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Introduction: In cognitive behavioral experiments, we often asked participants 
to make judgments within a deadline. However, the most common instruction 
of “do the task quickly and accurately” does not highlight the importance of the 
balance between being fast and accurate.

Methods: Our research aimed to explore how instructions about speed or 
accuracy affect perceptual process, focus on event-related potentials (ERPs) 
and event-related oscillations (EROs) of two brain responses for visual stimuli, 
known as P1 and N1. Additionally, we compared the conventional analysis 
approach with principal component analysis (PCA) based methods to analyze 
P1 and N1 ERP amplitude and ERO power.

Results: The results showed that individuals instructed to respond quickly had 
lower P1 amplitude and alpha ERO than those who prioritized accuracy, using the 
PCA-based approach. However, these two groups had no differences between 
groups in the N1 theta band using both methods. The traditional time-frequency 
analysis method could not detect any ERP or ERO distinctions between groups 
due to limitations in detecting specific components in time or frequency 
domains. That means PCA is effective in separating these components.

Discussion: Our findings indicate that the instructions given regarding speed 
and accuracy impact perceptual process of subjects during cognitive behavioral 
experiments. We suggest that future researchers should choose their instructions 
carefully, considering the purpose of study.
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1 Introduction

When making decisions, people often face time constraints that require them to determine 
when to stop thinking and start choosing. Sometimes, individuals feel the need to evaluate a 
situation carefully. For instance, when taking an exam, sticking to the deadline for submitting 

OPEN ACCESS

EDITED BY

Lars Muckli,  
University of Glasgow, United Kingdom

REVIEWED BY

Mikio Kubota,  
Washington University in St. Louis,  
United States
Chun Chen,  
University of California, San Francisco,  
United States

*CORRESPONDENCE

Haijian Li  
 haijian.li@foxmail.com;  
 haijian.h.li@jyu.fi  

Zhaoli Meng  
 mengzl@dlut.edu.cn

RECEIVED 12 December 2023
ACCEPTED 16 May 2024
PUBLISHED 31 May 2024

CITATION

Li H, Wang X, Hamalainen T and 
Meng Z (2024) Effects of different 
speed-accuracy instructions on perception in 
psychology experiments: evidence from 
event-related potential and oscillation.
Front. Neurosci. 18:1354051.
doi: 10.3389/fnins.2024.1354051

COPYRIGHT

© 2024 Li, Wang, Hamalainen and Meng. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 31 May 2024
DOI 10.3389/fnins.2024.1354051

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1354051&domain=pdf&date_stamp=2024-05-31
https://www.frontiersin.org/articles/10.3389/fnins.2024.1354051/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1354051/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1354051/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1354051/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1354051/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1354051/full
mailto:haijian.li@foxmail.com
mailto:haijian.h.li@jyu.fi
mailto:mengzl@dlut.edu.cn
https://doi.org/10.3389/fnins.2024.1354051
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1354051


Li et al. 10.3389/fnins.2024.1354051

Frontiers in Neuroscience 02 frontiersin.org

your paper is essential. Similarly, when you see a traffic light turning 
red, it is crucial to hit the brakes. These examples show that decision-
making involves finding a balance between being prompt in 
responding and being accurate in selecting. This balance is commonly 
referred to as the speed-accuracy trade-off (SAT), where making 
decisions faster usually means sacrificing some level of accuracy and 
vice versa (Duckworth et al., 2017; Ranger et al., 2021).

There has been a growing interest within the neuroscience 
community regarding the SAT for years. Neurological investigations 
of the SAT have helped us better understand executive function, 
decision-making processes, and behavioral regulation in humans 
(Heitz, 2014). Individuals aware of the scoring system’s response 
time component may try to optimize their SAT. Moreover, 
psychological decision-making experiments involve ambiguous 
instructions, requiring subjects to respond quickly and accurately 
(Yu et al., 2020). However, it has been observed that subjects may 
interpret instructions differently, resulting in varied choices on the 
SAT (Liesefeld and Janczyk, 2019). This variability in SAT choices 
among subjects within a group may have influenced the results. 
Therefore, experimenters need to be fully aware of each subject’s 
choices on the SAT (Bogacz et al., 2010). However, most current 
methods rely on the subjectivity of the participants. Researchers are 
now increasingly taking notice of this problem. Furthermore, thanks 
to advancements in brain imaging tools over the years, there is 
potential to explore the neural mechanisms underlying different 
choices made on the SAT.

Many psychological studies have attempted to use brain imaging 
tools to investigate the impact of trade-offs between speed and 
accuracy on brain signals. Some studies that used fMRI have 
discovered that subjects had increased blood oxygen level-dependent 
(BOLD) imaging when asked to respond quickly (Forstmann et al., 
2008; Ivanoff et al., 2008; Bogacz et al., 2010). Specifically, Ho et al. 
(2012) used fMRI to explore whether reduced performance under 
speed stress indicates suboptimal information processing in areas like 
the visual cortex (V1). In their experiment, participants performed a 
task involving judgment of orientation while focusing either on 
response speed or accuracy. Their study revealed that the rate at which 
perceptual evidence accumulates is selectively influenced when 
individuals prioritize precision but not speed, thereby suggesting that 
changes in processing also impact tradeoffs between speed and 
accuracy. However, the temporal resolution of fMRI is relatively low, 
usually on the order of seconds. Hence, methods are available for 
studying rapidly occurring neural activity (e.g., events measured in 
milliseconds) compared to fMRI.

