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Co-learning synaptic delays,
weights and adaptation in spiking
neural networks

Lucas Deckers*, Laurens Van Damme, Werner Van Leekwijck,

Ing Jyh Tsang and Steven Latré

IDLab, imec, University of Antwerp, Antwerp, Belgium

Spiking neural network (SNN) distinguish themselves from artificial neural

network (ANN) because of their inherent temporal processing and spike-based

computations, enabling a power-e�cient implementation in neuromorphic

hardware. In this study, we demonstrate that data processing with spiking

neurons can be enhanced by co-learning the synaptic weights with two

other biologically inspired neuronal features: (1) a set of parameters describing

neuronal adaptation processes and (2) synaptic propagation delays. The former

allows a spiking neuron to learn how to specifically react to incoming spikes

based on its past. The trained adaptation parameters result in neuronal

heterogeneity, which leads to a greater variety in available spike patterns and

is also found in the brain. The latter enables to learn to explicitly correlate

spike trains that are temporally distanced. Synaptic delays reflect the time

an action potential requires to travel from one neuron to another. We show

that each of the co-learned features separately leads to an improvement over

the baseline SNN and that the combination of both leads to state-of-the-art

SNN results on all speech recognition datasets investigated with a simple 2-

hidden layer feed-forward network. Our SNN outperforms the benchmark ANN

on the neuromorphic datasets (Spiking Heidelberg Digits and Spiking Speech

Commands), even with fewer trainable parameters. On the 35-class Google

Speech Commands dataset, our SNN also outperforms a GRU of similar size. Our

study presents brain-inspired improvements in SNN that enable them to excel

over an equivalent ANN of similar size on tasks with rich temporal dynamics.

KEYWORDS

spiking neural networks, synaptic delays, neuronal adaptation, co-learning, speech

recognition, surrogate gradients

1 Introduction

Spiking neural networks (SNN), seen as the third generation neural network models

(Maass, 1997), have recently attracted growing attention as a low-power alternative for

artificial neural networks (ANN). Unlike ANN implementations (García-Martín et al.,

2019), SNN can enable power-efficient processing on neuromorphic hardware such as

SENeCa (Yousefzadeh et al., 2022), the Intel Loihi2 (Orchard et al., 2021), or IBM

TrueNorth (DeBole et al., 2019). The main power gains can be attributed to SNN inherent

event-based computations (by means of spikes) and sparsity, reducing the number of

multiplications that are required. A recent study (Stöckl and Maass, 2021) illustrated these

potential SNN energy savings.

Recent years have shown great progress in learning algorithms for deep

SNN. Especially training SNN, based on backpropagation-through-time with

surrogate gradients (Neftci et al., 2019), helped overcome the problem of the
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non-differentiability, which was introduced by the thresholding

mechanism in a spiking neuron. These advances enabled SNN to

move to deeper and more complicated model architectures using

attention mechanisms (Yao et al., 2023) or transformers (Zhou

et al., 2023; Zhu et al., 2023). The main issue related to SNN

however persists: frequently the SNN model does not perform as

well as the equivalent ANN.

In biology, researchers have found that the brain is equipped

with a plethora of powers to process spike trains adequately. One

of those is the axonal delay. The transmission speed of an action

potential is known to depend on the myelination of the axon and

thus determine the extent to which a spike is delayed (Purves et al.,

2001). Furthermore, these delays are crucial in sensory processing

(Orchard and Etienne-Cummings, 2014) and known to adapt

during the learning process (Lin and Faber, 2002). A delay-enabled

spiking network was also found to be able to compute a richer

class of functions than a threshold circuit with adjustable weights

(Maass and Schmitt, 1999). Another differentiator between classical

ANN and the brain is the widespread heterogeneity and neuronal

adaptation processes taking place. Neurons of all forms and shapes

are found, enabling a wide array spike pattern processing functions

(Gerstner and Kistler, 2002). Moreover, biological neurons exhibit

slow dynamical processes that act at longer time scales, enabling

processing of events that are temporally distanced in an implicit

manner. These adaptive processes often limit the number of spikes

produced.

Combining the ability to optimize the weights, delays and

training neuronal parameters can lead to a more diverse and

possibly improved internal representation. Figure 1 shows the

responses of (A) a typical leaky integrate-and-fire (LIF) neuron,

(B) a neuron with delayed input spike trains, and (C) a neuron

with delayed input spike trains and neuronal adaptation for a spike

train of four equidistant input spikes and all equal connection

weights. It can clearly be observed that the output spike patterns are

vastly different. The LIF neuron (A) will always respond the same

while the others provide a wider range of possible results because

of the trainable delay (B) and non-linear, trainable adaptation

processes (C). Both extensions show to be complementary in

providing additionalmemory. The synaptic delay allows the neuron

to explicitly correlate incoming spikes at longer timescales, whereas

the adaptation implicitly alters the behavior of a neuron based on

its past regime.

