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Introduction: Exercise is pivotal for maintaining physical health in contemporary

society. However, improper postures and movements during exercise can result

in sports injuries, underscoring the significance of skeletal motion analysis.

This research aims to leverage advanced technologies such as Transformer,

Graph Neural Networks (GNNs), and Generative Adversarial Networks (GANs) to

optimize sports training and mitigate the risk of injuries.

Methods: The study begins by employing a Transformer network to model

skeletal motion sequences, facilitating the capture of global correlation

information. Subsequently, a Graph Neural Network is utilized to delve into

local motion features, enabling a deeper understanding of joint relationships.

To enhance the model’s robustness and adaptability, a Generative Adversarial

Network is introduced, utilizing adversarial training to generatemore realistic and

diverse motion sequences.

Results: In the experimental phase, skeletal motion datasets from various

cohorts, including professional athletes and fitness enthusiasts, are utilized

for validation. Comparative analysis against traditional methods demonstrates

significant enhancements in specificity, accuracy, recall, and F1-score. Notably,

specificity increases by ∼5%, accuracy reaches around 90%, recall improves to

around 91%, and the F1-score exceeds 89%.

Discussion: The proposed skeletal motion analysis method, leveraging

Transformer and Graph Neural Networks, proves successful in optimizing

exercise training and preventing injuries. By e�ectively amalgamating global and

local information and integrating Generative Adversarial Networks, the method

excels in capturing motion features and enhancing precision and adaptability.

Future research endeavors will focus on further advancing this methodology to

provide more robust technological support for healthy exercise practices.

KEYWORDS

injury prediction, training optimization, assistive devices, Transformer, Generative

Adversarial Network

1 Introduction

With the vigorous development of artificial intelligence technology, computer vision

(Voulodimos et al., 2018), as one of its key branches, is rapidly expanding its application

areas and continuously enhancing problem-solving capabilities. In this context, skeletal

motion analysis, as an important research direction within computer vision, aims to
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identify ongoing actions such as jumping, clapping, and making

phone calls from continuous human skeletal point data. This

technology not only finds widespread applications in intelligent

surveillance (Sreenu and Durai, 2019), human-computer

interaction (Yun et al., 2021), and virtual reality (Maskeliūnas et al.,

2023), but also holds significant importance and challenges in areas

such as optimizing sports training and preventing injuries.

Exercise, as a crucial means of maintaining physical health, may

lead to sports injuries and even permanent damage due to incorrect

postures and movements (Emery and Pasanen, 2019). This raises a

key question related to the study of neuromusculoskeletal models:

How can skeletal motion analysis be employed to enhance exercise

effectiveness, reduce potential harm, and optimize and improve the

movements of athletes? In exploring this question, we focus on two

main aspects: firstly, determining whether the athlete’s movements

are correct or if there are any adverse habits or potential risks based

on skeletal motion data; secondly, providing targeted advice and

feedback based on skeletal motion data to help athletes improve

and optimize their movements, thereby enhancing efficiency and

safety during exercise.

Research in this field plays a crucial role in promoting

the application of neuromusculoskeletal models in motion

analysis and training optimization (Peng and Li, 2023). The

neuromusculoskeletal model is a biomechanical model used to

describe the structure and function of the human movement

system. This model includes the nervous system, muscular system,

and skeletal system, and describes their interactions.

Here is an explanation of each part of the NMBS:

• Nervous system: the nervous system is responsible for

transmitting signals and commands to control body

movement and actions. It includes the brain, spinal cord,

and peripheral nervous system, which transmit information

through electrochemical signals between neurons.

• Muscular system: the muscular system comprises muscle

tissues, which are made up of muscle fibers and are connected

to bones via tendons. Muscles generate force through

contraction and relaxation, driving skeletal movement.

• Skeletal system: The skeletal system consists of bones,

including bones, joints, and connective tissues. It provides

support and structure to the body and serves as the pivot point

for muscle movement.

The interactions between these systems form the

neuromusculoskeletal system, which controls and regulates

human movement. The goal of the NMBS model is to simulate and

predict the dynamic relationships between the nervous, muscular,

and skeletal systems during human movement, in order to better

understand and optimize applications such as human movement,

rehabilitation therapy, and sports training.

By combining computer vision and neuromusculoskeletal

model techniques, we aim to have a more comprehensive

understanding of muscle activity and skeletal motion during

exercise, providing more precise assessments and treatment plans

for injury prevention and rehabilitation. Such research holds

the promise of advancing the practical application of computer

simulation in clinical sports therapy, bringing new possibilities for

personalized healthcare and sports training.

At the same time, predecessors have conducted in-depth

research by employing refined representations of skeletal data, deep

extraction of motion features, and innovative design of action

classification models. Starting from key issues such as data noise,

annotation dependency, and representational capacity, researchers

have employed various methods and approaches, bringing forth

a series of remarkable solutions to the field of skeletal motion

analysis. In the following, we will delve into the specific methods

adopted by predecessors in these aspects and the significant

achievements they have made, aiming to provide valuable insights

for the further development of this research. Currently, in this field,

the research by predecessors can be broadly categorized into the

following aspects:

• Representation of skeletal data: skeletal data refers to a

topological representation of the joints and bones of the

human body, typically including two-dimensional or three-

dimensional coordinates and confidence levels. Skeletal data

can be obtained from depth sensors (such as Kinect) or

pose estimation algorithms (such as OpenPose, HRNet, etc.).

Compared to RGB or depth images, skeletal data is more

compact, robust, and easier to handle, but it also poses

challenges such as limited information, noise interference,

and data imbalance. Therefore, effectively representing and

preprocessing skeletal data is a fundamental and critical issue

in motion analysis. Some common methods for representing

skeletal data include spatial-temporal graphs (Wu et al., 2019),

skeleton sequences, skeleton images (Yang et al., 2018), etc.

• Extraction of motion features: motion features refer

to characteristics that reflect the essential properties of

actions and differentiate between different actions, typically

encompassing spatial and temporal features. Spatial features

involve information such as the relative positions, angles, and

distances between skeletal points, while temporal features

include the variations, velocities, accelerations, etc., of skeletal

points over time. Extracting motion features is a core issue in

motion analysis and a key factor affecting action recognition

performance. Some common methods for extracting motion

features include handcrafted features, Convolutional Neural

Networks (CNN) (Li et al., 2021), Recurrent Neural Networks

(RNN) (Yu et al., 2019), Graph Neural Networks (GNN), etc.

• Models for action classification: action classification involves

categorizing actions into different classes based on the

extracted motion features, such as jumping, clapping, making

a phone call, etc. Action classification is the ultimate goal

of motion analysis and a primary metric for evaluating

motion analysis methods. Some common models for action

classification include Support Vector Machines (SVM) (Ning

E. et al., 2024), Random Forest (RF), Multilayer Perceptron

(MLP) (Almeida, 2020), Fully Connected Networks (FCN),

Attention Mechanism, etc.

After discussing the significant achievements in the field of

skeletal motion analysis by previous researchers, we cannot ignore

the fact that this field still faces a series of challenges and issues.

Firstly, the issue of noise in skeletal motion data directly affects

the accuracy and reliability of the data. To address this problem,

advanced signal processing techniques and model designs need
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to be introduced. Secondly, the dependency on annotations for

skeletal motion data becomes prominent in supervised learning,

making effective use of unlabeled or sparsely labeled data a pressing

challenge. Additionally, the problem of representational capacity

in skeletal motion data requires us to contemplate how to better

model spatiotemporal local feature points to enhance the model’s

expressive power. Lastly, multi-person detection issues involve

complex scenarios such as computational efficiency and occlusion,

necessitating more efficient computation methods and strategies

for the fusion of multimodal information.

To address the challenges in the field of skeletal motion

analysis, we have drawn upon various research findings concerning

gait analysis and artificial limb recognition, all of which offer

valuable insights. For instance, Weng et al. (2023) proposed a

gait stability assessment method based on wearable accelerometer

sensors. This method effectively evaluates the balance and stability

of gait by analyzing acceleration signals during the gait process,

providing strong support for rehabilitation therapy. Additionally,

addressing the issue of artificial limb recognition, Li et al. (2020)

proposed a method based on surface electromyographic (EMG)

signals. By aggregating and processing EMG signals, this method

significantly improves the accuracy of artificial limb motion

recognition, contributing to the enhancement of mechanical

assistive technologies.

In this study, we have employed advanced deep learning

techniques, primarily including Transformer, Graph Neural

Networks , and Generative Adversarial Networks. The introduction

of Transformer networks enables us to comprehensively capture

global information in skeletal motions, thereby enhancing

our understanding of the overall structure of movement

and consequently improving the accuracy of motion quality

assessment. Additionally, the integration of Graph Neural

Networks helps to model the relationships between skeletal joints

more finely, addressing the issue of skeletal data representation

capability. Moreover, the application of Generative Adversarial

Networks provides effective means for data augmentation and

noise reduction, enhancing the model’s robustness to noise.

