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Introduction: Event-related potentials (ERPs), such as P300, are widely utilized

for non-invasive monitoring of brain activity in brain-computer interfaces

(BCIs) via electroencephalogram (EEG). However, the non-stationary nature of

EEG signals and di�erent data distributions among subjects create significant

challenges for implementing real-time P300-based BCIs. This requires time-

consuming calibration and a large number of training samples.

Methods: To address these challenges, this study proposes a transfer learning-

based approach that uses a convolutional neural network for high-level feature

extraction, followed by Euclidean space data alignment to ensure similar

distributions of extracted features. Furthermore, a source selection technique

based on the Euclidean distance metric was applied to measure the distance

between each source feature sample and a reference point from the target

domain. The samples with the lowest distance were then chosen to increase the

similarity between source and target datasets. Finally, the transferred features

are applied to a discriminative restricted Boltzmann machine classifier for P300

detection.

Results: The proposed method was evaluated on the state-of-the-art BCI

Competition III dataset II and rapid serial visual presentation dataset. The results

demonstrate that the proposed technique achieves an average accuracy of 97%

for both online and o	ine after 15 repetitions, which is comparable to the state-

of-the-art methods. Notably, the proposed approach requires <½ of the training

samples needed by previous studies.

Discussion: Therefore, this technique o�ers an e�cient solution for developing

ERP-based BCIs with robust performance against reduced a number of

training data.

KEYWORDS

P300 event-related potential, Euclidean alignment, convolutional neural network,

source sample selection, discriminative restricted Boltzmann machine

1 Introduction

Brain-computer interfaces (BCIs) establish a communication link that directly

connects the human brain to external devices (Yadav et al., 2020; Kawala-Sterniuk

et al., 2021). BCIs primarily enable individuals with neuromuscular disorders, such

as amyotrophic lateral sclerosis (ALS) and spinal cord injury, to communicate with

the outside world (Abiri et al., 2019; Bonci et al., 2021). There are various types of
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BCI-based brain signals, including magnetoencephalography

(Mridha et al., 2021; Peksa and Mamchur, 2023),

electrocorticography (Miller et al., 2020), functional magnetic

resonance imaging (Guo, 2020), and electroencephalogram

(EEG)-based systems (Rashid et al., 2020; Ydaav and Maini, 2023).

EEG-based BCIs have gained significant attention owing to their

non-invasiveness, affordability, high temporal resolution, and

widespread availability (Rashid et al., 2020; Ydaav and Maini,

2023).

The human brain produces different types of event-related

potentials (ERPs) in response to particular stimuli (McWeeny and

Norton, 2020). The present study focuses on the P300-based ERP,

which is a positive peak observed in the EEG waveform that

is associated with cognitive information processing in the brain

(Valakos et al., 2020). The amount of stimulus information is

reflected by the amplitude of the P300 wave, with larger P300

waves being generated by greater deviation. P300 responses are

frequently triggered using the “oddball” paradigm or rapid serial

visual presentation (RSVP), which involves presenting a series of

different stimuli, one of which is infrequent relative to the others

(Lees et al., 2018).

The P300 typically occurs about 300ms after a targeted stimulus

and can vary depending on an individual’s ability to differentiate

events (Farwell and Donchin, 1988; Zhang et al., 2021). The P300

paradigm is regarded as being user-friendly and appropriate for use

in BCI applications, particularly those that involve spelling, as it

is less likely to cause eye strain (Mendoza-Montoya et al., 2021).

Farwell and Donchin introduced the Matrix Speller, which was the

first device built on the P300 component (Farwell and Donchin,

1988). Following their work, other studies have suggested diverse

paradigms and strong algorithms improve performance, resulting

in significant enhancements in both theoretical and experimental

approaches (Lotte et al., 2007; Kaufmann et al., 2011; Abiri et al.,

2019; Lu et al., 2019, 2020a,b). One of these paradigms is RSVP,

which involves presenting a series of stimuli in quick succession,

usually at the center of the screen. RSVP can elicit P300 responses

when the user sees a target stimulus among distractors (Lin et al.,

2018). RSVP has some advantages over the oddball paradigm, such

as reducing the number of flashes required to spell a word and

avoiding the need for gaze control (Won et al., 2019).

Although the P300 paradigms exhibit promising potential in

the BCI field, a significant obstacle is the fact that ERP signals are

specific to each subject (Wu et al., 2022). Individuals have varying

patterns of brain activity when responding to the same stimuli. As

a result, it is necessary to calibrate the system for each person. In

the calibration process, the individual is requested to execute a set

of tasks that enable the system to acquire knowledge and adjust to

their distinctive brain patterns. Although calibration is critical for

achieving accurate and reliable results, its time-consuming nature

presents a notable challenge for the widespread implementation

of BCI.

