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Synthetic Aperture Radar (SAR) plays a crucial role in all-weather and all-day Earth

observation owing to its distinctive imaging mechanism. However, interpreting

SAR images is not as intuitive as optical images. Therefore, to make SAR images

consistent with human cognitive habits and assist inexperienced people in

interpreting SAR images, a generative model is needed to realize the translation

from SAR images to optical ones. In this work, inspired by the processing of

the human brain in painting, a novel conditional image-to-image translation

framework is proposed for SAR to optical image translation based on the di�usion

model. Firstly, considering the limited performance of existing CNN-based

feature extractionmodules, themodel draws insights from the self-attention and

long-skip connection mechanisms to enhance feature extraction capabilities,

which are aligned more closely with the memory paradigm observed in the

functioning of human brain neurons. Secondly, addressing the scarcity of

SAR-optical image pairs, data augmentation that does not leak the augmented

mode into the generated mode is designed to optimize data e�ciency. The

proposed SAR-to-optical image translation method is thoroughly evaluated

using the SAR2Opt dataset. Experimental results demonstrate its capacity to

synthesize high-fidelity optical images without introducing blurriness.

KEYWORDS

synthetic aperture radar, SAR-to-optical image translation, brain-inspired approach,
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1 Introduction

Synthetic Aperture Radar (SAR) sensors are a crucial source of information for various

applications such as target detection (Han et al., 2017, 2019, 2022; Deng et al., 2021; Tang

et al., 2022), offering the ability to capture high-resolution data in all-time-all-weather

conditions. However, interpreting SAR images requires specific expertise and practice. SAR

images differ significantly from optical images as they do not align with the usual visual

perceptions of the human eye. SAR images are complex, characterized by unique geometric

features and speckle noise arising from SAR technology’s intrinsic principles and imaging

mechanisms. Therefore, as one of the feasible approach to assit interpreting SAR images,

has been a growing trend toward translating SAR into optical images to aid in interpreting

SAR images.

Generative Adversarial Networks (GANs) have become the leading models in

translating SAR images into optical images. Originating from Goodfellow et al.’s (2014)

concept, which drew inspiration from two-person zero-sum games in game theory, GANs

have since evolved through various adaptations. Among these, Pix2Pix (Isola et al., 2017),
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a type of conditional GAN (Mirza and Osindero, 2014), has

demonstrated considerable promise in image-to-image translation.

Its most notable feature is the use of pairs of images for training.

However, obtaining these paired images can be challenging,

leading to the relevance of cycleGAN (Zhu et al., 2017), which

operates with unpaired images. Researchers are now blending

the strengths of both Pix2Pix and cycleGAN to enhance SAR-to-

optical image translation, focusing on improvements in generators,

discriminators, loss functions, and overall model structure.

Improvements in generators often involve residual modules, dense

connections, and dilated convolutions, aiming to enhance the

interaction between encoders and decoders and preserve intricate

details like color and texture (Ley et al., 2018; Turnes et al., 2020;

Darbaghshahi et al., 2021; Fu et al., 2021; Guo et al., 2022; Shi

et al., 2022; Yang et al., 2022). On the discriminator front, using

multiple discriminators at different scales helps more accurately

distinguish between translated and real images (Guo et al., 2022;

Yang et al., 2022). In terms of loss functions, similarity metrics

and perceptual loss are gaining traction (Hwang et al., 2020; Li

et al., 2020; Darbaghshahi et al., 2021). As for the model structure,

some studies also explore bidirectional generators, combining

elements from Pix2Pix and cycleGAN, to enhance the quality

of translated images (Wang et al., 2019; Fu et al., 2021; Shi

et al., 2022). Despite these advancements, challenges persist due

to the inherent differences between SAR and optical images. The

translation network’s feature extraction module often encounters

information loss, and high-quality feature maps are hard to obtain.

Besides, the scarcity of SAR-optical image pairs further hampers the

training effectiveness of thesemodels.While Pix2Pix-basedmodels,

relying on supervised learning, tend to yield higher-quality images,

they demand more extensive datasets. In contrast, cycleGAN’s

unsupervised approach typically results in lower-quality images

under similar conditions. Therefore, a balance between dataset

availability and translation quality is crucial during model training.