In this study, we present an SNN with adaptive neurons and

synaptic delays that are co-optimized. Whereas, normally, as in

ANN, just the synaptic weights are trained, we show that co-

learning the delays and adaptation parameters individually enhance

the performance of the SNNmodel, and that combining them even

leads to state-of-the-art SNN results. The contribution of this study

is summarized as follows:

1. We analyze the biologically plausible neuronal

adaptation parameters and which effects parameter

boundaries have on the neurons working regime as

well as on the SNN performance on three speech

recognition datasets.

2. We introduce a novel learning rule for synaptic delays, which

accounts for temporal context.

3. We present a novel SNN model in which both synaptic

weights and delays are co-optimized in collaboration with the

neuronal adaptation parameters.

4. We show that the inclusion of these more complex neurons

through adaptation and the addition of trainable synaptic

delays for every synapse specifically leads to state-of-the-

art results for spiking neural networks. The proposed SNN

even outperforms its non-spiking counterpart with equivalent

model size on the speech recognition problems.

2 Related work

2.1 Learning algorithms for spiking neural
networks

Recently, there has been a rapid evolution in the development

and progress of SNN learning paradigms. In general, either a

trained ANN is converted into a rate-based SNN, aiming at

minimal performance losses due to the ANN-SNN conversion

(Deng and Gu, 2021; Bu et al., 2022) or the SNN is trained

directly as a spiking neural network. A directly trained SNN

is typically trained with backpropagation-through-time with

surrogate gradients (Neftci et al., 2019; Zenke and Vogels,

2021). These surrogates are used to approach the derivative of

non-differential Heaviside function, which is introduced by the

spiking mechanism. A recent study went one step further in

using differentiable spikes (Li et al., 2021) for temporal credit

assignment. Moreover, the spike-element-wise (SEW) ResNet

(Fang et al., 2021a) was proposed for training SNN without the

vanishing/exploding problem introduced by surrogate gradients,

paving the way for deeper SNN models.

2.2 Learning of neuronal parameters and
neuronal heterogeneity

Another trend in SNN research is to learn the optimal

distribution of the neuronal (leakage) parameters (Fang et al.,

2021b; Yin et al., 2021; Rathi and Roy, 2023). Moreover, the Gated

LIF neuron (Yao et al., 2022) was proposed to control the fusion

of learnable membrane-related parameters. Additionally, in many

studies, the heterogeneity of neurons in SNNproved to be beneficial

for improved recognition performance (Perez-Nieves et al., 2021;

Deckers et al., 2022; Chakraborty and Mukhopadhyay, 2023).

Different methods for including neuronal adaptation processes

have been proposed. The first class contains neurons with an

adaptive threshold, which is increased after every spike and

exponentially decays over time (Salaj et al., 2021; Yin et al., 2021).

Others (Falez et al., 2019) proposed a method for tuning the

thresholds with specific target spike timestamps as an objective.

In other studies (Gast et al., 2020), the adaptive thresholds

were combined with a synaptic depression model, which showed

to replicate both bursting and steady-state behavior. Another

adaptation method is based on adaptation currents, coupling a

secondary variable to the sub-threshold membrane potential and

its spike activity (Brunel et al., 2003). This method was successfully

formalized into the AdLIF spiking neuron model (Bittar and
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FIGURE 1

Illustration of the variety in responses for di�erent neuron models: two input spike trains are processed by three di�erent neurons with equal weights.

Input neuron 1 spikes at (t2, t4) and input neuron 2 spikes at (t1, t3). For all neurons, we show the evolution of the membrane potential, u[t] over time

in response to these input spikes: (A) A typical leaky-integrate-and-fire (LIF) neuron, spikes at the timestep of the last incoming spike, t4. (B) A LIF

neuron with delayed (by d) input spikes from input neuron 2 produces spikes at timesteps t2 and t4. (C) An adaptive neuron processes delayed input

spikes from input neuron and only produces a spike at timestep t3 + d, the latency of the spikes coming from neuron 2.

Garner, 2022) for SNN and was shown to outperform adaptive

threshold-based models.