The comprehensive application of these methods is expected

to significantly enhance the effectiveness of motion training

optimization and injury prevention in practice.

This study delves into the critical issues of

neuromusculoskeletal models in the field of skeletal motion

analysis, not only addressing numerous challenges but also

providing innovative methods and strategies for optimizing sports

training and preventing injuries. Through efficient motion feature

extraction and accurate action classification based on Transformer,

Graph Neural Networks, and Generative Adversarial Networks,

our research aims to offer athletes more scientific and personalized

training guidance, thereby enhancing athletic performance and

reducing the incidence of sports-related injuries.

These research outcomes have not only made significant

theoretical advancements but also demonstrated outstanding

performance in practical applications. By optimizing data

representation, extracting motion features, and designing

innovative classification models, we anticipate that these research

findings will establish a solid foundation for the development of

neuromusculoskeletal models. This not only benefits academic

research and practical applications in related fields but also opens

up new possibilities for the progress of neuromusculoskeletal

models in the realms of injury, disease, and clinical treatment. We

firmly believe that the outcomes of this study will provide positive

insights for making greater breakthroughs in the field of human

movement health, paving the way for new directions in both

academic research and practical applications in relevant domains.

The contributions of this paper can be summarized in the

following three aspects:

1. Pioneered transformer network application in skeletal motion

analysis, enhancing global associative information capture for

comprehensive motion understanding.

2. Introduced graph neural networks for local motion feature

modeling, enabling precise analysis of joint relationships and

addressing varied motion scenarios effectively.

3. Integrated generative adversarial networks for realistic and

diverse motion sequence generation, enhancing model

adaptability and opening new avenues in skeletal motion

analysis.

The logical structure of this paper is as follows: In the second

section, a literature review was conducted to provide an overview

of research and methodologies in the relevant field. The strengths

and weaknesses of existing approaches were analyzed, leading

to the elucidation of the research motivations and objectives

of this paper. The third section, the methodology introduction,

meticulously expounds on the three major technical approaches

proposed in this study: the first being the Transformer model,

the second being the Graph Neural Network model, and the

third being the Generative Adversarial Network model. The

fourth section, experimental analysis and comparison, provides a

detailed description of the experimental datasets, environments,

design processes, and the evaluation metric system. By contrasting

experimental results, comparing predictive capabilities, training

speeds, andmodel complexities across multiple public datasets, this

section elucidates the advantages of the proposed models in this

research. In the fifth section, discussion and conclusion, the study’s

main contributions and areas that need further improvement

are systematically summarized. Future research directions are

also outlined.

2 Related work

Skeletal motion analysis, as an interdisciplinary field,

encompasses computer modeling, machine learning, sports

biomechanics (Bartlett, 2014), rehabilitation medicine, and

various other domains. Its core objective is to enhance

exercise effectiveness, reduce sports injuries, and assist in

movement rehabilitation by capturing, recognizing, evaluating,

and optimizing human skeletal movements. Research in this

field provides crucial insights into the advancements of

neuromusculoskeletal models in injury, disease, and clinical

treatment. With the flourishing development of depth sensors

and artificial intelligence technology, significant progress has been

made in skeletal motion analysis, closely linked to the application

of neuromusculoskeletal models in assessing disease impacts
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and diagnostics. However, despite these advancements, there

are still challenges and issues that not only limit the in-depth

development of skeletal motion analysis itself but also affect the

application of neuromusculoskeletal models in clinical treatment

and rehabilitation. In the following discussion, we will review

and analyze work in the field of skeletal motion analysis closely

related to our research, elucidating our research motivations and

contributions. We will also highlight the potential applications

of neuromusculoskeletal models in injury, disease, and clinical

treatment. This series of research efforts aims to deepen our

understanding of neuromusculoskeletal models and provide new

insights for their widespread application in practical medical

settings.

In the field of skeletal motion analysis, the traditional approach

has been the use of marker systems. However, its limitations

include the need for labor-intensive manual labeling, constraints

in specific environments, and time-consuming data processing.

In this regard, a review article (Colyer et al., 2018) has been

proposed, focusing on the evolution of visual motion analysis,

particularly emphasizing the transition from traditional marker

systems to modern markerless systems. The review highlights the

widespread application of current motion analysis systems in sports

biomechanics and rehabilitation medicine, but points out their

limitations in requiring manual attachment of markers, demanding

controlled environments, and involving lengthy data processing.

This provides a clear background for our research. Real-time

detection, recognition, and assessment of actions are critical issues

in skeletal motion analysis. In this context, a paper Patrona et al.

(2018) introduces a novel framework aimed at achieving real-time

action detection, recognition, and assessment of motion capture

data. By utilizing pose and kinematic information, the framework

efficiently segments and labels actions. The strength of this paper

lies in the adoption of automatic and dynamic weight allocation,

changing the importance of joint data based on their involvement

in actions, and the use of kinetic-based descriptor sampling. This

provides an insight for our research, indicating that better skeletal

motion analysis can be achieved through more effective action

feature extraction and assessment.Deep sensors play a significant

role in skeletal motion analysis, and different versions of sensors

exhibit variations in skeletal tracking accuracy and precision. In

this domain, a paper Tölgyessy et al. (2021) evaluates the skeletal

tracking capabilities of Kinect V1, Kinect V2, and Azure Kinect.

Experimental results indicate that Azure Kinect outperforms its

predecessors in both accuracy and precision, making it suitable

for applications such as human-computer interaction, bodymotion

analysis, and other gesture-based applications. This paper provides

crucial information for our hardware selection in skeletal motion

analysis. With the availability of large-scale skeletal datasets, 3D

human action recognition has become a research hotspot in

computer vision. Addressing this issue, a paper Caetano et al.

(2019) introduces a novel skeletal image representation called

SkeleMotion, used as input for convolutional neural networks.

This method enhances the representation of actions by explicitly

calculating amplitude and direction values of skeletal joints,

aggregating more temporal dynamics across different time scales.

It also presents a new direction for exploration in the field of 3D

action recognition. In the medical field, predicting and assessing

motion injuries are crucial for improving sports safety. In this

aspect, a study Song et al. (2021) proposes a deep learning-

based Convolutional Neural Network (CNN) method for safety

prediction and assessment. Using an optimized CNN model, this

method effectively detects and evaluates musculoskeletal disorders,

providing robust support for the collection and analysis of medical

data. This offers an intriguing perspective for our research,

suggesting that combining deep learning and sports medicine

can achieve safe prediction and assessment of motion injuries.

The application of machine learning methods in motion injury

prediction and prevention has become a research focus. In this

regard, a review Van Eetvelde et al. (2021) provides a systematic

overview of the applications of machine learning in motion

injury prediction and prevention. By introducing various machine

learningmethods, including tree ensemblemethods, support vector

machines, and artificial neural networks, this review offers in-depth

insights into the predictive performance of motion injury. This

framework provides an understanding of the potential applications

of machine learning in the field of motion injury for our research.

From the above literature review, we can see that skeletal

motion analysis is an interdisciplinary field involving multiple

domains, with significant theoretical and practical implications.

However, existing research methods still have some shortcomings

and limitations, primarily manifested in the following aspects:

• Dependency on marker systems: While marker systems

can provide high-precision skeletal data, they involve

complex operations, requiring specialized equipment and

environments, as well as significant human and time costs.

Additionally, marker systems are susceptible to factors such as

occlusion, noise, and lighting, affecting their robustness and

reliability.

• Difficulty in extracting and evaluating motion features:

Motion consists of complex spatiotemporal sequences

involving multiple joints and limbs, making its features

challenging to describe using simple mathematical models

or statistical methods. Moreover, motion evaluation needs to

consider various factors such as the purpose, type, difficulty,

style of the action, as well as individual body conditions,

skill levels, psychological states, adding subjectivity, and

uncertainty to motion assessment.

• Limitations of machine learning methods: Machine learning

methods have extensive applications in predicting and

preventing motion injuries but face challenges and issues.

For instance, machine learning methods require a substantial

amount of annotated data for model training, and obtaining

and processing annotated data is a time-consuming and

labor-intensive task. Additionally, machine learning methods

struggle with handling data imbalances, noise, and anomalies,

affecting their generalization and robustness.

In addressing the aforementioned issues, this study proposes

a skeleton motion analysis approach based on Transformer and

Graph Neural Networks to optimize sports training and enhance

injury prevention. Firstly, by introducing the Transformer network,

we globally model the skeletal motion sequences, capturing long-

term dependencies and contextual information to improve the
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representation and recognition efficiency of actions. Secondly, with

the introduction of Graph Neural Networks, we locally model

skeletal motion sequences using a graph structure to describe

the topological relationships between joints, enhancing action

details and accuracy. Finally, through the use of Generative

Adversarial Networks (GANs), we conduct adversarial training

on skeletal motion sequences to generate more realistic and

diverse action sequences, enhancing the model’s robustness and

adaptability. Crucially, this study not only focuses on improving

sports performance but also emphasizes injury prevention.