EEG, unlike fMRI, offers temporal resolution but lacks spatial 
resolution. Numerous studies have shown that EEG can effectively 
track attention (Woodman and Luck, 1999; Heitz et al., 2010) and the 
temporal evolution of decision-making processes (Kelly and 
O’Connell, 2013; Van Vugt et al., 2014). In neuroscience, EEG can 
be utilized in three ways. The first involves recording EEG activity 
without stimuli, such as during sleep (Li et al., 2021). The second 
method involves capturing term stimuli like listening to music or 
watching continuous videos (Cong et al., 2013; Rogenmoser et al., 
2016). The third approach focuses on event-related potentials (ERPs), 
which involve averaging trial EEG data and analyzing event-related 
oscillations (EROs) in the time-frequency domains based on the ERPs 
(Başar et al., 2001). Unlike the two methods mentioned earlier, event-
related acquisition techniques allow researchers to investigate 
processes related to specific brain characteristics (Luck, 2014). 

Consequently, event-related EEG studies are gaining acceptance 
among researchers.

Numerous studies have explored the impact of speed accuracy on 
decision-making stages, such as sensory processing, mid decision and 
late motor processing. These studies have utilized an ERP component 
called lateralized readiness potentials (LRPs) (Osman et al., 2000; Van 
Der Lubbe et al., 2001; Rinkenauer et al., 2004; Wenzlaff et al., 2011). 
However, it is essential to note that there is still no conclusion on this 
topic (Heitz, 2014). This lack of clarity might be attributed to the 
simplicity of the task paradigm employed in studies and the challenges 
in distinguishing the decision-making process.

To address this gap, we have selected a dataset that focuses on 
mental rotation tasks, which are more challenging than the Franker 
paradigm, for extracting LRPs (Hoffmann and Falkenstein, 2010). As 
a result, participants require time to complete the rotation task, 
allowing for better differentiation between the early visual component 
and other components. In rotation tasks, participants were presented 
with two- or three-dimensional stimuli like images of objects, letters, 
or shapes (Shepard and Metzler, 1971; Cooperau and Shepard, 1973). 
Typically, during the phase of mental rotation, individuals process and 
understand the visual information from these stimuli in their 
cognitive system before making judgments and responding. Previous 
studies have observed that rotation-related negativity (an induced 
component with peaks around 300 ms) represents judgment regarding 
rotation (Heil and Rolke, 2002). However, our study examined the 
evoked components, P100 (P1) and N100 (N1) that occur before 200 
milliseconds and are unaffected by the judgment process.

The P1 component, which appears as a positive deflection in the 
ERP waveform, occurs around 100 milliseconds after the stimulus is 
presented (Hillyard and Kutas, 1983). On the other hand, the N1 
component, characterized by a negative deflection, typically happens 
approximately 140 milliseconds after the stimulus onset (Näätänen 
and Picton, 1987). These specific components were selected because 
they represent the sensory inputs in ERP (Luck et al., 1990). The P1 
component is connected to the processing of information, including 
how we perceive spatial details in what we see (Russo et al., 2002). It 
is responsive to factors like attention and the demands of the task at 
hand (Hillyard et  al., 1998). The amplitude of the P1 component 
induced by stimulation generated within the subject’s visual field is 
larger than that of the P1 component induced by stimulation outside 
the visual field. In other words, when individuals ignored the stimulus, 
the amplitude of the P1 component decreased. This highlights how 
attention plays a role in visual processing (Vogel and Luck, 2000). On 
the other hand, the N1 component is associated with the processing 
of visual stimuli and our sensory memory. It encodes aspects such as 
recognizing features and patterns while selectively attending to them 
(Hillyard et al., 1998). Factors like stimulus characteristics, individual 
variations, and experimental tasks can affect the amplitude and timing 
of N1. This underscores its significance in processing the 
characteristics of stimuli (Vogel and Luck, 2000).

When researchers extract ERP components, they often average 
trials to reduce noise. In addition to this practice, we use a toolbox of 
principal component analysis (PCA) along with Promax rotation to 
better extract our interested components (Zhang et  al., 2020). In 
general, PCA is a method used to reduce the complexity of a dataset, 
which has been widely recognized for its ability to identify bioelectrical 
activity patterns while preserving information from origin effectively 
signals even when reducing data dimensions (Dien, 1998; Dien et al., 
2005). In ERP research, PCA has been extensively used due to its 
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effectiveness and relevance (Dien et al., 2007; Dien, 2012). Afterwards, 
we project the P1 and N1 components onto the field while considering 
any uncertainties regarding variance and polarity corrections. Finally, 
by combining spatial representations, we can selectively choose the 
components that are of interest while disregarding others.

However, the ERP signal only provides information about activity 
in the time domain, does not reveal any details about frequency. To 
address this limitation, we conducted a time-frequency analysis (TFA) 
on each ERP component we  are interested in. This allowed us to 
extract event-related frequency features from the EEG signal. Based 
on Erol Basar’s theory, ERPs combine evoked oscillations with 
frequencies (Başar, 1998). According to Wolfgang Klimeschs, research 
suggests that the P1-N1 complex may be influenced by theta and alpha 
oscillations (Klimesch et al., 2004a). It is widely accepted that the theta 
band (4–8 Hz) is related to working memory while the alpha band 
(8–13 Hz) is associated with attention (Klimesch, 1999, 2012; Başar 
and Güntekin, 2008). It is generally accepted that EEG oscillations in 
the alpha band are particularly useful for studying attention. The 
amplitude of alpha band activity increases when attention is focused 
on external stimuli but decreases when attention is directed inwardly 
or when eyes are closed. In this study, we will analyze the evoked 
event-related oscillations (EROs) in the alpha and theta bands at 
different SAT instructions to determine if there were any distinctions 
between the two groups. We hypothesize that there will be variations 
in the attentional profiles, which could be detected by examining the 
power of the alpha band.