Moreover, while the zero-sum game concept of GANs is innovative,

it poses significant challenges in training, especially for high-

resolution images, as it tends to destabilize training and complicates

adjustments and improvements.

Diffusion models have recently received considerable attention,

which can be trained in a more stable way. The diffusion model

was first proposed in 2015, and it was not until the introduction

of the Denoising Diffusion Probabilistic Model (DDPM) (Ho

et al., 2020) in 2020 that its development prospects gained

widespread recognition. DDPM is a parameterized Markov chain

that incrementally adds noise to data in a forward diffusion process

until the original signal is wholly corrupted and then reconstructs

the signal in a reverse diffusion process. While effective, DDPM’s

main limitation is the need for multiple iterations to produce

high-quality images, unlike the single-pass requirement of GANs.

To improve upon this, the Denoising Diffusion Implicit Model

(DDIM) (Song et al., 2021) evolved from DDPM and introduced

a non-Markov chain diffusion process. This innovation reduced

the steps required in the inference process while maintaining

sample quality. Further refinements came with the Improved

DDPM (Nichol and Dhariwal, 2021), optimizing this process

even more. The performance of diffusion models beat GAN for

the first time in 2021 (Dhariwal and Nichol, 2021) when two

researchers from OpenAI, Prafulla Dhariwal, and Alex Nichol,

ingeniously refined themodel architecture, resulting in a significant

improvement in the quality of generated images. They also

introduced classifier guidance for conditional image generation

tasks, which was later streamlined by introducing classifier-free

guidance (Ho and Salimans, 2021). This new approach eliminated

the need for an external classifier by an equivalent structure,

allowing direct conditional generation using a diffusion model.

Regarding diffusion-based image translation, Palette (Saharia et al.,

2022) has marked the competence of diffusion models. It follows

a training approach akin to the GAN-based Pix2Pix, using paired

image data. In contrast, UNIT-DDPM (Sasaki et al., 2021) utilized

unpaired image data. Moreover, PITI (Wang et al., 2022) explored

the use of pretraining to adapt diffusion models for various

downstream image translation tasks. In summary, diffusion models

have established themselves as capable alternatives to GANs for

image generation and translation, offering more stable training and

demonstrating a broadening scope of applications.

What’s more, similar with pix2pix method, diffusion based

method is also facing the challenge of lacking paired images in

image traslation. The diffusion model is trained using a paired

dataset of SAR and optical images. Note that the natural image

processing often has access to billion-level image datasets, but as

for remote sensing, the availability of SAR-optical image pairs is

limited. Therefore, in the case of using SAR-optical image pairs,

it is crucial to enhance the data utilization and avoid overfitting.

Given that generative models serve as models for learning data

distributions, once data augmentation is applied, the transformed

images directly alter the target distribution represented by the

original training samples, inevitably causing the generated sample

distribution to deviate. To achieve reasonable data augmentation

in generative models, the non-leaking data augmentation (Karras

et al., 2020) has been proposed. It can prevent augmented style

leaking into the target distribution represented by the original

training samples. Furthermore, Patch Diffusion (Wang et al.,

2023) introduced a generic patch-wise training framework to

separate patches from full-size images and learn conditional loss

functions on image patches. These methods improve the training

performance under the condition of few samples.

In this paper, we employ a diffusion model in SAR to optical

image translation and the main contributions can be summarized

as follows:

1. A conditional diffusion model for SAR-to-optical image

translation is proposed. This approach addresses the training

instability encountered with GAN-based translation networks,

particularly for high-resolution datasets. Our method leverages

the diffusionmodel mechanism to avoid potential mode collapse

issues during training, setting it apart from existing GAN-based

image translation networks.

2. A feature map optimization method via self-attention and

multi-level features fusion is proposed. This method enhances

information extraction by compensating for the information

loss, which is achieved through long skip connections

derived from the U-Net architecture and a focus on global

information via the self-attention mechanism derived from

Vision Transformers. This approach allows for more effective
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source domain SAR image information extraction than existing

image translation networks.