By utilizing transfer learning (TL) techniques, it is possible

to decrease the training time and data needed for a new model,

especially when training from scratch is not possible. TL allows

machine learning models to be trained on existing datasets from

other subjects (known as the source dataset) to apply the acquired

knowledge to a new subject (referred to as the target dataset).

One common approach in transfer learning is to adapt a pre-

trained model from a source domain to a target domain. Fine-

tuning is a variant of this method that utilizes the weights of a pre-

trained deep neural network (DNN) based on the source dataset

as the initial synaptic configuration for training the target network.

Fine-tuning of DNN-based convolutional neural networks (CNNs)

is widely used for P300-based BCI applications (Kundu and Ari,

2020a; Kilani et al., 2022), allowing the model to benefit from

the general feature extraction capabilities learned from the source

dataset. This provides a strong foundation for learning even with

limited labeled data from individual subjects and offers faster

training times due to the pre-trained weights.

In Kundu and Ari (2020a), a CNN-based TL is introduced

to extract high-level features from a fully connected layer of

CNN for P300-based character recognition. Then a Fisher-based

feature selection technique was employed to achieve the most

optimal feature set. Their results demonstrated that a selected

set of CNN-extracted deep features outperformed the manually

designed features.

Another method in TL is subspace alignment (SA) which

aims to increase the distributional similarity between the source

and target datasets by aligning the feature distributions between

the two datasets (Kundu and Ari, 2020a). Since the source and

target datasets have different characteristics in P300 signals, such

as variations in the recorded signals, domain adaptation can reduce

the need for extensive calibration and training, ultimately resulting

in a more efficient and accurate BCI system (Zanini et al., 2018;

He and Wu, 2020). Zanini et al. (2018) suggested a method called

Riemannian alignment (RA) for aligning EEG data recorded during

motor imagery (MI) task. RA calculates the covariance matrices of

resting trials and computes their Riemannian mean, and uses it as

the reference matrix to align all covariance matrices. To overcome

the limitations of RA in terms of flexibility, lower computational

cost, and unsupervised nature, He and Wu (2020) proposed a

technique called Euclidean alignment (EA) that aligns EEG trials

from different subjects in Euclidean space. EA works by identifying

a projection matrix that can align the dataset in Euclidean space.

The objective is to mitigate the distributional shift between the

two domains and enhance the resemblance between their data

distributions. In He andWu (2020) the efficacy of the EA algorithm

was assessed on two distinct datasets: one centered on P300 and the

other on MI.

In transfer learning, the quality and relevance of source samples

utilized for model training can considerably affect the model’s

performance. To achieve better transfer learning results and avoid

negative transfer, it is important to select the most informative

and applicable source samples (Wang et al., 2019; Zhuang et al.,

2021; Kilani et al., 2023). Selection data from source domains

that are more like the target data has also been used in other

works. In Wei et al. (2020), the authors adopted a performance-

based approach to select the source datasets. A classifier was

trained for each source subject, then target data was given to it as

evaluation data. Finally, source subjects that exhibited the highest

classification performance were selected. While this approach led

to improved performance compared to using all source datasets,

the challenge of training different classifiers made it difficult

to implement in real-time. In Qi et al. (2018), a novel sample
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selection method using Riemannian geometry measurement has

been introduced for P300-based character recognition. A reference

epoch was constructed by using a limited number of epochs from

target data. The source samples were then selected based on their

Riemannian distance to this reference epoch. Their results showed

higher character recognition accuracy for sample selection based

on Riemannian distance compared to other selection methods.

However, Riemannian measurements require more computation,

and the choices for classification models are limited compared to

Euclidean measurements (He and Wu, 2020; Kilani et al., 2023).

In response to the challenges presented by P300-based BCI,

we suggest a new approach to transfer learning that combines

the advantages of fine-tuning and subspace alignment. Our

approach utilizes finetuning for extracting the high-level features

of deep neural networks. Then a domain adaptation technique

is used to improve the similarity between the source and target

feature distributions. Moreover, to reduce negative transfer, a

source sample selection approach is used to choose the samples

that are more similar to the target domain data samples.

Our transfer learning approach is subsequently implemented

on the discriminative restricted Boltzmann machine (DRBM) as

the classifier.