To extract evoked EROs, the conventional approach involves 
applying a short-time Fourier transform or wavelet transform to the 
ERP signal. This provides a time-frequency signal representation, 
allowing calculations within a region of interest. However, it is worth 
noting that evoked EROs have a shape resembling that of a waterdrop 
than a rectangle. Necessary information might be  lost if the 
predetermined rectangular region is smaller than the waterdrop shape 
of the evoked EROs. On the other hand, irrelevant information could 
be included if the designated area is wider than the boundary of the 
evoked EROs. Additionally, relying on judgment for range selection 
hampers reproducibility in experiments. To address this issue and 
reduce subjectivity, we propose employing a range selection method 
called the Canny detector algorithm. John F. Canny created this 
algorithm in 1986 for edge detection, which will improve objectivity 
in image processing.

The Canny edge detection algorithm is widely employed in 
computer vision, image, and video processing (Yuan and Xu, 2015; 
Song et al., 2017; Sekehravani et al., 2020). Its primary purpose is 
to identify edges with intensity levels in an image (Canny, 1986). 
One of the advantages of using this algorithm is that it reduces the 
impact of factors introduced by researchers when labelling these 
edges. Since this ERO range extraction means has been proposed 
recently, it has yet to be widely used in time-frequency analysis. As 
a result, we have calculated the results of both methods in this 
study, hoping to understand the advantages and disadvantages of 
the two methods.

Overall, the present study sought to analyze the effects of different 
SAT instructions on subjects’ visual evoked ERP and ERO by applying 
various ERO extraction methods with a set of mental rotation EEG 
data. Early visually evoked ERPs and EROs can effectively represent 
subjects’ early perception, and we  aimed to investigate the effects 
between different SAT instructions.

2 Materials and methods

Our study utilized a previously published dataset from 
experiments focusing on error-related potentials (Hoffmann and 
Falkenstein, 2015). Our study utilized a previously published dataset 
from experiments focusing on error-related potentials.

2.1 Participants and tasks

The dataset used in this study included 20 participants, of which 
11 were female and 9 were male. The age range of the participants was 
between 21 and 27 years (mean = 23.8; SD = 1.9). The participants were 
randomly divided into two groups: one group was instructed to 
complete the task quickly (N = 13), while the other group was 
instructed to be precise (N = 7). The task was a mental rotation task 
modified for ERP measurement to yield a comparable timeline and 
workflow for the participants during the conduction of the 
experiment. One out of two letters (F, R) were presented to the 
participants. The letter was either rotated, mirrored across the central 
axis or both. Subjects had to indicate with a left or right button press 
of the corresponding thumb if the letter was mirrored or not. The 
letters were rotated by 5 degrees (0°, 45°, 135°, 225° or 315°). The 20 
possible stimuli (5 × 2 × 2) were presented in random order. Since the 
type of letter did not affect the results of our study (Quan et al., 2017), 
we divided all the stimuli into five categories according to the angle of 
presentation of the stimuli.

In the task, the subjects received post-response feedback 
indicating whether they responded fast enough, too fast or too slow. 
The feedback consisted of two pictograms. If the participants 
responded fast enough, a yellow pictogram of a smiling face (“smiley”) 
appeared in the center of the screen. A red, angry-looking pictogram 
appeared if they responded too fast or too slow. Typically, subjects 
have decreased accuracy in rapid judgments. However, the study of 
this dataset was initially used to study error-related potentials. Hence, 
the deadline for the feedback was adapted block-wise. If the error rate 
in one block (80 trials) was below 8 %, the deadline was decreased, 
adding one standard deviation to the mean RT in the previous block. 
If the error rate was above 12%, the deadline was increased by adding 
four standard deviations to the mean RT of the previous block. 
Therefore, in this study, no behavioral analysis was performed.

2.2 Recording and pre-processing

EEG was recorded unipolar from 59 electrodes over frontal, 
central, parietal, occipital, and temporal areas (FPz, FP1, FP2, AFz, 
AF7, AF3, AF4, AF8, Fz, F7, F3, F4, F8, FCz, FT7, FC5, FC3, FC1, 
FC2, FC4, FC6, FT8, T7, C5, C3, Cz, C1, C2, C4, C6, T8, TP7, TP8, 
CPz, CP5, CP3, CP1, CP2, CP4, CP6, Pz, P7, P3, P1, P2, P4, P8, POz, 
PO9, PO7, PO3, PO4, PO8, PO10, Oz, O1, O2, M1, M2) and four 
electrooculographic (EOG) electrodes (SO2, IO2, LO1, LO2) from 
above and below the right eye. The data was pre-processed by using 
EEGLAB (sccn.ucsc.edu/EEG lab) (Delorme and Makeig, 2004) 
running on MATLAB (The MathWorks, Inc.) (Iversen and Makeig, 
2019). In EEG pre-processing, a new reference was established using 
the calculated average of all the channels and downsampling the data 
to 150 Hz. Afterwards, the EEG data were filtered with a low cut-off 
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FIGURE 1

(A) ERP data matrix for temporal principal component analysis. (B) Spatial representation of P1 components (topography). (C) Temporal representation 
of P1 components. (D) Similarity of P1 components across subjects.