3. A data augmentation technique using non-leaking processing is

proposed. This technique overcomes the limitation of lacking

SAR-optical image pairs and does not compromise the integrity

of the diffusion model. While augmenting SAR-optical image

pairs, it incorporates matching the labels for these pairs to

prevent damage to the translated images. In short, this technique

distinguishes our approach from current image translation

networks by applying data augmentation in generative models

to avert overfitting in the translation network.

Experimental results demonstrate that diffusion models can

effectively perform SAR-to-optical image translation, producing

image quality on par with GAN-based models and excelling with

high-resolution images.

2 Methods

The intuition behind the diffusion model comes from

thermodynamics, where gas molecules diffuse from high-density

to low-density areas, similar to the loss of information caused

by noise interference. In the context of SAR-to-optical image

translation, SAR and optical image respectively denoted as S,O ∈
R
H×W×C, where H and W refer to the height and width of the

images, and C represents the number of channels in the images.

To learn the data distribution of optical images, the model adds

noise to optical images during the forward diffusion process and

then samples from the distribution through the reverse diffusion

process. Specifically, train the model to reconstruct optical images

gradually during the reverse diffusion. Regarding the realization

of conditional translation, the essence of SAR-to-optical image

translation is an optical image generation task conditioned on

SAR images. The input data consists of SAR-optical image pairs,

which are concatenated along the channel dimension to provide

reference information for SAR images. The SAR-optical image pairs

are preprocessed and fed into the model, as shown in Figures 1, 2.

2.1 SAR-optical image di�usion

The SAR-optical image diffusion consists of two stages:

forward diffusion and reverse diffusion, both of which are Markov

chain processes.

In the forward diffusion process, Gaussian noise is gradually

added to the given initial sample O0 ∼ q(O) to generate noisy

samples O1,O2,. . . ,OT . The standard deviation of this noise is

determined by the hyperparameter βt , and the mean is determined

jointly by βt and the dataOt at the current timestep t. βt taken from

the variable table {βt ∈ (0, 1)}tt=1. The mathematical expression of

the forward diffusion process is shown in Equation (1).

q (Ot|Ot−1) = N

(
Ot;

√
1− βtOt−1,βtI

)

q (O1 :T |O0) =
T∏

t=1

q (Ot|Ot−1)

(1)

where, according to the reparameterization trick, q (Ot) at any

timestep can be computed based on O0 and βt without iteration.

Let αt = 1− βt , ᾱt =
∏T

i=1 αi and the expression of q (Ot|O0) can

be derived as shown in Equation (2).

q (Ot|O0) = N

(
Ot;

√
ᾱtOt−1, (1− ᾱt) I

)
(2)

When T is sufficiently large, OT ∼ q (OT) can be

considered to follow an independent Gaussian distribution, i.e.,

q (OT) ∼ N (OT; 0, I).
The sampling in the reverse diffusion process starts from the

isotropic Gaussion noiseOT , producing samples with progressively

less noise OT−1,OT−2, . . ., until the final optical image sample

O0 is obtained without noise. The process is based on the

corresponding optical image S. Therefore, a parameter distribution

pθ is constructed to estimate q(Ot−1|Ot , S). The mathematical

expression of the reverse diffusion process is shown in Equation (3).

pθ (O0 :T |S) = p (OT)

T∏

t=1

pθ (Ot−1|Ot , S)

pθ (Ot−1|Ot , S) = N (Ot−1;µθ (Ot , S, t) ,6θ (Ot , S, t))

(3)

For the variance 6θ (Ot , S, t), parameterize the variance as

an interpolation between βt and β̃t = 1−αt−1
1−αt

βt , as shown in

Equation (4).

6θ (Ot , S, t) = exp
(
v logβt + (1− v) log β̃t

)
(4)

2.2 Architecture

The overall architecture of the model is shown in Figures 1, 2

in different perspectives. To begin with, corresponding data

augmentation is achieved on the SAR-optical image pair. Then,

in the reverse diffusion process, the noise added in the forward

diffusion process is predicted by the constructed neural network

ǫθ , thereby translate the original SAR image S into corresponding

optical imageO0.