Section 2 provides a detailed description of the methods and

materials used in our study. We begin by presenting the datasets

and explaining the preprocessing steps that were taken to ensure

the quality of the data. Next, we describe our proposed approach,

which combines the fine-tuning method and subspace alignment

using the EA approach. Finally, we outline the process of applying

the extracted features using our transfer learning approach to the

DRBM classifier. In Section 3, we present the simulation results,

including a comparison with other methods and an analysis of the

effectiveness of our approach. Finally, in Section 4, we conclude

with a summary of our contributions and discuss research in

this area.

2 Methods and materials

2.1 Datasets

We applied the proposed method on two distinct datasets: the

BCI Competition III Dataset II, derived from a pair of participants,

and a Rapid Serial Visual Presentation (RSVP) Dataset acquired

from PhysioNet across 11 participants. A concise summary of

each dataset is detailed in Sections 2.1.1 and 2.1.2, respectively.

Subsequently, we describe the processing steps and results for

each participant.

2.1.1 Dataset 1
For this study, we employed the BCI competition III dataset

II (Blankertz et al., 2006) from the Wadsworth Center, NYS

Department of Health. The dataset included EEG data from a

pair of participants (A and B), with strict adherence to relevant

guidelines and regulations. EEG signals were recorded using 64

scalp electrodes, with a sampling rate of 240Hz, and a band-

pass filter with a bandwidth of 0.1–60Hz was used to ensure

high-quality data. Two individuals who were in good health took

FIGURE 1

The 6 × 6 alphabet matrix was designed by Farwell and Donchin. All

letters and digits are gray and the ones on the intensified rows or

columns indicate flashing. In this case, the second row is intensified.

part in both training and testing sessions of the P300 speller task

experiment. The P300 speller proposed by Farwell and Donchin

was used, as shown in Figure 1. Participants were instructed to

concentrate on a 6 x 6 matrix speller, which would randomly

highlight its rows and columns, resulting in a total of 12 random

intensifications. For each character recognition trial in the P300

signal analysis, the 12 intensifications were each repeated 15

times, leading to a total of 180 intensifications. In the EEG

signal, the P300 component is generated following each row or

column intensification. The objective of the processing was to

identify the intersection of P300 component recognition in each

row and column of the target character. During each repetition

of character recognition, there were two target intensifications

and 10 non-target intensifications. During both the training and

testing sessions, the participants identified 85 and 100 pre-detected

characters, respectively, which were then used for training (from 85

training characters) and testing (from 100 testing characters) the

model. During the training session, a total of 2,550 P300 samples

(85 characters, each with two target intensifications repeated 15

times) and 12,750 non-P300 samples (85 characters, each with

10 non-target intensifications repeated 15 times) were collected.

MATLAB R2019b was used to carry out all analyses.

2.1.2 Dataset 2
Another ERP-based dataset in this study relied on an RSVP

dataset acquired from PhysioNet4 (Goldberger et al., 2000). This

dataset encompassed EEG recordings from 11 healthy subjects who

participated in an experiment involving rapid image presentations

at frequencies of 5, 6, and 10Hz (Matran-Fernandez and Poli,

2017). During the experiment, participants were seated in front of

a computer and presented with a series of swiftly changing aerial

images of London. These images were categorized as either target

images or non-target images. Target images featured a randomly

rotated and positioned airplane that had been photo-realistically

superimposed, while non-target images lacked airplanes. The main

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2024.1360709
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kilani et al. 10.3389/fnins.2024.1360709

objective was to discern whether the images were target or non-

target based on the EEG signals recorded from eight channels,

with a sampling rate of 2,048Hz. Each subject completed two

sessions, referred to as “a” and “b,” respectively. In Session “a,”

the first image was labeled as “target,” while in Session “b,” it was

labeled as “non-target.” For our analysis, we specifically utilized

the 5Hz version (equivalent to five images per second) from

Session “a.” The number of EEG samples collected varied across

subjects, ranging from 368 to 565, and the target-to-non-target

ratio was∼1:9.

2.2 Preprocessing

In terms of the preprocessing of the two datasets, we followed

the specific recommendations provided in the previously published

articles. This ensured that each dataset was prepared in a way that

aligned with its unique characteristics and maximized the validity

of comparisons between the methods applied. Below we detail the

applied preprocessing steps.

To process the EEG signals for Dataset 1, we applied a band-

pass filter with a range of 0.1–30Hz to the signals, as recommended

by Thodoroff et al. (2016). Subsequently, we extracted the

data by employing a window length of 665ms following each

intensification event. Taking into account the sampling rate of

240Hz and the number of EEG channels, the input data was

then organized into a sequence of samples with dimensions

of 160∗64.