2.3 Delays in SNN

Many methods have been proposed for adapting propagation

delays, inspired by spike timing dependent plasticity (Wang et al.,

2013) or based on the ReSuMe learning rule (Zhang et al., 2020). A

method for training per neuron axonal delays based on the SLAYER

learning paradigm was proposed (Shrestha and Orchard, 2018) and

extended (Sun et al., 2023b) with trainable delay caps. Recently, the

effects of axonal synaptic delay learning were studied by pruning

multiple delay synapses (Patiño-Saucedo et al., 2023), modeling

a one-layer multinomial logistic regression with synaptic delays

(Grimaldi and Perrinet, 2023) and learning delays represented

trough 1D convolutions with learnable spacings (Hammouamri

et al., 2023). Similarly, in order to train synaptic delays, spike

trains were transformed into continuous analog, differentiable

signals (Wang et al., 2019). Surprisingly, only learning the delays

(Grappolini and Subramoney, 2023) showed to achieve comparable

performance, only learning the weights.

3 Materials and methods

A spiking neural network (SNN) is a biologically inspired type

of neural network, in which spikes, i.e., binary events are used to

communicate between layers of spiking neurons. In this section, we

elaborate on the fundamental properties of spiking neurons and the

methods used in this study to train the synaptic weights, synaptic

delays, and neuronal parameters in multi-layer networks of spiking

neurons.

3.1 Spiking neurons

Spiking neurons differ from classical neurons in ANN because

of their inherent time-dependent processing of data streams.

Incoming spikes are multiplied by the synaptic weights and

accumulated over time for every neuron. When this neuronal state,

i.e., the membrane potential crosses the spiking threshold, a neuron

emits a spike to a subsequent layer. The membrane potential is

maintained over time and thus creates an internal memory for

every individual neuron.

In this study, we use the adaptive leaky integrate-and-fire

neuron (AdLIF) model (Bittar and Garner, 2022) with updated

parameter boundaries. To highlight this modification, our neuron

model is called the constrained AdLIF, (cAdLIF). In this model, two

internal states are kept: the membrane potential and the adaptation

current, which provides the neuronal adaptation. Formally, u[t],

w[t], and s[t], respectively, represent the membrane potential,

the adaptation current, and the presence of a spike, at time

step t. In the AdLIF neuron model, there are four trainable

neuronal parameters: α and β denote the leak of u[t] and w[t],

respectively, while a and b describe the characteristics of the

adaptation current. The adaptation current is coupled with the

sub-threshold membrane potential by a, while b represents the

spike-triggered adaptation. In the cAdLIF model, these a and b

are constrained to be positive only. This change results in major

differences when processing spikes, as discussed in Section 4.3.

A neuron generates a spike at timestep t when the membrane

potential crosses the firing threshold, θ , at t. Mathematically, the

threshold θ is represented as a Heaviside function. The full discrete-

time model, with time step size equal to 1 ms, is described in

Equation (1). The trainable neuronal parameters are highlighted in

bold.

u[t] = αααu[t − 1]+ (1− ααα)(I[t]− w[t − 1])− θs[t − 1]

w[t] = βββw[t − 1]+ (1− βββ)aaau[t − 1]+ bbbs[t − 1]

s[t] = u[t] ≥ θ

(1)

The adaptation, implemented by means of this adaptation

current w[t] is affected by both the neurons’ instantaneous

membrane potential and a spike-triggered fraction. This contrasts

with the adaptive neuronal threshold adaptation, in which only

the spiking activity is taken into account (Yin et al., 2021). This
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model was chosen because of its proven superior performance

in comparison with a leaky integrate-and-fire (LIF) model with

an adaptive neuronal threshold (Bittar and Garner, 2022). The

computational graph of the neuron model, rolled out over time, is

shown in Figure 2. The yellow box, w[t], represents the addition

of the adaptation variable to the classic LIF neuron model, and

the blue arrows, connecting the internal variables, represent the

corresponding trainable neuron parameters.

3.2 Training multi-layer SNN

3.2.1 Model architecture
In this study, the SNN consists of a simple feed-forward

network with two hidden layers. Figure 2 shows the network

architecture, which is rolled out over time. In general, neuron i in

hidden layer l receives Ili , the pre-synaptic current, which consists of

two elements, as shown in Equation (2). The feed-forward synapses

from the previous layer l − 1 have associated weights Fl−1
ij and

carry spikes from the same time step t to neuron j and the neuronal

bias, bli. These input spike trains are summed over all pre-synaptic

neurons j = 1, ...,Nl−1. Spike trains are represented by s[t] ∈

[0, 1]. Typically, in this type of architecture, all feed-forward are

connected in an all-to-all fashion.