2.2.1 Data augmentation
Before being fed into the translation network, the SAR-optical

image pairs undergo two rounds of data augmentation.

Initially, six geometric augmentations, including flipping,

scaling, and rotation, are applied with specified probabilities to the

optical-SAR image pairs. Subsequently, in order to further increase

the amount of data, a patch diffusion-based schedule shown in

Equation (5) (Wang et al., 2023) is employed for random patch

cropping on SAR-optical image pairs. The overall process of data

augmentation is shown in Figure 1.

(w, h) ∼ p(w,h) : =





p, when (w = W, h = H)
3
5 (1− p), when (w = W//2, h = H//2)
2
5 (1− p), when (w = W//4, h = H//4)

(5)

In each training epoch, SAR-optical image pairs are cropped

to different sizes depending on this schedule; put it in another
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FIGURE 1

The overview of proposed framework from the perspective of data augmentation.

way, each training image pair will be randomly cropped into three

potential sizes. p is the ratio of training images that keep original

size, W,H is the width and height of the original SAR-optical

image pairs.

Then, noise is added to the optical images, and the SAR-optical

image pairs are fed into the diffusion model for noise prediction. It

is notable that after patch diffusion, original images are divideded

into three different sizes, (W,H), (W//2,H//2), and (W//4,H//4)

throughout whole training stage. Consequently, the calculation of

loss will be employed in these three sizes. And then calculate the

expectation together as the final loss.

For generative models, aggressive data augmentation can cause

the model to learn the patterns introduced by the augmentation,

deviating from the original distribution. To address this issue,

in this work, when augmenting SAR and optical image pairs,

the augmentation parameters are obtained synchronously as

augmentation labels, indicating whether this pair patch with or

without augmentation. For general data augmentation, the data

augmentation label a is a 9-dimensional conditioning input vector,

recording the applied data augmentation for each image pair, with

0 indicating no augmentation applied. a is inputted into the model

in the form of category labels.

In addition, especially for patch diffusion augmentation, the

location information L of the patch in the original image are used as

augmentation labels. L is a pixel-level coordinate system with two

channels, representing the pixel position coordinates (x, y) of the

patch in the original image. By setting the upper left corner of the

original image as (−1,−1) and the bottom-right corner as (1, 1),

the pixel coordinate values are normalized relative to the original

image size within the range of [−1, 1], resulting in a two-channel

coordinate system. L and SAR-optical image pairs are inputted into

the model via concatenation.

2.2.2 Noise prediction network
Diffusion models often use U-Net as the noise prediction

network ǫθ . In the SAR-to-optical image translation task, the local

geometric features of the SAR and optical images do not intuitively

correspond. Fortunately, the self-attention module of ViT can

globally attend to information, which is more conducive to learning

the mapping relationship between SAR and optical images. U-

ViT (Bao et al., 2023) is a simple and general backbone based

on the ViT. Our model optimizes the extraction of feature maps

through the U-ViT, parameterizing the noise prediction network

ǫθ , as shown in Figure 2. In terms of the advantages of applying

the U-ViT, on one hand, following the core idea of ViT, U-ViT

divides the input noise image Ot , reference image S and location

L into small blocks and flatten them as tokens, processing with

timestep t and label a together. It uses self-attention instead of

convolutions for information extraction. On the other hand, U-

ViT adopts skip connections between shallow and deep layers,

referencing the structure of U-Net, which can help the network

better capture feature information at different levels.

2.3 Loss function

As mentioned before, the forward diffusion processing and

the reverse diffusion processing could be formulated respectively

as q (O1 :T |O0) and pθ (O0 :T |S). By organizing the negative log-

likelihood function of the target data distribution, denoted as

− log pθ (O0 :T |S), a typical variational upper bound LVLB =
Eq(O0 :T )

[
log

q(O1 :T |O0)

pθ (O0 :T |S)

]
can be obtained as shown in Equation (6).