For preprocessing of Dataset 2, the continuous EEG

data underwent bandpass filtering between [0.15, 28] Hz,

as recommended by Matran-Fernandez and Poli (2017). To

streamline processing, we downsampled the EEG signal from the

original 2,048Hz to 64Hz. Additionally, each trial was epoched

to the time interval [0, 0.7] seconds, precisely time-locked to the

stimulus onset, to ensure consistent analysis. Here, the data was

organized in 8∗45 images for further analysis as described below.

2.3 Deep feature extraction

We present a new feature extraction method for P300

signal classification. Our approach involves utilizing Euclidean

alignment (EA) and a convolutional neural network (CNN)

as part of a transfer learning strategy. The proposed method

is depicted in Figure 2, which outlines the overall schematic

diagram. Initially, the CNN network is trained using the entire

source dataset. Subsequently, the weights obtained from the

source CNN are used as the initial weights for fine-tuning the

CNN with input from the target dataset. Once the network is

trained, high-level features are extracted from both CNNs—the

source and target feature blocks. Next, we apply the transfer

learning-based EA method to align the features in a new

Euclidean space, which leads to the creation of similar feature

distributions (EA_source and EA_target feature steps). Before

assigning the features to the classification, samples from the source

that are less similar to the target are removed by the source

selection block.

2.3.1 Convolutional neural network
This CNN structure is divided into six layers, including two

Batch Normalization (BN) layers, a convolution layer, two fully

connected layers, and a Softmax layer as can be seen in Figure 3.

In the first layer, the EEG signal (XT×C where T and C indicate

temporal features and channels, respectively) was fed into the

BN layer, which is used to normalize each training mini-batch

and accelerate the network training process by reducing internal

covariate shifts. After the input data was normalized using the BN

layer, the neural network was trained using a convolutional layer.

The convolutional layer extracts features using K kernels (K = 16

and 5 for Dataset 1 and 2, respectively) and stride of [S×1] (S =

16 and 5 for BCI competition and RSVP datasets, respectively).

Features are extracted by kernels as Equation 1:

xl = f
(

xl−1 ∗ wl + bl
)

(1)

where xl−1 is the feature of the l-1th layer; wl and bl are

filters and biases of the lth layer; f() is the activation function that

introduces a non-linearity aspect to the network. The second BN

layer was applied in this step to avoid the convert shifts. Rectified

Linear Unit (ReLU) is the most common activation function.

Different types of ReLUs can be used. The simple non-linear type

of ReLU activates neurons as Equation 2:

h(x) = max (0, x) (2)

which accepts positive inputs from a neuron and returns 0 for

negative input values. Following the extraction of features from

the convolutional layer output, the network was completed with

two fully connected layers consisting of f and 2 neurons, and

then a Softmax layer. To assess the model’s effectiveness during

training and pre-training steps, we utilize the cross-entropy loss

function. This function acts as a performance metric throughout

the training process by providing necessary gradients for updating

weights. Stochastic gradient descent with a learning rate of 0.01

and a momentum factor of 0.9 is used for backpropagation, and L2

regularization parameter of 0.0005 is applied to prevent overfitting.

2.3.1.1 CNN training approach

The paper fine-tuned a pre-trained CNN on a new task,

adjusting its weights for better adaptation while retaining prior

knowledge. This enabled quick and accurate adaptation to new

tasks with limited data, demonstrating CNN’s ability to learn

versatile features during pre-training. In this study, two subjects

were considered for the Dataset 1, with one as the source and

the other as the target. It consisted of 15,300 training samples

(85∗12∗15), and all samples from the source dataset were used

for the initial training (pre-training) of the CNN according to

the aforementioned structure. Then, initial convolutional layers of

the pre-trained CNN were frozen to retain their generic feature

extraction capabilities learned from the source data. These frozen

layers were then used to initialize the corresponding layers in

the target (current) CNN. In the next step, only 7,200 samples

(40∗12∗15) from the target dataset were used to retrain the model.

This approach allowed for leveraging the pre-trained network’s

knowledge to adapt it to the target task, thereby improving the

accuracy and reducing the calibration time (a reduction of 53%).
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A

B

FIGURE 2

The general structure of the proposed method is based on a transfer learning approach for P300 Signal Classification with Euclidean alignment and

fine-tuning of a convolutional neural network. (A) The training stage comprises four main modules: fine-tuning of a pre-trained CNN for deep

feature extraction, Euclidean alignment to mitigate distribution variations between the source and target domains, source sample selection for

optimal representation, and training the discriminative restricted Boltzmann machine (DRBM) classifier using the selected samples. (B) During the test

stage, features are extracted using the fine-tuning module, followed by transformation into the aligned space, and finally fed into the classification

model (DRBM).