frequency of 0.1 Hz, a high cut-off frequency of 20 Hz, and a notch 
frequency of 50 Hz. We used independent component analysis (ICA) 
on continuous data to eliminate components related to eye 
movements. To make the ICA decomposition run faster, we first down 
sampled the data to 100 Hz, and then we removed the data when 
subjects were at rest, i.e., the block-to-block data segments. During 
these times, subjects may be moving, chewing, etc., and these actions 
typically generate large voltages with inconsistent scalp distribution. 
We chose infomax-ICA as our ICA algorithm. After running ICA, 
we presented the horizontal and vertical electroocular signals (EOG) 
and then used the reconstructed signals for subsequent analysis. 
Furthermore, the signal from six electrodes (“HEOL,” “VEOD,” 
“HEOR,” “VEOU,” “M1,” and “M2”) were not analyzed further. In the 
subsequent analysis, we focused on four occipital electrodes, P7, P8, 
PO7, and PO8, which, according to previous studies, best represent 
the visual component (Russo et al., 2002; Creel, 2019).

Subsequently, the continuous EEG data were divided into several 
epochs (trials) depending on the timing from 200 ms before to 300 ms 
after stimulus onset. The baseline correction was accomplished by 
subtracting the baseline period’s (from −200 to 0 ms) mean amplitude 
for all time points. Bad trials include error trials, and timeout trials 
were rejected (about 80 trials were reserved for each 
participant’s stimulation).

2.3 Temporal ERP analysis

In present study, we  compared two ERP score methods, and 
we  made the traditional method M1, in which we  analyzed the 

amplitude of the P1 component and the N1 component. After 
preprocessing the ERP signals, we scored P1 amplitude between 80 
and 120 ms and N1 amplitude between 140 and 190 ms, expressed as 
M1-A1 and M1-A2, respectively.

In the second method, we applied temporal principal component 
analysis to extract the P1 and N1 components, respectively. For the 
brevity of expression, this approach is subsequently referred to as M2. 
To begin with, we stored the preprocessed data in a fourth-order 
tensor with the index name of channel∗time points∗stimuli∗particip
ants. For this study, the fourth-order tensor is 59∗75∗5∗20, representing 
59 channels and 75 time points within each epoch. The group factors 
include five rotation angle levels (0°, 45°, 135°, 225°, 315°) and 
contain 20 subjects (13 subjects from the fast group and the other 
seven subjects from the precise group). Second, we apply tPCA and 
Promax rotation to decompose this ERP data matrix Z = Z

 T N M∈ ×
. Here, N denotes the number of sensors across all conditions and 
subjects within the tensor, while M represents the time points within 
one epoch. Refer to Figure 1 for representation. It is worth noting that 
time points are the main component in matrix Z. Other factors, such 
as channel, condition, and subject, are integrated into the row marked 
as other components. By utilizing tPCA and Promax rotation 
techniques, we decomposed this ERP tensor into 23 components, 
which explained 99% variance of the original data. To resolve variance 
and polarity uncertainties, we back-projected each component into 
the time and space. As for P1, we  select components with peaks 
between 80 and 120 ms and N1 between 140 and 200 ms. In the last 
step, we back-project our chosen components into the time domain. 
Afterward, we scored P1 amplitude between 80 and 120 ms and N1 
amplitude between 140 and 190 ms, expressed as M2-A1 and M2-A2, 
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respectively. All amplitude calculations were performed in the 
MATLAB-based toolbox ERP_ERO_v1.1.

2.4 Time-frequency analysis

In this study, we  compare two approaches, for extracting 
ERO. We will refer to the method as M1, the conventional approach, 
and the second method as M2, a more recently developed approach. 
In the first method, we directly apply continuous wavelet transform to 
the time-frequency representation of the filtered ERP data. The 
frequency range of interest is set between 0.5 and 30 Hz, with 30 
frequency bins distributed nonlinearly. We  also set the center 
frequency and bandwidth to 1. For each layer, we correct the power 
values by subtracting the mean baseline power (measured 200 ms 
before stimulus onset) at each point (Hu et al., 2014; Benvenuti et al., 
2017; Peng et al., 2019). To determine our areas of interest using this 
method, we extract alpha power (8–13 Hz) during the P1 period and 
theta power (4–8 Hz) during the N1 period using a method. These 
areas are denoted as M1-R1 and M1-R2, respectively.

The second method of ERO extraction was proposed by Zhang 
et al. (2020). The main idea involves using tPCA with Promax rotation 
to identify the ERP components of interest before conducting time-
frequency analysis (in the following text, we will refer to this method 
as PCA-TFA). This approach helps differentiate the components in 
terms of time and space, minimizing any interference caused by 
overlapping components.

We have described the steps of PCA in the introduction of time 
analysis of ERP. On the basis of the ERP analysis, we performed wavelet 
transforms to convert the P1 and N1 components after PCA processing 
into time-frequency representations. For comparison, we used the 
same wavelet transform parameters as the conventional method to 
obtain the time-frequency representation of the P1 and N1. Following 
this, baseline correction was achieved by subtracting the mean power 
of the baseline (200 milliseconds before the stimulus onset) from the 
values of each point in the time-frequency representation.

