a very complicated problem, most of the scientists use the
steepest descent method together with the line search approach.

Our previous work (Golovko et al., 2023) reported an adaptive
learning rate for a single-layer perceptron with a ReLU activation
function. In this work, we extended this idea to obtain the learning
rate for the RBM network. As a result, novel analytical expressions for
learning step estimation have been proposed in this paper. The
proposed approach for ATS estimation is based on minimization the
mean squared error for each batch or each sample. The presented
expressions are applied for restricted Boltzmann machine learning
with ReLU activation function. We consider quasi-conventional RBM,
namely we use symmetric weights in the hidden and visible layers,
Gibbs sampling and deterministic units. We first demonstrate the
proposed approach for ATS calculation is more effective and more
efficient for RBM learning than the conventional RBM algorithm.
Second, we show that such kind of RBM can be used for deep neural
network pretraining using greedy layer wise algorithm. As a result,
we can reach better generalization ability.

The main advantages of the proposed approach are the
following: it is based on precise mathematical expressions
obtained by minimizing the mean squared error for each batch

TABLE 4 MNIST Classification Experiment Parameters.

Number of
pretraining epochs

Number of fine-
tuning epochs

Batch size r1 r2
Initial α at the

finetuning stage

3 50 128 1 0.01 3e − 4

TABLE 5 Testing a deep multilayer perceptron pertaining.

α  =  1e − 4 α  =  3e − 5 α  =  3e − 6 α  =  3e − 7 ADAM ATS

MSE div div 0.0024235 0.0024619 0.0024729 0.0022999

Precision macro 0.0098 0.0098 0.986 0.98562 0.98539 0.98656

Accuracy 0.0098 0.0098 0.986 0.9857 0.9854 0.9866

FIGURE 7

Evolution of MSE for adaptive and constant learning rates.

https://doi.org/10.3389/fnins.2024.1362510
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chen et al. 10.3389/fnins.2024.1362510

Frontiers in Neuroscience 12 frontiersin.org

or each pattern; it is capable of automatically defining and
adjusting the learning rate during neural network training; it
guarantees convergence to well-performing local minima. The
disadvantage of the presented approach is higher computational
complexity compared to constant step.

This work opens the way toward the following future research:
define the conditions where such an learning rate can guarantee
convergence to best-performing local minima and to study how this
approach can be extended to train a multilayer neural network
without pretraining using RBM.

TABLE 6 Confusion matrix for MNIST classification using pretraining with ATS.

Predicted values

0 1 2 3 4 5 6 7 8 9

Actual values

0 974 0 0 0 0 0 1 2 2 1

1 0 1,130 0 1 0 1 1 2 0 0

2 2 0 1,015 2 2 0 0 5 5 1

3 0 0 1 998 0 3 0 4 3 1

4 1 0 1 1 966 0 2 1 0 10

5 2 0 0 5 0 877 2 1 4 1

6 4 2 0 0 1 4 947 0 0 0

7 1 2 6 0 0 0 0 1,013 2 4

8 1 0 1 3 1 0 0 5 960 3

9 1 2 1 4 7 3 0 4 1 986

TABLE 8 Confusion matrix for MNIST classification using pretraining with α  =  3e-7.

Predicted values

0 1 2 3 4 5 6 7 8 9

Actual values

0 974 1 0 1 0 1 1 1 1 0

1 0 1,126 3 0 0 2 3 0 1 0

2 0 1 1,021 2 1 0 1 4 2 0

3 0 0 4 999 0 1 0 1 0 5

4 1 1 3 0 964 0 3 3 0 7

5 2 0 0 3 1 881 1 1 2 1

6 6 2 0 1 4 4 940 0 1 0

7 2 1 5 3 0 0 0 1,015 2 0

8 3 0 2 6 1 3 1 2 952 4

9 4 2 0 3 6 4 0 3 2 985

TABLE 7 Confusion matrix for MNIST classification using pretraining with α  =  3e − 6.