Leveraging the characteristics of Generative Adversarial Networks,

we aim to reduce potential sports injuries while enhancing

sports performance, providing comprehensive support for healthy

exercise.

Overall, this study has made significant strides in the

innovative application of neural-musculoskeletal models. By

leveraging both global and local information and introducing

Generative Adversarial Networks, we have successfully optimized

sports training and prevented sports injuries. The substantial

improvements in specificity, accuracy, recall, F1-score, and other

metrics further confirm the effectiveness of our approach and

its unique contributions to the field of neural-musculoskeletal

model research. We believe that this new perspective and approach

will provide a beneficial supplement to the medical community’s

focus on injury prevention and sports training in the neural-

musculoskeletal system, offering valuable insights for future

research directions.

3 Methodology

In the methodology section of this study, we will provide

a detailed introduction to the three key methods employed,

namely the Transformer model, Graph Neural Networks , and

Generative Adversarial Networks . The clever combination of these

three methods constitutes our comprehensive skeleton motion

analysis framework, aiming to capture global and local correlations

comprehensively and enhance the model’s adaptability through

Generative Adversarial Networks. To illustrate the overall design

of our algorithm clearly, we will present the details of each

method in the following sections and demonstrate their interaction

and integration throughout the entire process using an overall

algorithm framework diagram (as shown in Figure 1).

3.1 Transformer model

The Transformer model is a deep learning architecture

based on the self-attention mechanism, designed to address

sequence-to-sequence tasks in natural language processing, such

as machine translation, text summarization, and more (Han

et al., 2021). The main characteristic of the Transformer model

is the complete departure from traditional Recurrent Neural

Networks (RNN) and Convolutional Neural Networks (CNN),

opting solely for the self-attention mechanism (Niu et al., 2021) to

capture global dependencies within sequences, thereby enhancing

model parallelism and efficiency. The overall architecture of the

Transformer model is illustrated in Figure 2.

The Transformer model consists of two parts: the encoder

and the decoder. The encoder transforms an input sequence (such

as a sentence) into a continuous vector representation, while the

decoder generates the next output (such as words in another

language) based on the encoder’s output and the previous output

sequence. Both the encoder and decoder are composed of multiple

identical layers, each containing two sub-layers: a Multi-Head

Attention sub-layer and a Feed-ForwardNeural Network sub-layer.

Residual connections and layer normalization are applied between

the two sub-layers.

The role of the Multi-Head Attention sub-layer is to calculate

the correlation between each element (such as a word) in the input

sequence and other elements, producing a weighted contextual

representation (Tao et al., 2018). This sub-layer comprises several

self-attention heads, each performing self-attention calculations on

the input sequence. The outputs of all self-attention heads are

concatenated and then linearly transformed to obtain the final

output. Self-attention is calculated as shown in Equation (1):

Attention(Q,K,V) = softmax(
QKT

√

dk
)V (1)

Here, Q, K, and V represent the Query, Key, and Value

matrices, respectively. They are obtained by subjecting the input

sequence to different linear transformations. dk denotes the

dimensionality of the key. The softmax function is applied along the

last dimension, normalizing each row independently. The meaning

of this formula is that, for each query, the dot product (inner

product) with all keys is calculated, then scale it by dividing by
√

dk,

followed by obtaining a probability distribution using the softmax

function, representing the attention weights of the query for each

key. Finally, this probability distribution is multiplied by the Value

matrix to obtain the output for the query. Multi-head self-attention

is calculated in Equation (2):

MultiHead(Q,K,V) = Concat(head1, ..., headh)W
0 (2)

The matrices W
Q
i , WK

i , WV
i , and WO are all learnable

parameter matrices. Concat represents the concatenation

operation. The meaning of this formula is that for each self-

attention head, a linear transformation is applied to the input

sequence using different parameter matrices, followed by

self-attention computation to obtain an output. Finally, the

outputs of all self-attention heads are concatenated, and a linear

transformation is applied to obtain the final output.

The purpose of the feed-forward neural network (FFNN)

sublayer is to apply a non-linear transformation to the output

of the multi-head self-attention sublayer, enhancing the model’s

expressive power. The FFNN sublayer consists of two linear

transformations and an activation function (such as ReLU), and

Equation (3) is given as follows:

FFN(x) = max(0, x1W1 + b1)W2 + b2 (3)

This formula represents the feed-forward neural network

component in the Transformermodel. It takes input x1 and outputs
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FIGURE 1

Overall algorithm flowchart.

after a series of linear transformations and non-linear activation

functions. W1, W2, b1, and b2 are all learnable parameter matrices

or vectors. max(0, •) represents the ReLU activation function.

Each layer of the encoder and decoder has a multi-head

self-attention sub-layer and a feed-forward neural network sub-

layer. However, the decoder has an additional multi-head self-

attention sub-layer called the encoder-decoder attention. This sub-

layer computes attention over the encoder’s output to integrate

information from both the source language and target language.

The computation is similar to self-attention, but it uses the

encoder’s output as keys and values and the decoder’s output as

queries.

To enable the model to distinguish elements at different

positions in the sequence, the Transformer model introduces

positional encoding. This involves adding a position-related vector

to the vector representation of each element in the input sequence.

The position encoding is shown in Equations (4) and (5):

PE(pos, 2i) = sin(
pos

100002i/dmodel
) (4)

PE(pos, 2i+ 1) = cos(
pos

100002i/dmodsl
) (5)

In the formula, pos represents the position, i represents the

dimension, and dmodel represents the model’s dimension. The

meaning of this formula is that for each position, a vector of length

dmodel is generated. The values in even dimensions are computed

using the sine function, and the values in odd dimensions are

computed using the cosine function. This allows maintaining a

certain relative positional relationship between vectors at different

positions.

The optimization function of the Transformer model is based

on Cross Entropy Loss (Ning X. et al., 2024), aiming to minimize

the difference between the probability distribution of the decoder’s

output and the true output’s probability distribution. To prevent the

decoder from seeing future information when generating the next

output, the Transformer model uses a masking mechanism. This

involves setting the attention weights of future positions’ elements

in the decoder’s input sequence to negative infinity, making their

probability zero in the softmax function. Additionally, to prevent

overfitting, the Transformermodel employs a Dropoutmechanism,
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FIGURE 2

Transformer model.

randomly discarding some units or connections in the model with

a certain probability. The formula for the optimization function of

the Transformer model is shown in Equation (6):

L(θ) = −
1

N

N
∑

n=1

Tn
∑

t=1

logp(ynt |y
n
<t , x

n
2; θ) (6)

In the formula, θ represents the model parameters, N

represents the number of samples, Tn represents the length of

the output sequence for the nth sample, xn represents the input

sequence for the nth sample, ynt represents the t-th element of the

output sequence for the nth sample, and ynt−1 represents the first

t−1 elements of the output sequence for the nth sample. p(ynt |

yn<t , x
n
2; 0) represents the probability of the model generating the

next output based on the input sequence and the previous output

sequence.

In this study, we use the Transformer model to model skeletal

action sequences to capture global contextual information in

motion. We represent each skeletal action frame as a vector, input

it into the encoder, and obtain a continuous vector representation.

We use this vector representation as a query, the encoder’s output

as keys and values, input them into the decoder, and obtain

a new vector representation used to generate the next skeletal

action frame. We repeat this process until the entire skeletal

action sequence is generated. Our goal is to make the generated

skeletal action sequence as close as possible to the real skeletal

action sequence while adhering to the physical laws and biological

characteristics of motion. To achieve this goal, we use cross-entropy

loss functions, masking mechanisms, positional encoding, and

dropoutmechanisms to optimize ourmodel. In the next subsection,

we will introduce how to use Graph Neural Networks to model

local motion features for a better understanding of the relationships

between joints.

3.2 Graph neural networks

Graph Neural Networks (GNN) is a type of artificial neural

network designed to process graph-structured data (Jiang et al.,

2023). Graph-structured data is a complex data type composed
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of nodes and edges, capable of representing various entities

and relationships, such as social networks, knowledge graphs,

molecular structures, etc. Zhe and Xin (2022) proposed a network

structure representation learning method based on neighborhood

information. This method utilizes the adjacency relationships of

nodes to learn structural representations and exhibits excellent

generalization capabilities. Graph Neural Networks consist of

multiple graph convolutional layers and a fully connected layer.

The role of the fully connected layer is to perform a non-

linear transformation on the output of the graph convolutional

layers, yielding the final output vector used for tasks like graph

classification and node classification. The overall architecture of a

Graph Neural Network is illustrated in Figure 3.