2.5 Determining evoked EROs region via 
edge detection

As mentioned earlier in the section, the conventional rectangular 
method is commonly utilized to identify the region in time-frequency 
analysis. However, this method is based on the subjective judgment of 
the experimenter, which leads to less reproducibility. Hence, for ERO 
extraction in our study, we employed an algorithm based on edge 
detection. In our approach, we utilized the edge detection algorithm 
to determine the edge strength by calculating the amplitude and 
direction of gradients at each location in the time-frequency 
representation after averaging across subjects for each condition. This 
involved finding the amplitude by examining the direction for each 
pixel among eight possible primary directions (i.e., 0, 45, 90, 135, 180, 
225, 270, and 315 degrees). If a pixel’s gradient amplitude was more 
significant than its two neighboring pixels along that direction, it was 
retained; otherwise, it was set to zero. A range of EROs was calculated 
by specifying a fixed threshold, and then the evoked ERO for each 
subject in each condition was extracted based on the calculated 
teardrop circle. The specific calculation steps are shown in Figure 2.

Finally, we  used two-way repeated-measurement-ANOVA 
(rmANOVA) with five levels of rotation degree as within-subject 
factors and two different SAT groups as between-subject factors for 
analysis (Table 1).

3 Results

3.1 Event related potentials results

For the mean amplitude analysis of the ERP, the traditional 
analysis method showed that no significant differences were found 
between the two groups (F = 3.101, p = 0.095, ηp

2 = 0.147 for P1 and 
F = 0.222, p = 0.634, ηp

2 = 0.012 for N1). The results of the tPCA-based 
method, on the other hand, showed that the mean amplitude of P1 for 
the two groups, was significantly different, with the mean amplitude 
of P1 for the subjects who were required to respond quickly being 
significantly smaller than for the subjects who were required to 
respond accurately (F = 6.679, p = 0.019, ηp

2 = 0.271). Both analyses 
methods similarly found that there was a significant difference 
between within-group analyses for the N1 component (F = 14.083, 
p < 0.001, ηp

2 = 0.439 for M1 and F = 14.362, p < 0.001, ηp
2 = 0.444 for 

M2). Both methods were found to interact for amplitude (Figure 3).

3.2 Event related oscillations results

For P1-alpha and N1-theta oscillation extracted using 
conventional time-frequency analysis methods in Figures 4D, 5D, the 
statistical result of the two EROs regions demonstrated that no 
significant differences were found for either comparison between SAT 
groups or interactions, as shown in M1-R1 in Table 2 and M1-R2 in 
Table  3. As for the analysis at N1-theta, there was a significant 
difference in the within-group analysis, as shown by M1-R2 in Table 3 
and Figure 6. Subjects had significantly less energy in N1-theta at a 
rotation angle of 0 than at the remaining angles. In addition, in the 
time-frequency diagram of the conventional method, the primary 
energy is concentrated around the 4 Hz band around 180 ms. Since the 
energy in the early alpha band was not identified when the edge 
detection algorithm was used in conventional time-frequency analysis 
results, it was not further analyzed.

Figures 7, 8 depict the projected waveforms of some occipital 
electrodes, the topographic distribution in the time domain, the 
associated topographic similarity between the two groups of subjects, 
and the TFR in each case for P1-alpha and N1-theta. We retained 23 
components in the principal components analysis, which accounted 
for 99% of the variance.

Based on the temporal and spatial characteristics of the P1 
component, we selected the seventh component for further analysis, 
each of which explains 0.97% of the variance. By comparing the 
temporal waveforms in Figures  4A,B, 7A,B, the back-projected 
waveforms and topography are consistent with the conventional 
grand-average waveforms in evolution and trend. Moreover, the 
spatial similarity of Figure 7C indicates minimal variability in the data 
across subjects, thereby attesting to its high quality. As for the 
statistical results, we found significant differences between the two 
groups, either using the conventional rectangular box method or the 
edge detection algorithm (Table 2, “M2-R1” and “M2-R2”). suggesting 
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FIGURE 3

Event related potentials results. The four graphs on the top represent the results for the amplitude of the two components (M1-A1, M1-A2, M2-A1, 
M2-A2 respectively). Where “*” indicates a significant difference between the two groups.

FIGURE 2

In the ERO extraction method, we input processed fourth-order tensor ERP data. M1 represents the conventional Evoked ERO time-frequency analysis 
approach, while M2 refers to the method that involves tPCA and Promax rotation before conducting the time-frequency analysis. In the conventional 
method, M1-R1 indicates the power in the P1 alpha band, and M1-R2 represents the power in the N1 theta band, also extracted using rectangles. On 
the other hand, in the method involving tPCA and Promax rotation, M2-R1 denotes the ERO of the P1 alpha band obtained through rectangular 
extraction, and M2-R2 signifies the ERO of the P1 alpha band derived via the Canny edge detection algorithm, M2-R3 stands for N1 theta bands ERO 
extracted using traditional rectangular extraction, and M2-R4 represents N1 theta bands ERO obtained through Canny edge detection algorithm.

TABLE 1 Event related potentials results.

Amplitude
Angle Group Angle × group

F P ηp2 F P ηp2 F P ηp2

M1-A1 1.122 0.353 0.059 3.101 0.095 0.147 0.736 0.570 0.039

M1-A2 14.083 <0.001 0.439 0.222 0.643 0.012 0.880 0.480 0.047

M2-A1 0.685 0.605 0.037 6.679 0.019 0.271 0.494 0.740 0.027

M2-A2 14.362 <0.001 0.444 0.219 0.646 0.012 0.905 0.466 0.048

P-values where significance exists have been bolded in the table.
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that subjects had less energy in the P1-alpha band when making fast 
judgments (F  = 7.21, p  = 0.015, ηp

2  = 0.286 for the conventional 
rectangular method and F = 6.299, p = 0.022, ηp

2 = 0.259 for the edge 

detection algorithm). In addition, we  did not find significant 
differences between angles or interactions of groups and angles in 
within subjects’ analysis of P1-alpha.