Ili =

Nl−1
∑

j=1

Fl−1
ij sl−1

j [t]+ bli (2)

The readout mechanism, which is used to derive the outputs

of the SNN, consists of a single layer. This layer consists of neurons

with infinite threshold. These neurons have nomemory, and hence,

the membrane potential is equal to the the weighted inputs. The

output of the SNN model is the sum of the membrane potential of

the output neurons over time, which is passed though a softmax

layer for every timestep. The outputs are shown in Equation (3).

uout =
∑

t

euout[t]
∑

j e
uout,j[t]

(3)

3.2.2 Training procedure
Typically, spiking neural networks (SNN) are trained via

backpropagation-through-time (BPTT) with surrogate gradients

(Neftci et al., 2019). In these methods, the summed membrane

potential of the output neurons, see Equation (3), constitute the

cross-entropy loss of the network, which is unrolled over time. The

loss with respect to class c for a batch size N is represented as

follows:

Lc =
1

N

N
∑

n=1

−log(
euout,c

∑

j e
uout,j

) (4)

Based on the chain rule in error-backpropagation, the weight

update for neuron i in the penultimate layer l for a sequence of T

timesteps is shown in Equation (5).

δLc

δwl
=

1

T

T
∑

t=1

t
∑

m=0

δLc[t]

δuout[m]

δuout[m]

δsl[m]

δsl[m]

δul[m]

δul[m]

δwl
(5)

In these methods, surrogate gradients are used to approximate

the non-differentiability, which was introduced by the thresholding

mechanism (Heaviside function), δs[t]
δu[t] , with a differentiable

function in the backward pass of error-backpropagation. For

simplicity and comparability with the previous study (Bittar and

Garner, 2022), the boxcar surrogate gradient function, shown in

Equation (6), was used in this study.

δs[t]

δu[t]
=

{

0.5 if |u[t]− θ | ≤ 0.5

0 otherwise
(6)

3.3 Introducing synaptic delays

In contrast to ANNs and most other SNNs in which

connections are defined by a weight parameter, in this study,

connections between neurons are characterized by two synaptic

parameters: a weight and a delay. The addition of synaptic delays

leads to an adjusted neuronal processing model. Now, the spike

train for neuron i from layer l is characterized by Ii
l
, as shown in

Equation (7). The synaptic delay can be found in slj[t − dij], where

dij denotes the delayed spikes between neuron j and i.

Ili =

Nl−1
∑

j=1

Fl−1
ij sl−1

j [t − dij]+ bli (7)

Training of the synaptic delays is an adaptation of the SLAYER

learning method (Shrestha and Orchard, 2018) for training axonal

delays, which is applied to individual synapses based on the local

temporal context. The delay kernel, ǫd, is convolved with spike train

s[t], to get the delayed spike kernel, pl[t] = (ǫd ∗ s
l)[t]. Similarly to

the case in which delays were equal to 0 (i.e., without delays), the

derivative of the loss with respect to the synaptic weight and delays

is now computed, as shown in Equations (8, 9).

δLc

δwl
=

1

T

T
∑

t=1

t
∑

m=0

δLc[t]

δuout[m]

δuout[m]

δal[m]

δal[m]

δul[m]

δul[m]

δwl
(8)

δLc

δdl
=

1

T

T
∑

t=1

t
∑

m=1

δLc[t]

δuout[m]

δuout[m]

δpl[m]

δpl[m]

δdl
(9)

In Equation (9),
δpl
δdl

is equal to
dp[t]
dt

for every unique synapse.

Contrary to the SLAYER delay learning algorithm as presented

in the study by Shrestha and Orchard (2018), where the finite

difference instantaneous derivative with respect to time is taken

or Sun et al. (2023a) where the axonal, i.e., identical for every

postsynaptic neuron, delay is implemented as a variable axonal

delay module, we take the temporal context into account for every

individual synapse. More precisely,
dp[t]
dt

is replaced with p[t −

c : t − 1] − p[t + 1 : t + c] for all t timesteps per synapse. In
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FIGURE 2

(Left) Computational graph of the AdLIF neuron model, unrolled over time. The yellow blocks denote the additional adaptation current parameter,

which depends on the membrane potential u[t] and the spike activity, s[t] at the previous timestep. (Right) Two-layer fully connected architecture

with readout of the output neuron membrane potential, unrolled over the time. The blue connections denote the potential delays in the network. For

clarity, the delays starting from time step 1 onward were omitted.

this way, the direction of the delay updates is determined by the

corresponding temporal context c both in the past and future of

a specific timestep t and not just the direct derivative at t. We

experimented with different ranges of temporal contexts in the

learning rule for synaptic delays. To this end, we compared different

values of c. We empirically found a width of 3 to be optimal. A

detailed analysis is shown in Figure 3.