LVLB =
Eq

[
DKL

(
q (xT |x0) ||pθ (OT)

)
+

T∑

t=2

DKL

(
q (Ot−1|Ot ,O0) ||pθ (Ot−1|Ot , S)

)
− log pθ (O0|O1, S)

]

(6)

For two single-variable Gaussian distributions q and p, their KL

divergence depends on the mean and variance of the distributions.

Therefore, two branches of the neural network ǫθ are designed to fit

the mean µθ (Ot , S, t) and variance 6θ (Ot , S, t) of the distribution

pθ (Ot−1|Ot , S). Asmentioned above, the conditions a and L related

to data augmentation are also input into the network, so the neural

network is denoted as ǫθ (Ot , S, L, a, t). To rearrange this term via

integrating conditions as a function, ǫθ could be denoted further

as ǫθ

(
Ot , t,C(S, L, a)

)
.
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FIGURE 2

The overview of proposed framework from the perspective of noise prediction network structure.

To fit themeanµθ (Ot , t,C), involving unknown part the added

noise, one branch of the network ǫθ outputs a random variable ǫ,

representing the predicted noise. Using ǫθ (Ot , t,C) to estimate the

noise component of a noisy sample Ot , the loss function is shown

in Equation (7).

Lsimple (θ) : = Et,O0 ,S,ǫ

[∥∥∥ǫ − ǫθ

(√
ᾱtO0 +

√
1− ᾱtǫ, t,C

)∥∥∥
2
]

(7)

This equation is equivalent to a noise prediction task. The

noise prediction network is trained to minimize a noise prediction

objective E [ǫ|Ot , t,C].

To fit the variance 6θ (Ot , t,C), the other branch of the

network ǫθ learns the coefficients v in the variance, obtaining Lvb.

According to Equation (7), the loss function of the diffusion

model calculates the similarity between the predicted noise and the

added noise in the forward diffusion process. Besides, in this work,

GAN and VGG losses are introduced to enhance the reality of the

images, which could be denoted as Ladv and Lperceptual, respectively.

Finally, the integrated loss function is shown in Equation (8).

L = Lsimple + λ1Lvb + λ2Lperceptual + λ3Ladv (8)

where λ1, λ2, λ3 is hyperparameters, all set to 1 in this work.

2.4 Training and inference

During the forward diffusion process, the Gaussian noises are

gradually added to O0 until obtaining the isotropic Gaussian noise

OT . In the reverse diffusion process, a noise prediction network ǫθ

is constructed to gradually obtain the pure optical translated O0

from OT under the given conditions. At each denoising timestep,

the corrupted optical image Ot and the coresponding condition
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1: repeat

2: O0 ∼ q(O)

3: t ∼ Uniform({1, . . . ,T})
4: ǫ ∼ N (0, I)

5: Take gradient descent step on

L = Lsimple + λ1Lvb + λ2Lperceptual + λ3Ladv,

where Lsimple (θ) : =
Et,O0 ,S,ǫ

[∥∥ǫ − ǫθ

(√
ᾱtO0 +

√
1− ᾱtǫ, t,C

)∥∥2
]

6: until converged

Algorithm 1. Training

1:OT ∼ N (0, I)

2: for t in {T, . . . , 1} do
3: z ∼ N (0, I) if t > 1, else z = 0

4: Ot−1 = 1√
αt
(Ot − 1−αt√

1−ᾱt
ǫθ (Ot , t,C))+ σtz

5: end for

6: return O0

Algorithm 2. Sampling

C(S, L, a) are concatenated along the channel dimension. Then

input them into the noise prediction network and get the predicted

values of the added noise. During training, the model is optimized

through iterative noise prediction. During sampling, the final

translation result is progressively sampled according to the output

of ǫθ . The specific algorithms for training and sampling are shown

in Algorithms 1, 2.

In addition, a hierarchical training strategy is adopted

because high-resolution image translation significantly increases

the model’s parameters and pushes the computational cost to its

limits. Specifically, a base model and an upsampler are trained

separately. The base model learns the mapping relationship

between SAR and optical images to translate small-sized images

of 64 × 64. The upsampler then delineates the edges and details

of the optical images using SAR images as guidance, resulting

in high-resolution images of 512 × 512. The base model and

upsampler employ distinct noise schedule and model structures to

accommodate the generation and translation of images at different

resolutions. The base model utilizes a cosine schedule, while the

upsampler utilizes a linear schedule. The structure of the upsampler

is lightweighted based on the base model, aiming to strike a balance

between the accuracy of translated images and training efficiency.