FIGURE 4

(A) The grand averaged waveform (at P7, P8, PO7, and PO8 electrodes) where the grey area is the baseline component and the position of the 
horizontal coordinate 0 is the stimulus presentation time. (B) The topography has a time window from 80 to 120 ms (the green area). (C) The similarity 
of topographies across participants of each group and condition for the filtered data. (D) The grand averaged time-frequency representation (TFR) of 
every group and condition. The black rectangular box in the figure marks the P1-alpha evoked ERO extracted by the traditional method with a 60–
150  ms time window and a frequency of 8–13  Hz, referred to as M1-R1.
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FIGURE 5

(A) The grand averaged waveform (at P7, P8, PO7, and PO8 electrodes) where the grey area is the baseline component and the position of the 
horizontal coordinate 0 is the stimulus presentation time. (B) The topography has a time window from 140 to 190 ms. (C) The similarity of 
topographies across participants of each group and condition for the filtered data. (D) The grand averaged time-frequency representation (TFR) of 
every group and condition. The black rectangular box in the figure marks the N1-theta evoked ERO extracted by the traditional method with a time 
window of 120–220  ms and a frequency of 4–8  Hz, referred to as M1-R2.

Similarly, N1, the third and the eighth components were selected 
and projected back to the electrode fields, and the two components 
explain 0.65 and 5.61% of the variance, as shown in Figure 8A. We then 
used wavelet transform to compute the TFRs of the back-projected 

waveform. Similar to the results produced by the conventional 
method, the N1-theta power shows significant differences at different 
angles, regardless of the range intercepted using the conventional 
rectangular method or the edge detection algorithm (Table 3, M2-R3 
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and M2-R4). As can be seen in Figure 8D, the energy at 0 degrees is 
significantly smaller than at other angles (conventional rectangular 
range: F = 9.212, p < 0.001, fang = 0.339, edge detection algorithm: 

F = 9.177, p < 0.001, fang = 0.338). However, no significant differences 
were found in the comparisons and interactions between the different 
SAT groups.

TABLE 2 The statistical result of P1-alpha oscillation for conventional time-frequency analysis (“M1”) and PCA-TFA (“M2”).

ROI
Angle Group Angle × group

F P ηp2 F P ηp2 F P ηp2

M1-R1 0.832 0.509 0.044 2.315 0.143 0.115 0.792 0.534 0.042

M2-R1 1.434 0.232 0.074 7.21 0.015 0.286 1.246 0.299 0.065

M2-R2 1.546 0.198 0.079 6.299 0.022 0.259 1.734 0.152 0.088

TABLE 3 The statistical result of N1-theta oscillation for conventional time-frequency analysis (“M1”) and PCA-TFA (“M2”).

ROI
Angle Group Angle × group

F P ηp2 F P ηp2 F P ηp2

M1-R2 11.222 0.002 0.384 0.552 0.698 0.030 0.552 0.365 0.046

M2-R3 9.212 <0.001 0.339 6.08E-05 0.994 3.38E-06 0.076 0.989 0.004

M2-R4 9.177 <0.001 0.338 0.044 0.835 0.002 0.181 0.948 0.01

FIGURE 6

Oscillatory results associated with the event. The top three panels show the results of the P1-alpha oscillations (M1-R1, M2-R1, M2-R2, respectively). 
The bottom three panels show the results of N1-theta oscillations (M1-R2, M2-R3, M2-R4, respectively). Where “*” indicates a significant difference 
between the two groups.
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4 Discussion

The current study investigated the effect of different speed-
accuracy instructions on subjects’ perceptual process. As mentioned 

in the literature review, we chose a dataset that used a more difficult 
task, mental rotation, which requires more cognitive engagement than 
the lateral discrimination task (Hoffmann and Falkenstein, 2010). In 
the experiment, subjects were asked to determine if the letters were 

FIGURE 7

(A) The projected waveform of P1 components (at P7, P8, PO7, and PO8 electrodes) where the grey area is the baseline component and the position of 
the horizontal coordinate 0 is the stimulus presentation time. (B) The topography has a time window from 80–120  ms. (C) The similarity of 
topographies across participants of each group and condition for the projected data. (D) The grand averaged time-frequency representation (TFR) of 
every group and condition. The black rectangular box in the figure marks the P1-alpha evoked ERO extracted by PCA-TFA with a 50–150  ms time 
window and a frequency of 8–13  Hz, M2-R1. The dashed line is the range extracted using the Canny algorithm, which is M2-R2.
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mirrored, and the two groups of subjects were guided by verbal 
instructions to respond quickly and accurately. In this study, we used 
principal component analysis to downscale the data. We selected the 
component of interest, P1 and N1 visually evoked component, and 

combined the P1 evoked ERP and alpha ERO and N1 ERP and theta 
ERO to evaluate subjects’ perception. The results of this study show 
that fast or accurate instructions changed subjects’ perceptual process 
during decision-making, as evidenced by early visual components.