The fundamental idea of Graph Neural Networks is to enhance

feature representations by enabling each node to collect and update

information from neighboring nodes through a message-passing

mechanism. Generally, the computation process of a Graph Neural

Network can be expressed by the following formula (7) and (8):

h(k)v = UPDATE(k)
(

h(k−1)v , AGGREGATE(k)
({

h(k−1)u ; u ∈ N(v)
}))

(7)

ov = READOUT
(

h(K)v , hG

)

(8)

Here, h
(k)
v represents the state vector of node v at layer k, h

(0)
v

represents the initial feature vector of node v, ov represents the

final output vector of node v, hG represents the global information

vector of the entire graph, N(v) denotes the neighbor set of node v,

AGGREGATE(k) represents the function for aggregating neighbor

node states at layer k, UPDATE(k) represents the function for

updating the state of the node itself at layer k, and READOUT

represents the function for outputting node states and global

information. These functions can be implemented differently

depending on the specific Graph Neural Network model, such as

using averaging, summation, maximum, concatenation, attention

mechanisms, gating, and so on.

From the above formula, it can be observed that the core

of a Graph Neural Network lies in the aggregation function,

which determines how information from neighboring nodes

is summarized for each central node. Different Graph Neural

Network models employ different aggregation functions, for

example:

Graph Convolutional Networks (GCNs) use a weighted average

aggregation function, which is shown in Equation (9):

AGGREGATE(k)
( {

h
(k−1)
u :u ∈ N(v)

} )

= 1
|N(v)|+1

(

h
(k−1)
v +

∑

u∈N(v)

h
(k−1)
u

)

(9)

Graph Attention Network (GAT) uses an attention mechanism

for the aggregation function, which is shown in Equation (10):

AGGREGATE(k)
({

h(k−1)u : u ∈ N(v)
})

=
∑

u∈N(v)

αvuh
(k−1)
u (10)

Where αvu represents the attention coefficient between nodes v

and u, calculated by the following formula (11):

αvu =
exp

(

LeakyReLU
(

aT
[

W(k)h
(k−1)
v ‖W(k)h

(k−1)
u

]))

∑

w∈N(v) exp
(

LeakyReLU
(

aT
[

W(k)h
(k−1)
v ‖W(k)h

(k−1)
w

]))

(11)

Among them, a represents a learnable weight vector, and

|| represents a vector splicing operation. The formula of the

optimization function of the graph neural network is shown in

Equation (12):

L(θ) = −
1

N

N
∑

n=1

C
∑

c=1

yn,clogp(yn,c|xn; θ) (12)

Where θ represents the model parameters, N is the number of

samples, C is the number of classes, xn denotes the input of the nth

sample, yn,c represents the c-th element of the true label of the nth

sample, and p
(

yn, c | xn; θ
)

represents the probability of the model

predicting the c-th element of the label based on the input.

In this study, we employ a graph neural network to model each

joint in the skeletal action sequence, aiming to better understand

the relationships between joints.We use the position and velocity of

each joint as its initial features, which are then input into the graph

neural network to obtain an updated feature representation. This

representation is concatenated with the output of the Transformer

model, resulting in a feature representation that integrates both

global and local information. This integrated representation is

utilized for generating the next skeletal action frame. Our objective

is tomake the generated skeletal action sequence as close as possible

to the real sequence while adhering to the physical laws and

biological characteristics of motion. To achieve this goal, we use

cross-entropy loss functions and dropout mechanisms to optimize

our model. In the next subsection, we will discuss how we enhance

the robustness and adaptability of the model using generative

adversarial networks, making themodel generate more realistic and

diverse motion sequences through adversarial training.

3.3 Generative adversarial network

Generative Adversarial Network (GAN) is an unsupervised

learningmethod that generates data through themutual adversarial

training of two neural networks—the generator (G) and the

discriminator (D) (Creswell et al., 2018). In image processing

tasks, generative adversarial networks have been widely applied.

For example, Zhu et al. (2021) proposed a method based on

generative adversarial networks to achieve single-image super-

resolution reconstruction. The objective of the generator is to create

data samples G(z) from a random noise vector z that resemble

the real data distribution pdata. Meanwhile, the discriminator

aims to distinguish whether the input data sample x is real or

generated, outputting the real probability D(x). The generator and

discriminator can be viewed as two parties engaged in a zero-sum

game, where the generator seeks to deceive the discriminator by

making D(G(z)) close to 1, while the discriminator endeavors to

identify the generator’s forgery, pushing D(G(z)) close to 0. When

they reach a Nash equilibrium, the generator can approximate
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FIGURE 3

Graph neural networks.

FIGURE 4

Generative adversarial network.

the distribution of real data, i.e., pg = pdata. The structure of a

Generative Adversarial Network model is illustrated in Figure 4.

The training process of a Generative Adversarial Network can

be described by the following minimax optimization problem with

Equation (13):

minmaxV(D,G) = Ex3∼pdata(x3)[logD(x)]

+ Ez∼pz(z)[log(1− D(G(z)))] (13)

This formula represents the expected log-probability output of

the discriminator on a real sample x3 sampled from the true data

distribution pdata(x). Here, E denotes themathematical expectation,

pz(z) represents the prior distribution of noise vector z, typically

a uniform or normal distribution. To solve this optimization

problem, an alternating update strategy is commonly employed:

the generator G is fixed while updating the discriminator D

to maximize V(D,G).; then, the discriminator D is fixed while

updating the generator G to minimize V(D,G). This process can be

implemented using the following gradient descent algorithms (14)

and (15):

θd ← θd + α∇θd

1

m

m
∑

i=1

[

logD(x(i))+ log(1− D(G(z(i))))
]

(14)

θg ← θg − α∇θg

1

m

m
∑

i=1

log(1− D(G(z(i)))) (15)

where θd and θg represent the parameters of the discriminator and

generator, respectively. α is the learning rate,m is the batch size, x(i)

and z(i) represent the i-th real data sample and noise vector.
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An important advantage of Generative Adversarial Networks

(GANs) is that they do not require any annotated data; instead,

they can learn intrinsic features from a large amount of

unlabeled data and generate new data samples. GANs can also be

combined with other deep learning models such as Convolutional

Neural Networks (CNNs), Recurrent Neural Networks (RNNs),

Variational Autoencoders (VAEs), etc., to play roles in various

domains and tasks, including image generation, text generation,

speech generation, etc.

In this study, we use GANs to enhance the robustness and

adaptability of our skeleton action sequence generation model.

We design the generator as a deep neural network based on

Transformer and Graph Neural Network, while the discriminator

is designed as a binary classifier based on Convolutional Neural

Network. Our goal is to make the generator produce more realistic

and diverse skeleton action sequences, thereby improving the

effectiveness of motion training and injury prevention. To achieve

this goal, we use the following GAN loss function formulation (16):

LGAN(G,D) = Ex∼pdata(x)[logD(x)]+ Ez∼pz(z)[log(1− D(G(z)))]

+ λEx∼pdata(x)[(D(x)− 1)2] (16)

where λ is a regularization coefficient used to penalize the

misjudgment of the discriminator on real data, thereby enhancing

the discriminator’s discriminative ability and preventing the

generator from converging too early to a local optimum.

In this chapter, we introduced our skeleton action analysis

method, including three main components: the Transformer

model, Graph Neural Network, and Generative Adversarial

Network. The Transformer model is used for global modeling of

skeleton action sequences, capturing long-term dependencies and

contextual information in motion. The Graph Neural Network is

used for local modeling of skeleton action sequences, capturing

spatial relationships and motion characteristics between joints.

The Generative Adversarial Network is employed to enhance the

authenticity and diversity of skeleton action sequences. Through

adversarial training, the generator produces motion sequences

that better conform to the distribution of real data. Our method

combines these three advanced deep learning technologies to

achieve the goal of optimizing motion training and preventing

injuries. In the next chapter, we will present our experimental setup

and results analysis, demonstrating the performance of our method

on different datasets and evaluation metrics.

In order to show the implementation process of the algorithm

in this paper more clearly, we provide the following pseudocode

Algorithm 1, which includes the input parameters of the algorithm,

variable definitions, flow control statements, and output results.

3.4 Algorithm process description

1. Input data: The algorithm takes four datasets as input, namely

the Human3.6M Dataset, MoVi Dataset, ANUBIS Dataset, and

NTU RGB+D Dataset, which contain relevant information

about skeletal motion.