Predicted values

0 1 2 3 4 5 6 7 8 9

Actual values

0 973 1 1 0 0 0 3 1 1 0

1 0 1,126 1 2 0 2 2 1 1 0

2 1 1 1,018 2 1 0 1 7 1 0

3 0 0 3 999 0 2 0 2 2 2

4 1 2 1 0 969 0 2 0 0 7

5 2 0 0 5 1 878 2 1 1 2

6 5 2 0 0 3 2 945 0 1 0

7 1 2 7 1 1 0 0 1,010 3 3

8 4 0 3 7 2 1 1 4 950 2

9 3 2 0 0 6 3 0 3 0 992

https://doi.org/10.3389/fnins.2024.1362510
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Chen et al. 10.3389/fnins.2024.1362510

Frontiers in Neuroscience 13 frontiersin.org

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found at: https://yann.lecun.com/exdb/mnist/.

Author contributions

CC: Data curation, Funding acquisition, Investigation, Writing –
original draft. VG: Conceptualization, Formal analysis, Supervision,
Writing – original draft. AK: Methodology, Project administration,
Visualization, Writing – review & editing. EM: Software, Validation,
Writing – review & editing. MC: Funding acquisition, Investigation,
Writing – review & editing. PL: Methodology, Resources, Software,
Writing – review & editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This research

was partially supported by the Ministry of Science and Technology of
the People’s Republic of China (grant number G2022016010L) and
Belarusian Republican Foundation for Fundamental Research (grant
Ф22КИ-046).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References
Aguilera, A., Olmos, P., Artés-Rodríguez, A., and Pérez-Cruz, F. (2023). Regularizing

transformers with deep probabilistic layers. Neural Netw. 161, 565–574. doi: 10.1016/j.
neunet.2023.01.032

Arpit, D., and Bengio, Y. (2019). The benefits of overparameterization at initialization
in deep ReLU networks. arXiv [Preprint]. arXiv:1901.03611.

Baydin, A. G., Cornish, R., Rubio, D. M., Schmidt, M., and Wood, F. (2018). Online
learning rate adaptation with hypergradient descent. In Proceedings of International
Conference on Learning Representations.

Bengio, Y. (2009). Learning deep architectures for AI. Foundat Trends Machine Learn
2, 1–127. doi: 10.1561/2200000006

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning a review and
new perspectives. In: Institute of Electrical and Electronics Engineers transactions on
pattern analysis and machine intelligence; 35, 1798–1828.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). “Greedy layer-wise
training of deep networks” in Advances in neural information processing systems. eds. J.
C. Scholkopf, T. Platt and S. Hoffman, MIT Press, Cambridge vol. 11, 153–160.

Bengio, Y., Lecun, Y., and Hinton, G. (2021). Deep learning for AI. Commun. ACM
64, 58–65. doi: 10.1145/3448250

Carvalho, P., Lourencco, N., and Machado, P. (2021). Evolving learning rate optimizers
for deep neural networks. arXiv [Preprint]. arXiv:2103.12623.

Chen, B., Wang, H., and Ba, C. (2022). Differentiable self-adaptive learning rate. ArXiv
[Preprint]. arXiv:2210.10290.

Chen, K., Weng, Y., Hosseini, A., Dening, T., Zuo, G., and Zhang, Y. (2024). A
comparative study of GNN and MLP based machine learning for the diagnosis of
Alzheimer’s disease involving data synthesis. Neural Netw. 169, 442–452. doi: 10.1016/j.
neunet.2023.10.040

Cho, K., Raiko, T., and Ilin, A. (2011). Enhanced gradient and adaptive learning rate
for training restricted Boltzmann machines. In: Proceedings of the 28th International
Conference on Machine Learning, ICML, Bellevue, Washington, USA.

Defazio, A., Cutkosky, A., Mehta, H., and Mishchenko, K. (2023). When, why and how
much? Adaptive learning rate scheduling by refinement. arXiv [Preprint]. arXiv:2310.07831.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. J. Mach. Learn. Res. 12, 257–269. doi:
10.5555/1953048.2021068

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio, S. (2010).
Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11,
625–660.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier networks. In
Proceedings of the 14th international conference on artificial intelligence and statistics.
JMLR W&CP; 15, 315–323.

Golovko, V. (2003). “From neural networks to intelligent systems: selected aspects of
training, application and evolution” in ed. Marco Gori. Limitations and future trends in
neural computation (Amsterdam: IOS Press), 219–243.