4 Experiments

In this section, we will elaborate on the experiments conducted

for this study and the corresponding results. First, we describe the

datasets and the precise setup for training the SNNs. Following this,

we present an analysis of the AdLIF neuron model and, finally,

show the full results.

4.1 Datasets

We used three common SNN benchmark speech recognition

datasets: the Spiking Heidelberg Digits (SHD), the Spiking Speech

Commands (SSC) (Cramer et al., 2020), and the Google Speech

Commands v0.02 (GSC) dataset (Warden, 2018). The first two

datasets are neuromorphic datasets, in which the original sounds

were converted to spikes, spread out over 700 input channels. The

GSC dataset consists of speech samples. The SHD dataset consists

of German and English spoken digits (0 through 9). The SSC dataset

is based on the sounds from the GSC dataset. Both the SSC and

GSC datasets have 35 classes from a large group of speakers in a

non-controlled environment. These larger datasets provide a more

challenging speech recognition task.

Similarly to other studies, for the spiking datasets, which were

zero-padded and aligned to 1 s, we binned the input data from

700 input channels to 140 channels and 100 timesteps with 10 ms

bins to ensure uniformity across all samples. Regarding the GSC

dataset, speech data were aligned to 1 s by padding with zeros and

thereafter binned in 10 millisecond bins to generate samples of 100

timesteps. Further processing was performed with a Mel filterbank

with 40 Mel filters. Since there is no predefined test set for the SHD

dataset, we decided to take the average accuracy on the validation

set across 10 experiments with different random seeds. Similarly,

three random trials were conducted for the SSC and GSC datasets.

4.2 Training setup

All neuronal trainable parameters were uniformly initialized

between specific boundaries and subsequently co-learned with

the other model trainable parameters to reflect the neuronal

heterogeneity (Perez-Nieves et al., 2021). These parameters were

initialized following a uniform distribution: α ∈ [0.36, 0.96],

β ∈ [0.96, 0.99], a ∈ [0, 1], and b ∈ [0, 2]. Different from

the AdLIF model (Bittar and Garner, 2022), we extended the

available range of the membrane potential decay parameter α and

limited the dependency of the adaptation current with respect

to the membrane potential, a, to remain positive, which showed

to stabilize the neuron model for sparse input data. During the

training process, all neuron parameters are clipped to remain

within these boundaries. The spike threshold was fixed at 1

(dimensionless). The weights of all connections were initialized,

following the default Xavier uniform distribution, and the neuronal

biases were set to zero. For all hidden neurons, the initial membrane

potential and adaptation current were zero-initialized.

We used the Adam optimizer (Kingma and Ba, 2014) in all

experiments with an initial learning rate of 0.01 for the SHD dataset

and 0.001 for the others, which is similar to the previous study

(Bittar and Garner, 2022). The learning rate for the delays was

always equal to 10 ∗ lrweigths. We used a simple scheduler for both

the weights and delays, which decreased the learning rate by a

factor of 0.7 with a patience of 5 epochs. Dropout (Srivastava et al.,

2014) was applied in the hidden layers with rates of 0.5 and 0.25

for SHD and the other datasets, respectively. The available delay

values are limited to remain within [0, 25] time steps for these
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FIGURE 3

Illustration of di�erent neuron model adaptation parametrizations and their responses to a fixed train of 12 incoming spikes. We analyze the number

of output spikes and the corresponding evolution of the membrane potential u[t] over time for a range of a and b neuronal adaptation parameters. A

model without adaptation, the LIF model, is found where both a and b are equal to zero. The AdLIF model, which allows both positive and negative a,

can possibly result in an unstable spiking regime. In this case, the neuron generates more spikes than the number of incoming spikes, 12 in this

example. We therefore constrained the updated neuron model, cAdLIF to remain within positive a and b boundaries. For reference, we also show the

parametrizations for 6 and 1 output spikes in purple and green, respectively.

datasets. The network is initialized without delays, i.e., all delays

are equal to zero, and the input data were right padded accordingly

for the network to allow delayed spikes. This exact setup was used

for all experiments on all datasets presented in this study and

implemented in PyTorch (Paszke et al., 2019). Our code is based

on the SpArch implementation (Bittar and Garner, 2022). Table 1

shows an overview of the exact parametrization of the experiments,

executed for this study. The setups for the SSC and GSC datasets

were identical.