FIGURE 8

(A) The projected waveform of N1 components (at P7, P8, PO7, and PO8 electrodes) where the grey area is the baseline component and the position of 
the horizontal coordinate 0 is the stimulus presentation time. (B) The topography has a time window from 140–190  ms. (C) The similarity of 
topographies across participants of each group and condition for the projected data. (D) The grand averaged time-frequency representation (TFR) of 
every group and condition. The black rectangular box in the figure marks the N1-theta evoked ERO extracted by PCA-TFA with a time window of 120–
220  ms and a frequency of 4–8  Hz, M2-R3. The dashed line is the range extracted using the Canny algorithm, which is M2-R4.
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The decision-making process usually includes several steps: 
identifying the problem, generating alternatives, evaluating 
alternatives, choosing an alternative, implementing the decision, and 
evaluating decision effectiveness (Lunenburg, 2010). In tasks where 
visual information is used as a stimulus, ‘identifying the problem’ 
usually involves processing visual information. Research has shown 
that visual information is critical for attention and judgment during 
decision-making (Padilla et al., 2018) To ensure accurate and efficient 
decision-making outcomes, participants must direct their attention 
using appropriate visual coding techniques to identify the required 
vital information (Eberhard, 2023).

In the current study, we focused on the early visual P1 and N1 
components since P1 and N1 are two early components of opposite 
polarity, suggesting that neural synchrony occurs within a short time 
window and may alternate between inhibitory and excitatory 
(Klimesch et al., 2004b). Previous research has established that the P1 
component suppresses irrelevant information, while the N1 component 
is associated with processing information of concern. In other words, 
P1 reflects the inhibitory process, while N1 reflects the excitatory 
process (Hillyard et  al., 1994). Based on Klimesch’s theoretical 
framework, the P1-N1 component is generated by the simultaneous 
activation of three neuronal network systems, namely working 
memory, attention, and semantic memory systems, each with different 
frequency information, the frequency information of the three systems 
being focused on theta (about 6 Hz), the lower alpha (about 8 Hz) and 
the upper alpha (about 12 Hz) (Klimesch et al., 2004b). Whereas in our 
chosen method, the time-frequency representations of P1 and N1 are 
extracted separately by applying wavelet transforms to each of the two 
components, we find that the energy of P1 is mainly concentrated in 
the alpha band. In contrast, the energy of N1 is mainly concentrated in 
the theta band, which is the same as that of Gruber’s result (Gruber 
et al., 2005). In Gruber’s study the contribution of alpha and theta band 
energies to P1 and N1 was revealed. For alpha, the effect on P1 is 
always greater than that on N1, while for theta, the effect on N1 is 
always greater than that on P1. This is the theoretical underpinning of 
our main study of P1-alpha ERO and N1-theta ERO.

The current study observed a significant difference in 
amplitudes and α-ERO of the P1 component between the speed- 
and accuracy-emphasis groups. Specifically, the speed-emphasis 
group exhibited lower α-ERO at the visual electrode sites than the 
accuracy-emphasis group. This finding is consistent with the notion 
that decreased alpha-band energy is associated with increased 
attentional allocation (Foxe and Snyder, 2011). Several studies have 
shown that alpha oscillations are modulated top-down when 
subjects allocate attention while being modulated by attention. 
Whereas the specific task influences the enhancement or weakening 
of alpha oscillations, some studies have confirmed that alpha power 
in the visual cortex decreases with increasing attention when 
attention is directed toward external visual events (Worden et al., 
2000; Sauseng et al., 2005; Rajagovindan and Ding, 2011); when 
alpha power increases with attention when attention is directed to 
internal representations, such as during visual imagery and working 
memory retention. It is worth noting that although the visual 
imagery task was chosen for the present study, the early evoked 
components of attention, P1 and N1, were evoked with picture 
stimuli and thus were external visual events. When using the 
traditional TFA method for extracting early alpha features, we found 
no difference between the two groups of subjects. However, when 
calculating the alpha band energy of the P1 component separately 

using the PCA-TFA method, it was found that the subjects required 
to respond quickly had significantly less energy than those required 
to respond more accurately.

Also, in the comparison of the amplitudes of the P1 components, 
we found differences between the two methods. In the traditional 
analysis method, the amplitude of P1, no significant difference was 
found between the two groups, whereas after the tPCA treatment, it 
was found that the amplitude of subjects when asked to respond 
quickly was significantly smaller than that of subjects who were asked 
to respond accurately. The amplitude and alpha oscillations of the P1 
component, which produce similar results, can be  explained by 
ERP-oscillation theory. The main reason for the difference between 
the two time-frequency analysis methods may be  that PCA 
pre-processing helps to remove noise and other irrelevant signals. For 
example, when only the P1 component is studied, the N1 component 
is equivalent to a noisy signal. It has been demonstrated that PCA can 
help interpret the structure of ERP datasets, allowing researchers to 
select components of interest for subsequent analysis according to the 
experimental purpose (Dien et al., 2007; Dien, 2012).

In our study, subjects who were asked to respond quickly were 
found to have less P1-alpha power than those who were asked to 
be accurate. According to previous research, Alpha-band oscillations 
as evidence for an attention-mediated mechanism of selective 
suppression of interfering information (Pfurtscheller et  al., 1996; 
Klimesch, 2012). Specifically, higher alpha power indicates lower 
cortical excitability and higher perceptual thresholds. This is true for 
both naturally occurring and task-related alpha band activity in 
visual cortex. Therefore, we suppose that different speed-accuracy 
instruction words did influence participants’ attentive profile, with 
those who were required to respond quickly spending more attention 
on the task. That may be because the emphasis on accuracy may have 
led to lower tension in participants, resulting in lower levels of 
attention than the group that was required to respond quickly. We, 
therefore, suggest that the different SAT strategies chosen by subjects 
should be fully considered in cognitive-behavioral experiments and 
that researchers should be fully aware of the effects of the cognitive 
processes of interest in the study on response times and correctness. 
For example, when studying the change-detection task, subjects must 
determine whether two consecutive visual objects are identical or 
whether the latter object has changed. In this type of task, the 
researcher is interested in the subject’s working memory capacity, 
which primarily affects the correctness of the task. Therefore, the 
guide should be chosen so the subject can respond as accurately as 
possible. However, suppose the researcher is interested in the 
efficiency between the working memory entry and the test display. In 
that case, the main concern should be the subject’s response time, so 
the guide should allow the subject to respond as quickly as possible.