Golovko, V., Komar, M., and Sachenko, A. (2010). Principles of neural network
artificial immune system design to detect attacks on computers. In Proceedings of the
international Conference on Modern Problems of Radio Engineering (TSET), p.237.

Golovko, V., Kroshchanka, A., and Treadwell, D. (2016). The nature of unsupervised
learning in deep neural networks: a new understanding and novel approach. Optic
Memory Neural Netw 25, 127–141. doi: 10.3103/S1060992X16030073

Golovko, V., Kroshchanka, A., Turchenko, V., Jankowski, S., and Treadwell, D. (2015).
A new technique for restricted Boltzmann machine learning. In Proceedings of the 8th
IEEE international conference IDAACS, pp.182–186.

Golovko, V., Mikhno, E., Kroschanka, A., Chodyka, M., and Lichograj, P. (2023).
Adaptive learning rate for unsupervised learning of deep neural networks. International
Joint Conference on Neural Networks (IJCNN), pp. 1–6.

Golovko, V., Savitsky, Y., Laopoulos, T., Sachenko, A., and Grandinetti, L. (2000).
Technique of learning rate estimation for efficient training of MLP. In Proceedings of the
IEEE-INNS-ENNS international joint conference on neural networks, IJCNN. Neural
computing: New challenges and perspectives for the new millennium; pp. 323–328.

Hinton, G. (2002). Training products of experts by minimizing contrastive divergence.
Neural Comput. 14, 1771–1800. doi: 10.1162/089976602760128018

Hinton, G. E. (2010). A practical guide to training restricted Boltzmann machines,
Toronto: Machine Learning Group, University of Toronto.

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A. R., Jaitly, N., et al. (2012). Deep
neural networks for acoustic Modeling in speech recognition: the shared views of four
research groups. IEEE Signal Process. Mag. 29, 82–97. doi: 10.1109/MSP.2012.2205597

Hinton, G., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep belief
nets. Neural Comput. 18, 1527–1554. doi: 10.1162/neco.2006.18.7.1527

Hinton, G., and Salakhutdinov, R. (2006). Reducing the dimensionality of data with
neural networks. Science 313, 504–507. doi: 10.1126/science.1127647

Kingma, D. P., and Ba, J. (2014). Adam: A method for stochastic optimization, Computer
Science, arXiv preprint.

Krizhevsky, I. S., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
1097–1105.

Krizhevsky, A., Sutskever, L., and Hinton, G. (2012). Image net classification with deep
convolutional neural networks. In proc. Adv. Neural Inf. Proces. Syst. 25, 1090–1098.

Lamb, A., Verma, V., Kawaguchi, K., Matyasko, A., Khosla, S., Kannala, J., et al.
(2022). Interpolated adversarial training: achieving robust neural networks without
sacrificing too much accuracy. Neural Netw. 154, 218–233. doi: 10.1016/j.
neunet.2022.07.012

Larochelle, H., Bengio, Y., Louradour, J., and Lamblin, P. (2009). Exploring strategies
for training deep neural networks. J. Mach. Learn. Res. 1, 1–40. doi:
10.1145/1577069.1577070

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi: 10.1038/nature14539

https://doi.org/10.3389/fnins.2024.1362510
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://yann.lecun.com/exdb/mnist/
https://doi.org/10.1016/j.neunet.2023.01.032
https://doi.org/10.1016/j.neunet.2023.01.032
https://doi.org/10.1561/2200000006
https://doi.org/10.1145/3448250
https://doi.org/10.1016/j.neunet.2023.10.040
https://doi.org/10.1016/j.neunet.2023.10.040
https://doi.org/10.5555/1953048.2021068
https://doi.org/10.3103/S1060992X16030073
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1126/science.1127647
https://doi.org/10.1016/j.neunet.2022.07.012
https://doi.org/10.1016/j.neunet.2022.07.012
https://doi.org/10.1145/1577069.1577070
https://doi.org/10.1038/nature14539

Chen et al. 10.3389/fnins.2024.1362510

Frontiers in Neuroscience 14 frontiersin.org

Madani, K., Kachurka, V., Sabourin, C., Amarger, V., Golovko, V., and Rossi, L. (2018).
A human-like visual-attention-based artificial vision system for wildland firefighting
assistance. Appl. Intell. 48, 2157–2179. doi: 10.1007/s10489-017-1053-6

Menezes, A., de Moura, G., Alves, C., and de Carvalho, A. C. P. L. F. (2023). Continual
object detection: a review of definitions, strategies, and challenges. Neural Netw. 161,
476–493. doi: 10.1016/j.neunet.2023.01.041

Mikolov, T., Deoras, A., Povey, D., Burget, L., and Cernocky, J. (2011). “Strategies for
training large scale neural network language models” in Automatic Speech Recognition
and Understanding, 195–201.