4.3 Analysis of the trainable adaptation
parameters

In this section, we analyze the effects of the different parameter

ranges for the main adaptation parameters a and b from the AdLIF

neuron model, as presented in Equation (1). Our constrained

Adaptive LIF (cAdLIF) model differs from the AdLIF model in two

ways: we extended the available decay window for the membrane

potential, the α parameter, for the model to be able to forget

more quickly if needed. More importantly, we limited the available

range of the a parameter, which allows the current membrane

potential u[t] to influence the adaptation current w[t]. Similarly

to adaptation by means of an adaptive threshold, this a parameter

mainly limits spikes if the membrane potential was high in the

past and thus provides a homeostatic mechanism, given that this

a remains positive.

In Figure 3, we illustrate that for a possible negative a, the

behavior of the adaptation current can lead to a non-controlled,

chaotic spiking regime. In this figure, we count the number of

spikes that are produced by a neuron, given a single fixed input

spike train of 12 spikes, for different adaptation parametrizations

of a and b. Whenever the produced number of spikes is higher than

the number of input spikes, the model enters a chaotic regime in

which a positive feedback loop could be activated and the neuron

remains spiking, even without the presence of input spikes. Figure 3

shows that in the case for a negative a, where, apart from a region

with a very high parameter b, the spike-triggered fraction of the

adaptation current, the number of output spikes generated is very

high. We therefore, unlike other works, chose to constrain in the

top right quadrant with both positive a and b and hence the

constrained AdLIF (cAdLIF) name for our neuron model. In this

figure, the base LIF model can be found at the point, where a and b

are equal to 0, and no adaptation current w[t] is produced.

4.4 Results

4.4.1 Speech recognition datasets
In the first experiment, we investigated the effects of adding

the trainable parameters to a basic LIF neuron model with similar

initialization and the effects of updated parametrization boundaries

for the adaptation parameters. Secondly, we added the trainable

synaptic delays (models with d-) and evaluated the interplay of

co-learning the adaptation and delays. The results in terms of
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TABLE 1 Overview of the hyperparameters used in training for all datasets considered in this study.

Dataset Hidden
layer size

Epochs Batch size Dropout rate Lr weights Lr delays Initialization Delay caps

SHD 128 100 128 0.5 0.01 0.1 Xavier uniform [0, 25]

SSC & GSC 512 100 32 0.25 0.001 0.01 Xavier uniform [0, 25]

classification accuracy, highlighting the individual contributions,

are shown in Table 2, as tested on the three speech recognition

datasets.

First, comparing the LIF model with the AdLIF and the cAdLIF

neuron models on the SHD dataset, we observed that the average

validation accuracy over 10 experiments is significantly increased

by up to 7.2%. The cAdLIF model performs ∼2.5% better than the

AdLIFmodel, on average, which is in accordance with the empirical

evaluation of adaptation parameters a and b in the analysis from

Section 4.3. For the larger speech datasets, similar improvements

are shown. Adding adaptation showed an increase of 5.0 and 8.1%,

and the cAdLIF model further increased the accuracy with 0.75

and 0.7% for the SSC and GSC datasets, respectively. These results

show the importance of trainable adaptation in SNN and adequate

trainable neuron parameter boundaries. Similarly, the d-cAdLIF

significantly outperforms the d-AdLIF and the d-LIF.

Secondly, the addition of trainable synaptic delays increases the

average accuracy for the LIF, d-AdLIF, and cAdLIF neuron models

by 8.1%, 1.7%, and 0.66% for the SHD dataset. The models with

trainable synaptic delays are titled d-SNN. Comparably, enhanced

results are shown for the SSC and GSC datasets. This shows that the

extra provided capacity to utilize memory is beneficial for all speech

recognition tasks and adds to the computational complexity already

provided by the trained adaptation parameters. Additionally, co-

learning both shows to further enhance our results. To validate the

effectiveness of the proposed learning rule, we also trained an SNN

with randomheterogeneous, fixed (non-learnable) delays, called fd-

cAdLIF. In this model, the delays were uniformly distributed within

the pre-determined intervals ([0, 25]). The d-cAdLIF outperforms

the fd-cAdLIF on all datasets.

Table 2 also shows the number of trainable parameters for

all datasets and model configurations. The number of additional

trainable parameters is limited when comparing the LIF with AdLIF

and cAdLIF models as they only increase with the number of

neurons in the SNN model not the synapses. Combined with the

results in classification, these results clearly show the added value

of trainable adaptation parameters for SNN models. Logically, the

number of trainable parameters is doubled for the delay-enabled

SNNs, as in that case, every synapse is characterized by both a delay

and a weight value.

One of the properties that affects the efficiency of the SNN

model, when deployed on neuromorphic hardware Yin et al. (2021),

is the number of spikes that are required when processing a single

sample in inference. We therefore analyze the number of spikes

in the hidden layers to assess how the proposed improvements

influence the total number of spikes in the SNN. To account for

inter-experimental variance, we averaged the spike rates over 10

trials on the SHD dataset. The results are shown in Table 2.