FIGURE 3

Description of the CNN structure employed for EEG signal classification. TxC indicates temporal features and the number of channels, where T = 160

and C = 64 for Dataset 1, and T = 45 and C = 8 for Dataset 2. The network includes batch normalization in the input layer, followed by a

convolutional layer with K kernels of size [T/10xC] and stride of [Sx1] for feature extraction, where K & S = 16 for Dataset 1, and K & S = 5 for Dataset

2. Two Fully Connected layers of f (f = 128 for Dataset 1 and f = 36 for Dataset 2) and two neurons are utilized, followed by a Softmax layer to

complete the network. The ReLU activation function is applied throughout the network.

In Dataset 2 (RSVP), which comprises 11 subjects, our primary

objective is to select the most suitable source subject for each

target subject. To accomplish this, we employed a source subject

selection process based on performance evaluation. The approach

involved training 10 classifiers, each using the training dataset from

one of the 10 source subjects. These classifiers were subsequently

tested using 20% of the training data from the target subject.

After conducting the tests, we identified the source subject whose

classifier achieved the highest classification accuracy out of the 10

groups. This source subject was then chosen as the optimal match

for the respective target subject. By employing this methodology,

we aimed to ensure that the most competent and relevant sources

were utilized to enhance the overall performance of the system.

Notably, 10% of training selected source datasets were used for
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tuning the parameters as a cross-validation step in Dataset 1 and

2 analyses.

2.3.2 Euclidean space data alignment
According to the literature (He andWu, 2020), an unsupervised

approach was proposed to align EEG data of various subjects in

Euclidean space with a focus on enhancing their similarity which

is called Euclidean alignment (EA). In this study, we applied this

EA approach to the features extracted from the first fully connected

layer of the CNN structure [y= f(X)] in both the source and target

datasets to improve the efficiency of the transfer learning process.

The EA technique computed the reference matrix based on the

covariance of a subject’s N-trial feature, as given by Equation 3:

R̄ =
1

N

N
∑

n=1

yn(yn)T (3)

After computing the reference matrix for each dataset, the

datasets were aligned using the Equation 4:

ỹn = R̄−
1
2 yn (4)

This method is computationally efficient, does not require

labeling, and results in distributions of the aligned data being

more similar. To implement the EA, we calculated the reference

covariance matrix in two ways offline and online calculation. In

offline calculation, all unlabeled trials from a new subject are

available and used to calculate the reference, while in online

calculation only one trial of unlabeled data at each step is used to

update the reference covariance matrix.

2.3.3 Source sample selection
To reduce the negative effect of transfer from the source

domain to the target domain, source sample selection has been

used in the current study. This process involves selecting the

most relevant and informative source samples to improve the

performance of the target domain. There are different criteria

for choosing source data. Here we employed an unsupervised

sample selection approach based on distance criteria. The distance-

based method involved creating a reference for the target

subject by averaging its feature samples. The Euclidean distance

measurement was used to calculate the distance between each

source feature sample and the reference. The samples with the

smallest distance were then selected. Algorithm 1 provides a more

detailed description of the introduced source selection method.

2.4 Classification

Restricted Boltzmann Machines (RBMs) are an energy-based

model with hidden variables. RBMs are typically used as generative

models, meaning they can learn to generate new samples from a

given distribution. The model learns to assign higher probabilities

to samples that are similar to the ones it has seen during training

and lower probabilities to dissimilar samples.

Algorithm 1 Source sample selection.

Input:

• ỹTj is the extracted feature vector from jth target sample.

• ỹSi is the extracted feature vector from ith source sample.

• NT is the number of target samples.

• NS is the number of source samples.

• k is the number of source samples to be selected.

Calculate target reference: r = 1
NT

∑NT
j=1 ỹ

T
j ;

for i= l: Ns do

d(j) = (r− ỹSi )(r− ỹSi )
′

;

end

Sort d and select k source samples with the smallest distance.

Output: k index from source (ỸS)

For classification problems, a Discriminative RBM (DRBM)

was proposed (Larochelle and Bengio, 2008). Unlike a standard

RBM, a DRBM is trained to directly model the conditional

distribution of the labels given the input data. This makes the

DRBM a discriminative model, as it is trained to predict the

labels of new samples, rather than generate them. DRBMs have

been shown to achieve state-of-the-art performance on several

benchmark datasets.