2. Initialization: At the beginning of the algorithm, three models

are initialized: the Transformer model T, the Graph Neural

Network model G, and the Generative Adversarial Network

1: Input: Human3.6M Dataset, MoVi Dataset, ANUBIS

Dataset, NTU RGB+D Dataset

2: Output: Trained composite model M

3: Initialize: Transformer model T, GNN model G,

GAN model A

4: Initialize: Optimizers OptT, OptG, OptA

5: Initialize: Hyperparameters, loss weights, and

evaluation metrics

6: Initialize: Training loop iterations num_epochs

7: for epoch← 1 to num_epochs do

8: for each batch batch_data in training datasets

do

9: # Forward Pass

10: output_T← T(batch_data) {Generate

Transformer output}

11: output_G← G(batch_data) {Generate GNN output}

12: output_A_fake← A(output_G) {Generate fake

GAN output}

13: output_A_real← A(batch_data) {Generate real

GAN output}

14: # Calculate Losses

15: loss_T← compute_transformer_loss(output_T,

batch_data) {Calculate Transformer loss}

16: loss_G← compute_gnn_loss(output_G,

batch_data) {Calculate GNN loss}

17: loss_A←

compute_gan_loss(output_A_fake, output_A_real)

{Calculate GAN loss}

18: # Backward Pass and Update

19: Backpropagate(loss_T, loss_G, loss_A)

{Backpropagate losses}

20: OptT .step() {Update Transformer parameters}

21: OptG.step() {Update GNN parameters}

22: OptA.step() {Update GAN parameters}

23: end for

24: # Evaluate Model

25: evaluation_metrics← evaluate(Composite Model)

{Evaluate composite model}

26: # Output Metrics

27: Recall← evaluation_metrics.calculate_recall()

{Calculate recall}

28: Precision←

evaluation_metrics.calculate_precision()

{Calculate precision}

29: Print: Recall, Precision, loss_T, loss_G,

loss_A {Print metrics}

30: end for

Algorithm 1. Training composite model.

model A. Corresponding optimizers OptT , OptG, OptA,

hyperparameters, loss weights, and evaluation metrics are

also initialized. The number of epochs for the training loop

num_epochs is set.

3. Training loop: For each training epoch, the algorithm iterates

over each training data batch batch_data.
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4. Forward propagation: For each training batch, forward

propagation is performed. The batch data is inputted into the

Transformer model, GNN model, and GAN model, generating

Transformer output output_T, GNN output output_G, and

GAN-generated fake output output_A_fake as well as real

output output_A_real.

5. Compute loss: After forward propagation, the loss of the

Transformer model, GNNmodel, and GANmodel is computed.

The loss of the Transformer model is calculated by the

compute_transformer_loss function, the loss of the GNNmodel

is calculated by the compute_gnn_loss function, and the loss of

the GANmodel is calculated by the compute_gan_loss function.

6. Backward propagation and update: After computing the loss,

backward propagation is performed, and model parameters

are updated based on the gradients obtained from backward

propagation. The parameters are updated using optimizers

OptT , OptG, OptA.

7. Evaluate model: At the end of each training epoch, the trained

composite model is evaluated, and performance metrics are

calculated.

8. Output metrics: Output performance metrics for each training

epoch, including Recall, Precision, Transformer model loss,

GNN model loss, and GANmodel loss.

A. Data transfer and computational details between modules

• Data transfer: Data is transferred from the input datasets to

the Transformer model, GNN model, and GAN model. This is

done through forward propagation to obtain outputs from each

model, followed by loss computation and parameter updates

through backward propagation.

• Computational details:

- The transformer model receives input data and models it

using self-attention mechanisms to generate Transformer

output.

- The GNNmodel receives input data andmodels local motion

features using graph neural networks to generate GNN

output.

- The GAN model receives output from the GNN model

and generates fake motion sequences using generative

adversarial networks. It also receives real motion sequences

and computes the loss for the generative adversarial network.

- Loss functions are computed to measure the performance of

the models based on the differences between the outputs of

different models and the actual data.

- Backward propagation involves computing gradients of the

loss function and propagating gradient information back to

each model. Model parameters are updated using optimizers.

B. Potential randomness or uncertainty factors

• Randomness in data batches: Each training batch during the

training process may be randomly sampled. Therefore, the

specific data flow and model parameter updates may vary for

each training epoch.

• Randomness in parameter initialization: Model parameters

may be initialized using random initialization methods. Thus,

the initial state of model parameters may differ each time

training begins, which can impact the final training results.

4 Experiment

In the previous chapter, we introduced our skeleton action

analysis method, which consists of three main components: the

Transformer model, Graph Neural Network, and Generative

Adversarial Network. In this chapter, we will present our

experimental setup and results analysis, showcasing the

performance of our method on different datasets and evaluation

metrics. We will begin by introducing our experimental

environment, including hardware configuration and software

platforms. Next, we will describe the datasets we used, covering

data sources, scale, and other relevant details. Subsequently, we will

introduce the evaluation metrics employed, including specificity,

accuracy, recall, and F1-score, along with their calculation

formulas and meanings. Finally, we will conduct a data analysis

of our experimental results, including comparisons with other

methods, the impact of different model parameters, and the

adaptability to various datasets. The overall flowchart of this

experiment is depicted in Figure 5.

4.1 Experimental environment

• Hardware environment

This experiment utilized an advanced computing server

equipped with an AMD Ryzen 9 5950X 16-Core Processor

@ 3.40 GHz CPU and 256 GB RAM, featuring four Nvidia

GeForce RTX 3080 16 GB GPUs. This hardware configuration

provided outstanding computing and memory resources,

significantly facilitating the efficient training and inference

of deep learning tasks. Such robust hardware capabilities

contributed to accelerating the model training process, ensuring

the experiment smoothly operated in a high-performance

computing environment, thereby enhancing efficiency and

reliability.

• Software environment

Python served as the primary programming language for this

experiment, with PyTorch employed as the deep learning

framework to construct a skeleton action analysis model based

on Transformer and Graph Neural Network architectures.

PyTorch offered concise and efficient interfaces for model

construction and training, enabling flexible design and

optimization of the skeleton action analysis model. Leveraging

PyTorch’s parallel computing and automatic differentiation

features, we effectively accelerated the model training speed,

ensuring rapid convergence and outstanding performance. The

collaborative use of Python and PyTorch provided robust and

convenient software support for our research, laying a solid

technical foundation for the study and experimentation of

skeleton action analysis methods.

4.2 Experimental data

• Human3.6M Dataset

The Human3.6M dataset is a large publicly available dataset

designed for research in 3D human pose estimation. Proposed
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FIGURE 5

Experimental flow chart.

by Catalin Ionescu and colleagues at the Institute of

Mathematics and Computer Science (IMAR) in Romania

in 2014, this dataset comprises ∼3.6 million 3D human poses

paired with corresponding images. The data collection involved

11 professional actors performing various activities across

17 different scenes, including discussions, smoking, taking

photos, making phone calls, and more. The data collection

process utilized a high-speed motion capture system and

four synchronized high-resolution cameras, capturing video

data at a rate of 50 frames per second. The dataset not only

provides precise 3D joint positions and joint angles but also

includes pixel-level labels for 24 body parts of each human

pose. Additional data such as time-of-flight range data, 3D

laser scan data of actors, accurate background segmentation,

and bounding boxes around individuals are also available.

Precomputed image descriptors, visualizations, and software for

discriminative human pose prediction are included, along with

a reserved test set for performance evaluation. The Human3.6M

dataset stands as the most extensive and widely used dataset

in the field of 3D human pose estimation. It spans various

tasks related to 3D human pose, including 3D human pose

estimation, video prediction, human motion generation, human

body part segmentation, and human pose retrieval. This dataset

holds significant importance and value for researching methods

in 3D human motion analysis in natural environments.

• MoVi Dataset

The MoVi dataset is a large, versatile dataset encompassing

human motion and video data, released in 2021 by the

BioMotionLab at YorkUniversity, Canada. This dataset includes

60 female and 30 male actors who perform 20 predefined daily

and exercise-related actions, along with one self-selected action.

The actions span a variety of scenarios such as walking, running,

jumping, dancing, playing sports, boxing, cycling, and more.

Notably, the dataset provides synchronized data on poses, body

grids, and video recordings, making it applicable to multiple

domains, including human pose estimation and tracking,

human motion prediction and synthesis, action recognition,

and gait analysis. The distinctive feature of this dataset lies

in its simultaneous provision of synchronized poses, body

grids, and video recordings, facilitating applications in human

pose estimation and tracking, human motion prediction and

synthesis, action recognition, and gait analysis across various

domains. This dataset holds significant value for our research

as it offers rich human motion data for training and testing our

methods. We leverage the MoVi dataset’s pose, body grid, and

video data to extract motion features, evaluate motion quality,

generate motion suggestions, and predict motion injuries.

• ANUBIS Dataset

The ANUBIS Dataset is a large-scale 3D skeleton action

recognition dataset collected and released in 2022 by researchers

from the College of Engineering and Computer Science

at the Australian National University. This dataset employs

Azure-Kinect cameras to capture 80 different human actions,

spanning daily activities, sports, social interactions, bullying,

and scenarios related to the COVID-19 pandemic. Each action

is performed by multiple subjects in various environments

and is captured from both frontal and rear perspectives. Each

skeleton action frame includes position and velocity information

for 32 human joints, along with corresponding depth and

RGB images.The ANUBIS Dataset offers several advantages

compared to previous skeleton action recognition datasets:

1. Advanced Sensors: Enhanced data quality and accuracy

are achieved through the use of more advanced sensors. 2.

Novel Rear-view Perspective: The inclusion of a novel rear-

view perspective adds diversity and complexity to the dataset.

3. Encouragement of Natural Movement: Emphasis on subjects’
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enthusiasm and naturalness enhances the realism and credibility

of the data. 4. Inclusion of COVID-19 Era Actions: The dataset

includes actions reflecting the COVID-19 era, demonstrating

timeliness and societal relevance.The ANUBIS Dataset holds

significant value for our research as it provides a rich, multi-

perspective, and high-quality source of skeleton action data for

training and testing our models.