Nair, V., and Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pp.807–814.

Nakamura, K., Derbel, B., Won, K., and Hong, B. (2021). Learning-rate annealing methods
for deep neural networks. Electronics 10:2029:2029. doi: 10.3390/electronics10162029

Pesme, S., Dieuleveut, A., and Flammarion, N. (2020). On convergence-diagnostic
based step sizes for stochastic gradient descent. In: Proceedings of the international
conference on machine learning, ICML, 119, pp. 7641–7651.

Pouyanfar, S., and Chen, S. C. (2017). T-LRA: trend-based learning rate annealing for
deep neural networks. In Proceedings of the 2017 IEEE third international conference on
multimedia big data (BigMM), Laguna Hills, CA, USA; pp. 50–57.

Ruder, S. (2016). An overview of gradient descent optimization algorithms, Available
at: https://arxiv.org/abs/1609.04747.

Schaul, T., Zhang, S., and LeCun, Y. (2013). No more pesky learning rates. In
Proceedings of the international conference on machine learning (ICML-2013),
Atlanta, GA, USA; pp. 343–351.

Scholz, M., Fraunholz, M., and Selbig, J. (2008). Nonlinear principal component
analysis: Neural network models and applications, in principal manifolds for data
visualization and dimension reduction, Springer Berlin Heidelberg, 44–67.

Smith, L. N. (2017). Cyclical learning rates for training neural networks. In: IEEE
Winter Conference on Applications of Computer Vision (WACV).

Takase, T., Oyama, S., and Kurihara, M. (2018). Effective neural network training with
adaptive learning rate based on training loss. Neural Netw. 101, 68–78. doi: 10.1016/j.
neunet.2018.01.016

Vaswani, S., Mishkin, A., Laradji, I., Schmidt, M., Gidel, G., and Lacoste-Julien, S.
(2019). Painless stochastic gradient: interpolation, line-search, and convergence rates.
Adv. Neural Inf. Proces. Syst.

Verma, V., Kawaguchi, K., Lamb, A., Kannala, J., Solin, A., Bengio, Y., et al. (2022).
Interpolation consistency training for semi-supervised learning. Neural Netw. 145,
90–106. doi: 10.1016/j.neunet.2021.10.008

Wang, Z.-J., Gao, H.-B., Wang, X.-H., Zhao, S.-Y., Li, H., and Zhang, X.-Q. (2023).
Adaptive learning rate optimization algorithms with dynamic bound based on Barzilai-
Borwein method. Inform. Sci. 634, 42–54. doi: 10.1016/j.ins.2023.03.050

Zeiler, M. D. (2012). Adadelta: An adaptive learning method. ArXiv [Preprint].
arXiv:1212.5701.

https://doi.org/10.3389/fnins.2024.1362510
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1007/s10489-017-1053-6
https://doi.org/10.1016/j.neunet.2023.01.041
https://doi.org/10.3390/electronics10162029
https://arxiv.org/abs/1609.04747
https://doi.org/10.1016/j.neunet.2018.01.016
https://doi.org/10.1016/j.neunet.2018.01.016
https://doi.org/10.1016/j.neunet.2021.10.008
https://doi.org/10.1016/j.ins.2023.03.050

	An analytical approach for unsupervised learning rate estimation using rectified linear units
	1 Introduction
	2 Related work
	3 Restricted Boltzmann machine
	4 Learning of RBM with ReLU
	5 Materials and methods
	6 Experiments
	6.1 RBM results
	6.1.1 Artificial dataset
	6.1.2 MNIST dataset
	6.2 Deep multilayer perceptron

	7 Conclusion and discussion
	Data availability statement
	Author contributions

	References