Previous studies have reported the successful performance of

a hybrid form of DRBM in the P300 classification (Varsamou

and Antonakopoulos, 2019; Kordmahale et al., 2022; Aghili et al.,

2023). Therefore, we have adopted this approach, using 10 hidden

neurons, to classify features extracted from the output of the

convolutional layer.

3 Results and discussion

We utilized two datasets (dataset II from BCI competition

III and RSVP dataset) to evaluate the proposed method, as

introduced in Section 2.1. In the initial phase, we showcase our

effectiveness using Dataset 1, illustrating our commendable

performance in both offline and online scenarios (more

details about the scenarios in Section 2.3.2). Subsequently,

in the second phase, we present the findings obtained from

Dataset 2, providing more comprehensive insights through

ablation experiments. Given the larger pool of subjects in

this dataset, we can effectively showcase our robustness in

this context.

3.1 Dataset 1 results

3.1.1 Data visualization
The t-Stochastic Neighbor Embedding (t-SNE) is a

visualization technique that maps high-dimensional data to a

two or three-dimensional (2D or 3D) space (Van Der Maaten

and Hinton, 2008). The goal of t-SNE is to optimize the

pairwise distances in the reduced space for the distances in

the original manifold. In our case, we aim to represent each

extracted feature in a 2D space to better appreciate the effect
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FIGURE 4

(Left) presents a t-SNE visualization of the data distributions in the source (red color) and target (cyan color) domains within Dataset 1. The target

involves data samples of 40 characters from subject A, and the source distribution comprises data samples of 85 characters from subject B, after

extracting fine-tuned CNN features (before applying EA). On the other hand, the (Right) depicts the target and source feature distributions after

applying EA (fine-tuned CNN+EA).

FIGURE 5

Comparative analysis of character recognition accuracy (%) for Dataset 1, subjects A and B, using three distinct methodologies for training on 40

target characters. Approach (i) employs a conventional CNN (blue); approach (ii) applies the fine_tuned CNN method (red); approach (iii) utilizes the

fine_tuned CNN+EA method without source sample selection (cyan); and approach (iv) applies the fine-tuned CNN+EA with source sample

selection (pink color).

of the EA alignment in the cross-subject shifts. In Figure 4,

we aim to illustrate the extracted features by the fine-tuned

CNN before and after applying EA to demonstrate their impact

on the similarity of target and source distributions. As shown

in Figure 4, the proposed TL (fine-tuned CNN+EA) method

demonstrates a suitable effect on the similarity of target and

source distributions.

3.1.2 Performance evaluation
In Figure 5, the character recognition performance was

evaluated on Dataset 1, subjects “A” and “B” using three different

feature extraction approaches as comparison study (DRBM was set

as a classification method for all of them): (i) conventional CNN

technique without fine-tune approach with 40 target characters,

(ii) fine-tuning approach is used for 40 target characters training,
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TABLE 1 The accuracy of character recognition (%) is compared between our proposed method and other existing methods for subjects A and B from Dataset 1.

Subjects Methods Repetitions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A ∗Proposed method 22 38 52 58 63 71 76 79 83 88 90 91 91 94 98

CNN-1 16 33 47 52 61 65 77 78 85 86 90 91 91 93 97

MCNN-3 17 35 50 55 63 67 78 79 84 85 91 90 92 94 97

∗MsCNN-TL-ESVM 24 38 46 50 60 70 72 79 84 86 89 89 92 94 96

∗MsCNN-ESVM 16 16 39 38 46 49 65 69 78 81 82 87 88 89 89

DRBM-85 19 35 47 57 62 65 74 78 83 85 86 89 91 92 94

∗DRBM-45 20 31 43 50 55 61 70 72 78 82 80 84 85 89 91

B ∗Proposed method 43 66 74 77 82 86 90 88 90 91 91 94 95 95 96

CNN-1 35 52 59 68 79 81 82 89 92 91 91 90 91 92 92

MCNN-3 34 56 60 68 74 80 82 89 90 90 91 88 90 91 92

∗MsCNN-TL-ESVM 40 59 67 74 79 84 90 92 94 97 96 98 97 97 96

∗MsCNN-ESVM 37 58 65 73 74 83 87 88 91 94 92 92 93 96 96

DRBM-85 32 50 62 65 75 77 83 86 90 93 94 95 95 94 93

∗DRBM-45 32 45 52 65 73 76 82 84 86 92 92 93 93 91 89

∗Indicates that 40 target characters (7,200 training target samples) are used for training the model. Other methods utilized all 85 target characters (15,300 training target samples) for training the model.