3 Experiments

3.1 Dataset

We adopted the SAR2Opt dataset (Zhao et al., 2022) for our

experiments. This dataset consists of SAR images collected by

TerraSAR-X from 2007 to 2013 in ten cities across Asia, North

America, Oceania, and Europe, with a spatial resolution of 1 m.

Optical images were collected from Google Earth Engine and the

paired SAR images through manual selection of control points.

Image patches of size 600 × 600 pixels were extracted from

the coregistered SAR-to-optical image pairs. The dataset contains

a total of 2,077 paired large-sized, high-resolution SAR-optical

image patches. We utilized the original paired dataset for training,

randomly selecting 60% as the train set and allocating 20% each for

the validation and test sets.

3.2 Evaluation metrics

To evaluate the effectiveness of image translation, we

employed four metrics, namely, Peak Signal-to-Noise Ratio

(PSNR), Structural Similarity (SSIM), complex wavelet Structural

Similarity (CW-SSIM) and Frechet Inception Distance (FID). The

first two metrics are popular methods for measuring the similarity

between two images from different perspectives, the third is an

improved method, while FID is the distance used to evaluate the

performance of the model in image translation.

PSNR is one of the most commonly used and widely applied

image evaluating metrics. This method assesses image quality based

on the errors between corresponding pixels. SSIM evaluates image

quality based on three different factors: brightness, contrast, and

structure. The higher these two metrics, the more similar the

translated image is to the real image.

CW-SSIM provides similarity evaluation of luminance change,

contrast change and spatial translation insensitivity based on SSIM.

Considering that it is unnecessary to blindly pursue pixel-by-pixel

alignment of the image in the style translation task, subtle style

changes do not affect the human eye’s interpretation of the image.

Therefore, CW-SSIM is introduced as one of the evaluation indexes

in this work. Similar to SSIM, higher CW-SSIM values indicate

greater image similarity.

FID is a measure used to measure the distance between the

translated image distribution and the real image distribution.

Firstly, the Inception network is used to extract features, and then

a Gaussian model is used to model the feature space, and finally,

the distance between two features is calculated. A lower FID means

higher image quality and diversity.

PSNR = 10 log10
MAX2

I

MSE
(9)

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)
(10)

S̃
(
cx, cy

)
=

2
∣∣∣
∑N

i=1 cx,ic
∗
y,i

∣∣∣ + K

∑N
i=1

∣∣cx,i
∣∣2 + ∑N

i=1

∣∣cy,i
∣∣2 + K

(11)

FID(x, y) =
∥∥µx − µy

∥∥2
2
+ Tr

(
Cx + Cy − 2

(
CxCy

) 1
2

)
(12)

The calculation formulas for PSNR, SSIM, CW-SSIM, and FID

are respectively shown in Equations (9, 10, 11, and 12). In Equation

(9),MAXI denotes the maximum possible pixel value of the image.

MSE denotes mean squared error between images x and y. In

Equation (10), µx,µy, σx, σy, σxy denote the means, variances, and

covariance of the images x and y. c1, c2 are constants. In Equation

(11), cx =
{
cx,i|i = 1, . . . ,N

}
and cy =

{
cy,i|i = 1, . . . ,N

}
denote

two sets of coefficients extracted at the same spatial location in

the same wavelet subbands of the two images being compared.
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FIGURE 3

Experimental results in di�erent images. (A) Reference SAR images. (B) Low-resolution (64 × 64) translation results in the first stage. (C)

High-resolution(512 × 512) translation results in the second stage. (D) Ground truth of optical images.
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FIGURE 4

Ablation results. (A) Reference SAR images. (B) Palette. Baseline. (C) U-ViT di�usion model. Apply the U-ViT structure only. (D) Data argument model.

Apply data augmentation only. (E) Proposed model. Apply the U-ViT structure and data augmentation. (F) Ground truth (optical images).

c∗ is the complex conjugate of c. K is a small positive constant.