We observed that the number of spikes is not significantly

increased by the addition of the proposed adaptation method. For

the SSC and GSC datasets, there is a decrease in the number of

spikes, especially comparing the AdLIF and cAdLIF models. This

shows that BPTT effectively ends up in regions where a or b < 0

and uncontrolled spiking behavior occur with the unconstrained

AdLIF model. However, the synaptic delays, in general, result in an

increase in the number of spikes in the SNN model.

4.4.2 Experimental analysis on SHD
In Figure 4, we show a more detailed analysis of the SNN

models which are trained on SHD. In Figure 4A, the distribution of

the accuracy, as tested across 10 independent trials, is shown. The

d-cAdLIF model clearly outperforms the cAdLIF model without

synaptic delays and one with random fixed delays, showing the

benefits of co-learning the adaptation and synaptic delays.

Figure 4B shows the distribution of the trained

neuronal parameters. Interestingly, these are relatively

similar for the two hidden layers. We note that

specifically a and b, although uniformly initialized between

their respective boundaries, show large proportion of

near-zero elements.

In Figure 4C, we outlined the experiments on the temporal

context c, which was used in training in the backward pass to

determine the delay value updates. The results shown are for 10

independent d-cAdLIF neuron trials. We found that taking into

account three timesteps in the past/future yielded the best average

results. Finally, Figure 4D shows the distribution of the learned

delay values for all three layers. We again note that many values

are close to zero.

4.4.3 Comparison to the state-of-the-art
An overview of the results of our experiments on the full

cAdLIF model with synaptic delays across all speech recognition

datasets is presented in Table 3. We compared our SNN model

with state-of-the-art SNN solutions from the literature with a

2-hidden layer architecture and a corresponding state-of-the-art

ANN model for each dataset, which is shown below the

dotted line.

For the SHD dataset, the cAdLIF model with trained synaptic

delays matches the state-of-the-art results of a recently proposed

alternative method for training synaptic delays at just a fraction

(less than half) of its number of trainable parameters and

outperforms all other SNN and ANN methods on this dataset.

Here, the cAdLIF model with trainable synaptic delays shows

better performance than the current state-of-the-art models in
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TABLE 2 E�ect of the proposed enhancements in terms of accuracy, number of trainable parameters, and average spikes per neuron per sample, to a

basic 2-hidden layer feedforward SNNmodel with a hidden layer size of 128.

LIF AdLIF cAdLIF d-LIF d-AdLIF d-cAdLIF fd-cAdLIF

SHD 84.49 91.67 94.19 92.57 93.40 94.85 93.40

Accuracy (%) SSC 71.76 76.75 77.5 75.94 78.9 80.23 77.72

GSC 86.21 93.97 94.67 89.81 95.3 95.69 95.05

SHD 37.9 k 38.7 k 38.7 k 74.8 k 75.8 k 75.8 k 38.7 k

# Parameters SSC 0.34 M 0.35 M 0.35 M 0.69 M 0.7 M 0.7 M 0.35 M

GSC 0.30 M 0.30 M 0.30 M 0.60 M 0.61 M 0.61 M 0.30 M

SHD 5.4 5.7 5.6 4.7 9,8 5.8 6.1

#spikes/neuron SSC 6.6 14.6 3.9 7.7 9.2 5.2 6.2

GSC 12.5 13.1 5.0 10.1 7.6 6.7 8.6

Given the limited size of the SHD validation set, the average accuracy over 10 runs is shown. The constrained AdLIF with trainable delays (d-cAdLIF) shows the best performance.

FIGURE 4

Analysis of the experiments on the SHD dataset. (A) Overview of the classification results for 10 independent trials for all evaluated neuron models.

(B) Overview of the learned neuronal parameters in hidden layer 1 (top) and hidden layer 2 (bottom) for a d-cAdLIF model. (C) Experiments on the

temporal delay parameter c, for 10 independent trials. (D) distribution of the learned synaptic delays per layer.

SNN with a similar number of trainable parameters or less.

Furthermore, one additional SNN model with three hidden layers

was proposed by Hammouamri et al. (2023). This model achieves

similar performance as ours on the SSC dataset 80.29± 0.06%, with

an increase of∼45% additional trainable parameters (an additional

hidden layer). This model only achieved 95.29± 0.11% on the GSC
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TABLE 3 Test accuracy on the SHD, SSC, and GSC datasets and comparison with state-of-the-art in SNN for 2 hidden layer feedforward models, ordered

for the number of trainable parameters.