The best accuracy for each repetition was made bold for clarification.
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FIGURE 6

The comparison of information transfer rates (ITRs) between the proposed method and other techniques, based on the average accuracy of two

subjects A and B from Dataset 1. DRBM-45 and DRBM-85 indicate that 45 and 85 training characters are used for training the model, respectively.

(iii) fine_tuned CNN+EA without sources samples selection, and

(iv) proposed TL approach (7,200 sources samples were selected

by Algorithm 1). The results show that the accuracy of character

recognition is higher with the proposed approach compared to

fine-tuned CNN+EA, fine-tuned CNN, and conventional CNN. By

selectively utilizing 7,200 source samples by the proposed sample

selection method, we not only boost the system’s accuracy but also

enhance the efficiency of the training process by ensuring that

only the most relevant and impactful data is utilized. The results

underscore the importance of source sample selection in improving

the efficacy of TL techniques in BCI applications.

To evaluate the performance of the proposed algorithm, we

compared its results with those of previous works that reported

their findings on the benchmark dataset (BCI competition III

dataset II), which included the CNN-1 (Cecotti and Gräser,

2011), MCNN-3 (Cecotti and Gräser, 2011), MsCNN-TL-ESVM

(Kundu and Ari, 2020b), and DRBM (Larochelle and Bengio, 2008)

techniques. Table 1 summarizes the results of the current character

recognition methods compared to our proposed method. Our

approach achieved excellent classification performance, with an

accuracy of 98%, and 96% for subjects A and B after 15 repetitions,

respectively. It’s worth noting that these results were achieved using

only 40 training characters to train the model.

The speed and accuracy of a user’s communication with

a computer using brain signals can be quantified using the

information transfer rate (ITR) formula. ITR is measured in bits

per minute (bpm) and is defined as Equation 5.

ITR =

((

log2 N + P log2 P + (1− P) log2
1−P
N−1

)

× 60
)

T
(5)

where N is the number of characters in the BCI paradigm,

which is 36 in this case. P is the character recognition accuracy,

and T is the time required for character recognition, defined as

Equation 6:

T = 2.5+ ((0.100 s + 0.075 s)× 12)× Nr , 1 ≤ Nr ≤ 15 (6)

where Nr is the number of repetitions (1 ≤ Nr ≤ 15). Figure 6

demonstrates the ITR of the proposed method in comparison

to other previously reported methods. ITR values of 10.4, 13.4,

10.6, and 8.5 bpm were achieved for 1, 5, 10, and 15 repetitions,

respectively. The proposed technique achieves an optimal level

of character recognition and speed for 1–7 repetitions, resulting

in a higher ITR score than other methods. The practicality of

our approach extends to real-time applications, offering a robust

solution to the prevalent speed limitations in BCI systems.

3.1.3 Online vs. o	ine analysis
The difference between online and offline computations lies

in the covariance matrix calculation, as explained previously

(Section 2.3.2). The research study highlights the outcomes

of online character recognition in two subjects, identified as

Subject A and Subject B. These results are comprehensively

summarized in Table 2, presenting an overview of the achieved

recognition accuracy in real-time scenarios. By serving as a valuable

reference, Table 2 provides crucial insights into the effectiveness

of online character recognition among different individuals. The

implications drawn from these findings hold significant potential

for advancing the field of online character recognition and its

practical applications.

Experimental results show that the t-test conducted between

the offline and online results (P-value = 0.25) yielded non-

significant differences. This outcome provides strong evidence that

the proposed method is highly suitable for online implementation.

Moreover, the system’s efficiency is further highlighted by the

reduced number of repetitions required to achieve satisfactory

results. These smaller number of repetitions demonstrate the

speediness of the system, making it an efficient and practical

solution for P300 signal classification tasks.

3.2 RSVP results

Given the significant class imbalance in the RSVP dataset, we

opted to employ balanced classification accuracy (BCA) as the

performancemetric, as recommended in the literature (He andWu,

2020). To elaborate, let’s designate “m1” as the true number of trials

from the target class and “m2” as the true number of trials from the
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non-target class. Additionally, “n1” and “n2” represent the number

of trials correctly classified as target and non-target, respectively, by

the algorithm. To compute the BCA, we follow these steps:

a1 =
n1

m1
a2 =

n2

m2

In this context, “a1” refers to the classification accuracy of the

target class, while “a2” represents the classification accuracy of the

non-target class.