Interestingly, no significant difference was found between the two 
groups regarding the amplitudes and theta ERO of the N1 component. 
However, significant differences within each group were observed, with 
the N1 component amplitudes and ERO being significantly smaller at 
a 0-degree rotation in the mental rotation task compared to other 
angles (45, 135, 225, and 315 degrees). This result might be attributed 
to the role of the N1 component in discrimination tasks, as suggested 
by Luck and Hillyard (1994) and Luck et al. (2000). The N1 component 
is closely related to the automatic processing of visual stimuli, sensory 
memory, feature detection, pattern recognition, and selective attention 
(Gratton et  al., 1988). In contrast, the increased difficulty of 
discrimination for stimuli at other angles (45, 135, 225, and 315 
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degrees) might demand more cognitive resources for task completion. 
Thus, the significantly smaller N1 component amplitudes and ERO at 
a 0-degree rotation compared to other angles in the mental rotation 
task could result from the differences in cognitive resources required 
for discrimination tasks at various angles. In other words, the 0-degree 
stimuli might be more straightforward to discriminate and require 
fewer cognitive resources. This finding further elucidates the role of the 
N1 component in visual discrimination tasks and highlights the 
influence of task difficulty on neural activity (Mangun and Hillyard, 
1991; Vogel and Luck, 2000). Moreover, it provides novel insights into 
the neurophysiological mechanisms underlying human decision-
making under different task demands.

In addition, the traditional rectangular approach and the Canny 
edge detection algorithm-based approach were compared when 
determining the evoked ERO regions. The Canny edge detection 
algorithm is widely used in computer vision and medical image 
processing. Furthermore, the time-frequency analysis picture can 
be interpreted as a two-dimensional matrix, which means we can also 
detect edges with the Canny algorithm. In this study, the traditional 
rectangular range selection method and canny algorithm got the same 
result, as shown in Tables 2, 3. Previous studies also showed that the 
two methods got different results. The Canny algorithm would find 
significant differences that the traditional method could not detect 
(Zhang et al., 2020). This contradictory finding is likely to be related 
to the difference in the data. In other words, the Canny algorithm 
extracts ERO ranges that are closer to the reality of the situation, like 
the shape of a waterdrop, whereas the traditional rectangular approach 
compares the energies within a fixed rectangular range under different 
conditions. If the data comparison process produces differences that 
are too pronounced, then both methods will produce similar results. 
However, the edge detection algorithm also has some limitations 
compared to the traditional rectangular box approach. For example, 
if edge detection algorithm is used directly to identify ERO regions 
from the TFR of the averaged ERP data, a region may involve different 
spatially distinct oscillations when these components overlap in time. 
Such like in Figure  8D, the range based on edge detection is 
approximately 5–16 Hz, which exceeds the general frequency range of 
alpha (8–13 Hz). In other words, using the PCA-TFA approach, the 
components of interest can be  better differentiated temporally. 
However, a fixed frequency range cannot be selected. Therefore, the 
decision between utilizing traditional rectangular methods or edge 
detection algorithms requires a case-by-case analysis based on the 
specifics of the research content.

In our study, several limitations should be  considered when 
interpreting the results. Firstly, the sample size needed to be bigger, 
which might limit the generalizability of our findings. We next intend 
to recruit a larger sample to increase the external validity of the 
results. Furthermore, the dataset utilized in this study involved a task 
in which only different SAT guiding phrases were used to influence 
participants’ speed-accuracy trade-offs, and the deadline was adjusted 
according to their accuracy rates. As a result, examining the 
differences in behavioral data or latency was meaningless. Future 
research may consider suitable task designs to investigate the 
relationship between SATs and behavioral outcomes.

Regarding the future investigations of neural difference between 
SATs, it can be  carried out from the following aspects. Firstly, 
we merely analyzed the evoked oscillations from the averaged ERP as 
mentioned above. It should be  noted that some significant 
information like induced oscillations was cancelled out by the 

averaging over trials in the time domain. Induced oscillations are 
usually produced by nonlinear mechanisms or autonomous 
mechanisms and are high-order processes, such as the late component 
P3, which is often used to study excitatory and inhibitory 
mechanisms. The evoked oscillation is related to the stimulus lock-in 
time. Follow-up research can focus on the differences in induced 
components under different speed accuracy, but what needs to 
be paid attention to is the choice of paradigm. For example, the P3 
component is usually elicited using the oddball paradigm. Secondly, 
there are many ways to adjust speed and accuracy, such as the 
instructions studied in this article to regulate the subjects’ SAT, and 
other methods such as whether there is a deadline, reward and 
punishment mechanisms, etc. There is currently no unified 
understanding of the regulatory mechanisms of different SAT 
regulation methods on subjects’ cognitive level. Our study shows that 
different speed accuracy guides, the most used method, influence 
subjects’ early event-related oscillations. Even though there were no 
differences in the behavioral data of the subjects during the 
experiment due to the experimental design. In summary, combining 
neuroscience methods with SAT methodology may provide a deeper 
understanding of the brain processes that underlie decision-making. 
There is growing agreement that SAT is a complex phenomenon that 
affects many aspects of decision-making and is associated with 
unique alterations in brain activity.
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