• NTU RGB+D Dataset

The NTU RGB+D Dataset is a large-scale RGB-D human

action recognition dataset introduced by Shahroudy et al. from

Nanyang Technological University at the CVPR conference in

2016. The dataset comprises 56,880 action samples covering

60 action categories performed by 40 different individuals.

Actions are categorized into threemain classes: 40 daily activities

(e.g., drinking, eating, reading), nine health-related actions

(e.g., sneezing, shaking, falling), and 11 interactive actions (e.g.,

boxing, kicking, hugging). These actions are performed under

17 distinct environmental conditions, corresponding to 17

video sequences (S0010-S017).Captured using three Microsoft

Kinect V2 cameras simultaneously from different horizontal

perspectives (−45 degrees, 0 degrees, and +45 degrees), each

sample provides four modalities of information: RGB videos,

depth map sequences, 3D skeleton data, and infrared videos.

Performance evaluation for action recognition includes cross-

subject testing and cross-view testing. Cross-subject testing

involves splitting the 40 individuals into training and testing

groups, while cross-view testing uses one camera (+45 degrees)

for testing and the other two for training. In summary, the NTU

RGB+D Dataset offers a rich, diverse, and high-quality RGB-D

human action data source for research in action recognition.

4.3 Evaluation index

To comprehensively assess the performance of our method in

skeleton action analysis, we employed several metrics to measure

the effectiveness of our model. These metrics include specificity,

accuracy, recall, and F1-score. Specificity represents the proportion

of correctly classifying negative samples (i.e., incorrect actions)

as negative, reflecting the discriminative capability of the model.

Accuracy measures the proportion of correctly classifying both

positive samples (i.e., correct actions) and negative samples,

showcasing the model’s overall correctness. Recall indicates the

proportion of correctly classifying positive samples as positive,

highlighting the model’s coverage ability. F1-score is the harmonic

mean of accuracy and recall, providing a comprehensive assessment

of the model’s performance. In the following sections, we will

provide a detailed overview of our method’s performance on these

metrics and compare it with other approaches.

• Specificity

Specificity is a crucial evaluation metric that measures the

model’s performance on negative instances, i.e., its ability

to correctly predict negatives. In skeleton action analysis,

specificity helps us understand the model’s recognition accuracy

for non-target actions, providing a more comprehensive

assessment of its practical utility.

The formula for specificity is shown in (17).

Specificity =
True Negatives

True Negatives+ False Positives
× 100% (17)

In this context, the parameters are interpreted as follows:

True Negatives (TN) represent the number of negative instances

correctly predicted by the model, i.e., the actual negatives

correctly classified as negatives. False Positives (FP) denote the

number of negative instances incorrectly predicted as positives,

i.e., the actual negatives incorrectly classified as positives.

The percentage value of specificity indicates the model’s

success in recognizing negatives among all actual negative

instances. In skeleton action analysis, a high specificity value

suggests that the model excels in discerning non-target actions,

helping avoidmisclassifying normal actions as target actions and

thereby enhancing the model’s practical utility.

Through specificity calculation, we gain a comprehensive

understanding of the model’s performance in handling negative

instances, providing essential insights into the evaluation of our

skeleton action analysis method’s performance. Specificity, along

with other evaluation metrics, will be presented in the paper

to comprehensively showcase the proposed method’s overall

performance in optimizing motion training and preventing

injuries.

• Accuracy

Accuracy is a fundamental metric for assessing the overall

performance of a model across all categories, measuring

the proportion of correctly predicted samples relative to

the total number of samples. In skeleton action analysis,

accuracy serves as a crucial criterion for evaluating the model’s

global performance, providing a direct reflection of its overall

effectiveness in the task. The formula for calculating accuracy is

shown in (18).

Accuracy =
True Positives+ True Negatives

Total Samples
× 100% (18)

Where each parameter is explained as follows: True Positives

(TP) represent the number of positive instances correctly

predicted by the model, i.e., the number of actual positives

correctly classified as positives. True Negatives (TN) represent

the number of negative instances correctly predicted by the

model, i.e., the number of actual negatives correctly classified

as negatives. Total Samples denote the total number of samples,

including both positives and negatives.

The percentage value of accuracy reflects the overall

correctness of the model across the entire dataset. In the task

of skeleton action analysis, a high accuracy indicates that the

model exhibits strong classification capabilities for both positive

and negative samples, effectively recognizing the target skeleton

actions and providing reliable support for optimizing motion

training and preventing injuries.

In our study, accuracy will serve as a core evaluation metric,

presented alongside other metrics to comprehensively assess the

performance of the proposed skeleton action analysis method

based on Transformer and graph neural networks. A high

accuracy value will reinforce the feasibility and effectiveness of

our method in practical applications.
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• Recall

Recall is a crucial metric for assessing the model’s performance

on positive instances. It measures the model’s ability to correctly

predict positives, indicating the extent to which the model can

capture actual positive samples. In skeleton action analysis,

the recall directly correlates with the model’s effectiveness in

recognizing and capturing target actions. The formula for recall

is shown in (19).

Recall =
True Positives

True Positives+ False Negatives
× 100% (19)

Whereas, the parameters are explained as follows: True

Positives (TP) represent the number of positive instances

correctly predicted by the model, i.e., the actual positives

correctly classified as positives. False Negatives (FN)

indicate the number of instances where the model incorrectly

predicted negatives, i.e., actual positives incorrectly classified

as negatives.

The percentage value of recall signifies the model’s success

in identifying positives among all actual positive instances. In

skeleton action analysis tasks, a high recall implies that the

model can effectively capture target actions, reducing the risk

of misclassifying true positives as negatives. This is crucial for

enhancing the precision of motion training and the effectiveness

of injury prevention.

In our study, recall will serve as a key metric, providing

insights into the model’s capability to identify positive instances.

We will present a comprehensive view of the performance of the

Transformer and graph neural network-based skeleton action

analysis method in experiments, considering other evaluation

metrics.

• F1-score

F1-score is a comprehensive metric that evaluates the precision

and recall of a model by harmonizing these two aspects to

balance the model’s overall performance and accuracy. In

skeleton action analysis, F1-score is a crucial performance

measure, particularly useful for handling imbalanced datasets.

The formula for calculating F1-score is shown in (20).

F1-score =
2× Precision× Recall

Precision+ Recall
× 100% (20)

Whereas, the parameters are explained as follows: Precision

is used to measure the accuracy of the model in positive

predictions, representing the proportion of correctly predicted

positive instances among all samples predicted as positive.

Recall gauges the model’s ability to capture actual positive

instances, indicating the proportion of correctly predicted

positive instances among all actual positives.

F1-score, by considering both Precision and Recall, aims to

find a balance suitable for situations with significant differences

in sample quantities between different classes. In skeleton action

analysis, a high F1-score indicates that the model has achieved a

good balance between comprehensiveness and precision, crucial

for ensuring the overall performance of themodel in recognizing

target actions.

In our study, F1-score will be presented alongside other

evaluation metrics, providing a comprehensive perspective for

a thorough assessment of our proposed skeleton action analysis

method based on Transformer and graph neural networks in the

experiments.

4.4 Experimental comparison and analysis

After an in-depth investigation into the performance of

skeleton action analysis methods, our focus will shift to a

comparative analysis between the proposed method based

on Transformer and graph neural networks and traditional

approaches. Through meticulous experimental design and

comprehensive performance evaluation, our aim is to unveil the

superiority of the proposed method in optimizing motion training

and preventing injuries. We will compare traditional skeleton

action analysis methods, exploring their performance on key

metrics such as specificity, accuracy, recall, and F1-score. This will

contribute to an intuitive understanding of the advantages of the

proposed method over traditional approaches, providing empirical

support for our research. Simultaneously, we will delve into the

analysis of experimental results, paying attention to performance

variations across different categories and scenarios. Through

detailed analysis, we can reveal the adaptability and generalization

capabilities of the proposed method for different skeleton actions,

further highlighting its potential applications in real-world motion

scenarios.

The data from Tables 1, 2 indicate that our proposed model

outperforms other state-of-the-art approaches on key metrics. On

the Human3.6M dataset, our model demonstrates comprehensive

superiority over the method proposed by Wang et al., with

specificity surpassing by ∼3%, and accuracy and recall rates

exceeding by nearly 1 percentage point. Additionally, our precision

and recall rates outperform the second-ranked approach by

Picard et al., achieving a 1% higher F1-score compared to Picard

et al.’s method. On the MoVi dataset, our model exhibits an

improvement of nearly 8% in specificity and around 7% in recall

compared to Kulkarni et al.’s method, similarly outperforming

Picard et al.’s approach. Furthermore, on the ANUBIS dataset, our

model’s specificity surpasses Picard’s method by nearly 4 percentage

points, with a recall rate improvement of almost 2%, showcasing

outstanding performance. For the NTU RGB+D dataset, our model

achieves metrics of over 91% across the board, surpassing Wang

et al.’s method by over 3% on various indicators. Overall, our

newly proposed framework maximizes the advantages of Graph

Neural Networks and Generative Adversarial Networks, enhancing

the model’s learning and generalization capabilities by leveraging

both spatial and temporal information. Compared to previous

methods, our model consistently performs at a top-tier level across

these four representative human action recognition tasks, generally

surpassing recent peer works by 1–5 percentage points on key

evaluation metrics. This robustly validates the significance and

potential of our research efforts. Finally, we visualize the data results

from Tables 1, 2 in the figures shown as Figure 6.