Dataset Model Hidden size # Parameters Accuracy (%)

SHD Adaptive RSNN (Yin et al., 2021) 128 / 90.4

d-cAdLIF (ours) 128 0.076 M 94.85± 0.64

Axonal delays (Sun et al., 2022) 128 0.1 M 92.36

Synaptic delays (Hammouamri et al., 2023) 256 0.2 M 95.07± 0.24

DL256-SNN-DLoss (Sun et al., 2023a) 256 0.21 M 93.55

RadLIF (Bittar and Garner, 2022) 1,024 3.9 M 94.62

CNN (Cramer et al., 2020) / / 92.4

Adaptive RSNN (Yin et al., 2021) 400 / 74.2

SSC d-cAdLIF (ours) 512 0.7 M 80.23 ± 0.07

Synaptic delays (Hammouamri et al., 2023) 512 0.7 M 79.77± 0.09

Synaptic delays∗∗ (Hammouamri et al., 2023) 512 1.2 M 80.29± 0.06

RadLIF (Bittar and Garner, 2022) 1,024 3.9 M 77.4

GRU (Bittar and Garner, 2022) 512 / 79.05

RSNN, LIF (Zenke and Vogels, 2021) 256 / 85.3

GSC RSNN with SFA (Salaj et al., 2021) 2,048∗ / 88.5

d-cAdLIF (ours) 512 0.61 M 95.69 ± 0.03

Synaptic delays (Hammouamri et al., 2023) 512 0.7 M 94.91± 0.09

RadLIF (Bittar and Garner, 2022) 512 0.83 M 94.51

Synaptic delays** (Hammouamri et al., 2023) 512 1.2 M 95.29± 0.11

GRU (Bittar and Garner, 2022) 512 / 94.32

Transformer (Gong et al., 2021) / / 98.11

We report the average± std for all results. Benchmark ANN results are shown below the dotted line. Our model is highlighted in bold.
∗Recurrent SNN with a single hidden layer.
∗∗Three hidden layers.

dataset, which is less than our SNN, which has just two hidden

layers. Given the budget of trainable parameters, the proposed

feed-forward SNN model even outperforms a non-SNN recurrent

model (GRU) with the same preprocessing and moves closer to the

performance of a large ANNmodel with transformer architecture.

5 Conclusion

In this study, we presented a novel SNN model, the cAdLIF

with a novel temporal context-aware learning rule for synaptic

delays. To the best of our knowledge, this is the first SNN model

in which the synaptic delays are directly learned in coordination

with the neuronal adaptation. Furthermore, we showed that (1)

it is possible to co-learn synaptic weights, delays, and neuronal

adaptation parameters at the same time and (2) co-learning these

parameters proved to mutually benefit the optimization of all

learned parameters as shown for three speech recognition datasets.

We highlighted that this co-optimization leads to state-of-

the-art performance in SNN on all investigated datasets. The

superior performance can be attributed to two additional features:

(1) Training the synaptic delays enables a neuron in the SNN

to explicitly correlate temporally distanced features and (2) The

trained neuronal adaptation allows a greater variety in spike

patterns, widening the feature space to be explored.

We showed that for a very simple architecture, a 2-hidden

layer is fully connected to feedforward network; we are able to

compete against and even outperform larger ANN models, with a

limited number of trainable SNN parameters. The performance of

the presented SNN model shows the promise of SNN research on

tasks with rich temporal dynamics, and, in particular, research on

biologically inspired extensions to existing SNN models.

When comparing with larger ANN models, the performance

of the presented SNN model is lacking. A future step in our

research is therefore to investigate how learning delays and

adaptation parameters are influenced by the model architecture.

More advanced architectures such as convolutional spiking neural

networks or experimenting with the training recurrent synapses

could further bridge the gap with ANNs. Another exciting avenue

to be explored is the chosen neuronmodel. As the proposed cAdLIF

model is a particular generalized integrate-and-fire model version

(Gerstner and Kistler, 2002; Gerstner et al., 2014) and many more

exist, there are various neuron model extensions available to be

investigated. Future research will point out that to what extent,

these will be useful for the application in SNN in the context of (1)

their additional performance in terms of classification accuracy and
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(2) the additional complexity for their deployment on dedicated

neuromorphic hardware.

Another point to explore is that our study includes a fixed

maximal delay, which needs to be defined before training and

requires fine-tuning. Including adjustable delay caps could benefit

our approach. In future studies, we intend to investigate the effect

of co-learning the synaptic weights and delays on more complex

neuron models and model architectures and validate them on

non-sound datasets.
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