BCA =
a1+ a2

2

Figure 7 presents the BCA of the methods across four different

types of analysis for Dataset 2, highlighting the improvements

made in our final approach. The classifier is DRBM for all feature

extraction methods. The first category termed conventional CNN

without a fine-tuning approach to the target subjects’ dataset. In

the fine-tuned CNN approach, we aimed to show the effect of

fine-tuning on the performance by employing a fine-tuned CNN,

utilizing data from source subject, to extract optimal features from

the target subject’ dataset. The third category demonstrates the

use of fine-tuned CNN combined with EA without employing the

source selection strategy. Here, we aim to highlight the impact of

EA. The features derived from both the source CNN and the target

fine-tuned CNN were transformed into the Euclidean space using

EA. Subsequently, the features transferred from the target, along

with all the transferred features from the source, were inputted

into the classifier. In the fourth approach, we present our proposed

method, which integrates fine-tuned CNN with EA along with the

proposed source selection approach. Ultimately, our method yields

significantly higher BCA (Balanced Classification Accuracy) values

compared to the other three methods. These results were evaluated

using the one-way ANOVA statistical test followed by Tuckey’s hsd

post-hoc, confirming the superiority of our proposed approach (p<

0.001).

We further conducted a comprehensive comparison of our

newly developed method with two existing approaches using the

RSVP dataset, as reported in the literature (He and Wu, 2020). We

also followed the same evaluation criteria and procedures outlined

in He and Wu (2020) to make the results directly comparable. The

two approaches we assessed included EA-SVM and EA-xDAWN-

SVM. For each method, we measured its accuracy and effectiveness

in analyzing EEG data on the RSVP dataset. This comparison is

represented in Figure 8. These findings provide strong evidence

for the potential superiority of our method in analyzing EEG data

from the RSVP dataset. Specifically, we achieved a remarkable

increase of 5.7 and 6.65%, respectively, in BCA values compared to

EA-xDAWN-SVM and EA-SVM, which were the best-performing

existing approaches.

4 Conclusion

This study introduced a new transfer learning approach for

the ERP-based brain-computer interface that incorporates source

sample selection to improve the performance of the system further.

Source sample selection in transfer learning has several advantages.

It can help to reduce the negative effects of domain shift, where
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FIGURE 7

BCA values for all subjects (left) and their average (right) across four distinct training methodologies in Dataset 2. Approach (i) utilizes a conventional

technique without fine-tuning, training on target characters (CNN); approach (ii) involves a fine-tuned CNN for feature extraction (Finetune-CNN);

approach (iii) employs the proposed TL method without source sample selection (Finetune-CNN+EA); and approach (iv) incorporates the fined-tune

CNN+EA method with source sample selection (Finetune-CNN+EA+SSS). Significance levels are denoted by *** for P < 10−3 and ** for P < 10−2.

FIGURE 8

BCA values for all subjects (left) and their average (right) for three di�erent approaches in Dataset 2: (i) EA-SVM, (ii) EA-xDAWN-SVM, and (iii)

proposed method.

there are differences between the distribution of data in the source

and target domains. By selecting appropriate sources, it is possible

to mitigate these negative effects and improve performance on the

target task. The proposed selection approach chooses the most

relevant source samples based on their similarity to the target

samples to enhance the transferability of the model further.

In addition, the proposed approach utilized fine-tuning and

data alignment techniques to improve the performance of the P300

BCI, especially when dealing with limited labeled data. Specifically,

the approach fine-tunes a pre-trained model on a similar task using

a small amount of labeled data and aligns the data distributions

between the source and target domains to minimize the domain

shift. The results of our experiments showed that the proposed

approach outperforms the baseline models and achieves state-of-

the-art performance on the datasets used in this study.

Furthermore, the proposed approach is shown to be

generalizable to other datasets, demonstrating its potential

for wider applicability. One of the most important aspects of

the proposed method is extracting high-level features in a new

domain (EA) while minimizing the difference between both

feature groups of source and target. Importantly, while Euclidean

Alignment has been explored in the context of transfer learning for

BCIs, our work demonstrates its novel application to high-level

features extracted from convolutional neural networks. This
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approach directly addresses the inherent variability of EEG signals

between subjects, facilitating more robust knowledge transfer

and improving performance compared to methods that focus

solely on raw time samples. The findings of this study suggest that

fine-tuning, data alignment, and source sample selection could be

promising techniques for enhancing the performance of ERP-based

BCIs while reducing calibration time and could pave the way for

further research in this area.
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