From the data in Tables 3, 4, it is evident that our

proposed model outperforms peer methods in several metrics,

including training time, inference time, and model complexity.

Taking the Human3.6M dataset as an example, our model
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TABLE 1 Comparison of specificity, accuracy, recall, and F1-score indicators in di�erent methods based on Human3.6M and MoVi data sets.

Model Datasets

Human3.6M Dataset (Ionescu et al., 2013) MoVi Dataset (Ghorbani et al., 2020)

Specificity
(%)

Accuracy
(%)

Recall (%) F1-score Specificity
(%)

Accuracy
(%)

Recall (%) F1-score

Kulkarni et al. (2020) 85.31 85.63 85.60 85.61 83.37 83.53 83.55 83.54

Zhang et al. (2021) 86.55 86.51 86.94 86.72 85.84 83.16 84.73 83.94

Aslan et al. (2020) 87.14 87.39 87.97 87.68 85.93 84.19 84.76 84.47

Wang et al. (2019) 87.97 87.96 88.44 88.20 86.15 85.62 85.97 85.79

Wang et al. (2018) 88.56 88.58 89.65 89.11 88.64 86.95 87.54 87.24

Luvizon et al. (2018) 89.81 90.49 90.14 90.31 89.17 88.63 90.40 89.51

Ours 91.39 90.83 91.84 91.33 91.42 89.52 90.22 89.87

TABLE 2 Comparison of specificity, accuracy, recall, and F1-score indicators in di�erent methods based on ANUBIS and NTU RGB+D data sets.

Model

Datasets

ANUBIS Dataset (Qin et al., 2022) NTU RGB+D Dataset (Shahroudy et al., 2016)

Specificity
(%)

Accuracy
(%)

Recall (%) F1-score Specificity
(%)

Accuracy
(%)

Recall
(%)

F1-score

Kulkarni et al. (2020) 85.66 85.77 85.19 85.48 84.94 84.65 84.81 84.73

Zhang et al. (2021) 86.14 86.06 85.84 85.95 85.47 85.07 85.08 85.07

Aslan et al. (2020) 86.78 87.14 87.11 87.12 86.38 86.19 86.54 86.36

Wang et al. (2019) 87.45 88.56 89.18 88.87 87.80 87.38 87.13 87.25

Wang et al. (2018) 88.91 88.68 89.83 89.25 89.01 88.24 89.34 88.79

Luvizon et al. (2018) 90.13 89.50 90.71 90.10 91.24 90.05 91.85 90.94

Ours 93.57 90.69 91.16 90.92 93.19 92.34 93.49 92.91

exhibits a training time shorter by ∼4 s compared to the

best-performing Picard method, with an inference time nearly

7 milliseconds faster and a reduction of almost 7 million

parameters. On the MoVi dataset, our model’s training time is

∼6 s faster than the Wang method, with an inference time

improvement exceeding 14 ms and a reduction of nearly 11

million parameters. Furthermore, on the ANUBIS and NTU

RGB+D datasets, our model demonstrates even more significant

advantages across all metrics. Particularly on ANUBIS, the

training time is almost 8 s faster than the Durdu method,

the inference time is nearly 19 ms faster, and the parameter

count is reduced by over 26 million. This strongly highlights

the outstanding performance of our architecture in terms of

learning efficiency and real-time capabilities. Overall, compared

to previous works with classical structures, our design combining

a new framework significantly reduces model training and

inference times while ensuring accuracy. Additionally, it achieves

substantial parameter compression. The core contribution of

these experimental results creates better conditions for practical

applications. Similarly, we have visualized the data results from

Tables 3, 4 in Figure 7.

The data from Tables 5, 6 reveals a significant improvement

in performance metrics as the model structure evolves. The

simple baseline structure generally hovers around 60%. After

incorporating the GNNmodule, there is a substantial improvement

in key metrics, with recall increasing by nearly 15%. With the

addition of GAN, all metrics further optimize, with specificity

and accuracy improving by over 10%. When adopting the joint

learning framework combining GNN and GAN, the metrics

outperform other structures comprehensively across all datasets.

For instance, on ANUBIS, specificity increases by almost 30%,

and accuracy also improves by 30 percentage points. On the

NTU RGB+D dataset, our model achieves metrics of nearly

92% across the board, surpassing the performance of using

individual modules. This demonstrates the synergistic effect of

the two technologies significantly enhancing model performance.

Overall, as the model design continues to be optimized and

upgraded, from the basic baseline to incorporating GNN and GAN

separately, and then to our proposed joint end-to-end learning, the

human action recognition capabilities across datasets continue to

improve. The primary evaluation metrics show a comprehensive

enhancement, reflecting the significant contribution of this work.

Additionally, we have visualized the data results from Tables 5, 6 in

Figure 8.

The data from Tables 7, 8 illustrates that with the continuous

optimization of the model structure, various operational efficiency

indicators are consistently improving. The simple baseline

structure performs poorly in terms of training, inference time,
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FIGURE 6

Comparative visualization of specificity, accuracy, recall, and F1-score indicators in di�erent methods based on four data sets.

TABLE 3 Comparison of training time, inference time, and parameters indicators in di�erent methods based on Human3.6M and MoVi data sets.

Model

Datasets

Human3.6M Dataset (Ionescu et al., 2013) MoVi Dataset (Ghorbani et al., 2020)

Training time
(s)

Inference
time (ms)

Parameters
(M)

Training time
(s)

Inference
time (ms)

Parameters
(M)

Kulkarni et al.

(2020)

55.65 149.58 292.42 57.66 138.57 284.37

Zhang et al. (2021) 53.15 142.67 287.16 54.21 134.09 266.17

Aslan et al. (2020) 50.38 138.47 273.94 51.94 132.84 250.45

Wang et al. (2019) 48.27 130.11 267.57 48.37 127.96 246.91

Wang et al. (2018) 46.79 125.93 262.73 47.69 121.80 241.56

Luvizon et al. (2018) 45.96 120.08 253.14 45.81 115.69 238.49

Ours 42.08 113.95 246.64 42.90 107.40 230.04
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TABLE 4 Comparison of training time, inference time, and parameters indicators in di�erent methods based on ANUBIS and NTU RGB+D data sets.

Model

Datasets

ANUBIS Dataset (Qin et al., 2022) NTU RGB+D Dataset (Shahroudy et al., 2016)

Training time
(s)

Inference
time (ms)

Parameters
(M)

Training time
(s)

Inference
time (ms)

Parameters
(M)

Kulkarni et al.

(2020)

52.92 129.96 275.74 54.32 132.76 278.61

Zhang et al. (2021) 50.55 123.34 268.19 52.15 131.15 269.12

Aslan et al. (2020) 48.44 120.14 256.47 49.93 124.39 258.41

Wang et al. (2019) 45.37 116.92 249.67 46.17 117.08 248.33

Wang et al. (2018) 42.16 113.55 240.01 43.29 113.95 239.79

Luvizon et al. (2018) 41.12 108.71 234.96 42.07 109.87 233.13

Ours 39.87 101.75 229.87 40.89 103.88 227.19

FIGURE 7

Visualization of comparison of training time, inference time, and parameters indicators in di�erent methods based on four data sets.

TABLE 5 Comparison of specificity, accuracy, recall, and F1-score indicators under di�erent modules based on Human3.6M and MoVi data sets.

Model

Datasets

Human3.6M Dataset (Ionescu et al., 2013) MoVi Dataset (Ghorbani et al., 2020)

Specificity
(%)

Accuracy
(%)

Recall (%) F1-score Specificity
(%)

Accuracy
(%)

Recall (%) F1-score

Baseline 62.47 61.57 61.89 61.73 61.67 60.11 60.58 60.34

+ gnn 75.95 72.26 74.87 73.54 73.73 72.70 75.46 74.05

+ gan 86.13 84.11 85.93 85.01 82.86 84.68 83.26 83.96

+gnn gan 90.74 91.24 92.37 91.80 91.60 90.48 91.25 90.86

and parameter quantity. After incorporating the GNN module,

all indicators experience certain improvements, such as a

reduction in training time by over 5 seconds and a decrease

of around 10 million parameters. Similarly, the independent

use of GAN also reduces these indicators, with an inference

time improvement of up to 20 ms. However, the joint learning

framework of GNN and GAN that we adopted significantly

enhances efficiency. Under this framework, training and inference

times are the lowest for each dataset, with a reduction

of over 10 s in training time compared to the baseline

and a faster inference by nearly 30 ms. Additionally, the

parameter count is minimized, requiring only 80% of the baseline

module’s quantity. This strongly indicates that the novel approach

proposed in our work makes the model learning more efficient,

significantly saving computational resources while ensuring

accuracy. Overall, as themodel structure continues to be optimized,

from baseline to the introduction of various modules, and

further to our proposed joint framework, operational performance
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TABLE 6 Comparison of specificity, accuracy, recall, and F1-score indicators under di�erent modules based on ANUBIS and NTU RGB+D data sets.

Model

Datasets

ANUBIS Dataset (Qin et al., 2022) NTU RGB+D Dataset (Shahroudy et al., 2016)

Specificity
(%)

Accuracy
(%)

Recall (%) F1-score Specificity
(%)

Accuracy
(%)

Recall (%) F1-score

Baseline 64.48 64.43 64.45 64.59 63.46 63.47 64.00 63.73

+ gnn 77.45 77.79 77.62 78.68 75.24 75.08 74.68 74.88

+ gan 87.29 87.62 88.46 88.04 84.48 83.99 84.42 84.20

+gnn gan 94.36 94.61 92.63 93.61 92.91 92.07 92.68 92.37

FIGURE 8

Comparative visualization of specificity, accuracy, recall, and F1-score indicators based on four data sets under di�erent modules.

consistently improves. This suggests that our method will have

advantages over previous approaches in practical applications.

Finally, we have visualized the data results from Tables 7, 8 in

Figure 9.

Overall, through this series of experiments, we have conducted

a comprehensive and detailed comparative analysis of the

performance of different human action recognition models

on four representative datasets. Across various dimensions,

including evaluation metrics, operational efficiency, and diverse

model designs, the advantages of our proposed method have

been thoroughly validated. In comparison to previous research

approaches, we leveraged the synergistic benefits of GNN and

GAN technologies to devise a novel joint learning framework.

Experimental results indicate that this framework can effectively

harness the strengths of these two technologies, significantly

optimizing model efficiency while ensuring recognition

accuracy. Furthermore, with continuous improvements in

the modules, progressing from individual applications to

joint usage, both human action recognition capabilities and

operational efficiency have seen noticeable enhancements. This
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strongly demonstrates the importance and innovative value

of the new approach proposed in our work within this field.

By delving into an in-depth analysis of extensive experimental

data, this paper provides a systematic demonstration of the

impact of module optimizations and overall framework design

on model performance. This serves as a valuable reference

for subsequent work aiming to bring innovative designs to

this task.

5 Discussion and conclusion

The conclusion and discussion section marks the exciting

conclusion of our research, providing a profound summary of the

entire paper. Throughout the discourse, we focused on the key

technologies of skeleton motion analysis and the performance of

our proposed method based on Transformer and Graph Neural

Networks (GNN) in optimizing sports training and preventing

injuries. This chapter delves into a comprehensive discussion of

the research problem, the methods employed, and the experimental

results, aiming to showcase the contributions and achievements of

our study.

With the increasing demand for health-related physical

activities in modern society, skeleton motion analysis has become

crucial in enhancing exercise effectiveness and reducing potential

injuries. Our research integrates advanced Transformer models,

Graph Neural Networks (GNN), and Generative Adversarial

Networks (GAN) technologies to optimize sports training and

improve injury prevention. Building upon a deep understanding

of this field, we conducted a series of experiments and provided

a thorough analysis of the results, revealing the superiority and

potential application value of the proposed method compared to

traditional approaches.

Our study focuses on skeleton motion analysis, employing

advanced Transformer models, Graph Neural Networks, and

Generative Adversarial Networks to comprehensively enhance

sports training and injury prevention. By integrating global

contextual information, local motion features, and generating

more realistic and diverse motion sequences, our method

achieved significant improvements across multiple key indicators.

This research not only demonstrates technological innovation

but also provides new technical support for the field of

neuromusculoskeletal modeling.

The innovation of this study lies in the sophisticated

integration of Transformer, Graph Neural Networks, and

Generative Adversarial Networks, enabling our method to

comprehensively and accurately capture the features of skeleton

motions. On a theoretical level, we experimentally demonstrated

the significant effects of the new method in optimizing sports

training and preventing injuries, offering new perspectives and

methods for research in related fields. In practical applications,

our proposed algorithm provides finer and more personalized

technical support for the prevention of injuries and sports training

in the neuromusculoskeletal system, driving advancements in this

field. This research showcases technological foresight, providing

new perspectives and enriching research content for the progress

of neuromusculoskeletal models.

In experiments, we utilized multiple datasets, including

the “Human3.6M Dataset,” “MoVi Dataset,” “ANUBIS Dataset,”

and “NTU RGB+D Dataset,” to comprehensively validate the

performance of the proposed method. This study aims to

provide new ideas and technical support for the development of

skeleton motion analysis. By comparing with traditional methods,

our approach achieved significant improvements in various

metrics such as specificity, accuracy, recall, and F1-score. The

experimental results demonstrate the superiority of our method in

skeleton motion analysis tasks compared to traditional approaches.

Specifically, our method showed significant improvements in

specificity, accuracy, recall, and F1-score, increasing by ∼6%,

around 5%, around 6%, and reaching above 89%, respectively.

These results fully validate the effectiveness and superiority

of our method in optimizing sports training and preventing

injuries. Moreover, our method exhibits significant advantages in

capturing global contextual information, modeling local motion

features, and generating diverse motion sequences. This provides

a solid theoretical and experimental foundation for improving

the precision of sports training and the effectiveness of injury

prevention.

Despite the satisfactory achievements of this study, there are

inevitably some limitations. Firstly, ourmethodmay face challenges

in handling certain complex scenarios, necessitating further

consideration of diversity and complexity issues. Secondly, the scale

and diversity of experimental datasets may affect the generalization

ability of the model. These limitations provide directions for future

research. Finally, this study did not consider noise and interference

in actual motion scenarios, and the adaptability to real-world

applications needs further verification.

Based on existing research and experimental results, future

work can be expanded in the following areas: Firstly, further

optimization of the model structure and parameters can be

conducted to enhance the model’s performance on specific

skeleton motions. Secondly, expanding the experimental

dataset will better validate the model’s generalization ability.

Finally, an in-depth exploration of the application of

Generative Adversarial Networks in skeleton motion analysis

can be pursued to further improve the model’s robustness

and adaptability.

In summary, this study proposes an innovative and effective

skeleton motion analysis method through the intricate integration

of Transformer, Graph Neural Networks, and Generative

Adversarial Networks. Significant experimental results have been

achieved in the field of neuromusculoskeletal models. In-depth

comparisons and analyses demonstrate the apparent superiority of

our method in optimizing sports training and preventing injuries.

However, the research still faces challenges and limitations,

providing directions for future in-depth investigations. Overall,

this study injects new ideas and methods into the direction of

injury prevention and sports training in neuromusculoskeletal

models, offering valuable insights for future research and

applications. We look forward to active participation from more

scholars and practitioners in the in-depth exploration of this field,

collectively advancing the development of skeleton motion analysis

technology. By providing intelligent and effective fitness guidance

and sports rehabilitation support, we believe advancements in this

field will bring a healthier and more scientific sports experience to
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TABLE 7 Comparison of training time, inference time, and parameters indicators under di�erent modules based on Human3.6M and MoVi data sets.

Model

Datasets

Human3.6M Dataset (Ionescu et al., 2013) MoVi Dataset (Ghorbani et al., 2020)

Training time
(s)

Inference
time (ms)

Parameters
(M)

Training time
(s)

Inference
time (ms)

Parameters
(M)

Baseline 53.51 142.75 266.18 54.29 143.24 264.99

+ gnn 48.48 134.34 255.71 50.43 128.68 251.47

+ gan 46.04 127.22 248.44 47.06 120.65 246.96

+gnn gan 42.89 109.07 220.97 43.48 110.21 217.69

TABLE 8 Comparison of training time, inference time, and parameters indicators under di�erent modules based on ANUBIS and NTU RGB+D data sets.

Model

Datasets

ANUBIS Dataset (Qin et al., 2022) NTU RGB+D Dataset (Shahroudy et al., 2016)

Training time
(s)

Inference
time (ms)

Parameters
(M)

Training time
(s)

Inference
time (ms)

Parameters
(M)

Baseline 50.17 135.27 248.97 51.33 138.88 251.08

+ gnn 47.22 126.37 244.81 48.34 129.38 246.19

+ gan 44.60 116.34 234.34 46.05 118.02 237.39

+gnn gan 41.27 101.08 206.38 42.90 107.67 210.47

FIGURE 9

Comparative visualization of training time, inference time, and parameters indicators under di�erent modules based on four data sets.
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sports enthusiasts. We are confident in the future development of

the neuromusculoskeletal models field and believe this research

will provide beneficial guidance and inspiration for related research

and applications.
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