In Equation (12), µx,µy,Cx,Cy denote the means and covariance

matrices of the image features. Tr (·) is the trace of matrix.

3.3 Result

The Figure 3 presents some exemplary results of the network

based on the SAR2Opt dataset, with each column from left to

right representing SAR images, translated low resolution images,

translated high-resolution images, and real optical images. The

results demonstrate that the proposed diffusion model is capable of

performing SAR to optical image translation tasks. The translated

images exhibit sharp edges, clear details, and successfully reproduce

the texture of optical images. The reality achieved makes it difficult

to distinguish the translated images from real images with human

eyes. For regions with abundant data in the dataset, such as urban

and suburban areas, the diffusion model accurately reproduces the

terrain classification for each pixel. Even for areas with limited data,

such as ports and airports, the diffusion model can still generate

identifiable terrain features. Overall, the proposed model effectively

accomplished SAR to optical image translation, thereby providing

valuable assistance in the interpretation of SAR images.

However, there are somemistranslations of small elements such

as ships and aircraft, which may be due to the lack of relevant

examples in the training set. In addition, it was notable that the

moving targets could lead to the difference between paired SAR

and optical images. As shown in row sixth of the Figure 3, the ship

appearing in the SAR image was not displayed in the optical image,

which also led to the model’s misjudgment of moving targets. For

TABLE 1 Ablation experiment results in main metrics.

Structure PSNR SSIM CW-SSIM FID

Palette 14.80 0.2719 0.4474 182.38

U-ViT diffusion model 15.47 0.2846 0.4898 171.76

Data augmentation model 15.40 0.2914 0.4981 179.11

Proposed 15.93 0.2831 0.5086 170.26

The bold values represent the best result for a given metric.

such targets, specialized datasets are still needed to achieve better

translation performance.

3.4 Ablation experiment

To validate the effectiveness of the model structure U-ViT

and the data augmentation, the qualitative results of the ablation

experiment are shown in Figure 4, and the quantitative results are

shown in Table 1.

Palette is a general diffusion-based image-to-image translation

model, therefore it is used as the baseline. However, it was found in

the experiment that color shift occurred under limited samples and

small batch size conditions. Our proposed method can eliminate

color shift under the same conditions. It is more suitable for

specialized tasks of SAR to optical image translation.

From the qualitative results, it can be seen that the excellent

feature extraction ability of U-ViT enables the noise prediction

network to recover finer edges and details. As shown in the

third column in Figure 4, when using the U-ViT noise prediction
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FIGURE 5

Comparison experiment results of four methods. (A) Reference SAR images. (B) Pix2Pix. (C) Pix2PixHD. (D) Palette. (E) Proposed model. (F) Ground

truth (optical images).

network, inconspicuous narrow roads become clear and visible.

The data augmentation significantly improves the quality of image

translation, as shown in the fourth column in Figure 4, especially

for terrain categories with fewer samples, such as the yellow

category. In the results without data augmentation, the style of

the yellow category is almost absent, while reasonable colors

are generated after applying data augmentation. When the two

technologies are combined to obtain the proposed model, as shown

in the fifth column of Figure 4, the content and texture of the image

are well translated.

From the quantitative results, it can be seen that the proposed

model structure U-ViT and data augmentation can both improve

the similarity between translated images and real images.When two

methods are combined, better results can be obtained. It should be

noted that SSIM is based onMSE regression techniques, which tend

to be conservative for high-frequency details. Sometimes images

with blurred details can actually achieve higher SSIM, just like the

results after only data augmentation. Therefore, we believe that the

evaluation of CW-SSIM has better reference value. CW-SSIM is not

sensitive to small offset, which is more in line with the human eye’s

habit of interpreting high-resolution images.

Overall, the data augmentation and U-ViT both enhance the

quality of the generated images and alleviate the demand for large-

scale datasets in diffusion models.

3.5 Comparison experiment

The proposed model is compared with typical conditional

generative networks and SAR-to-optical translation networks,

TABLE 2 Comparison experiment results in main metrics.

Structure PSNR SSIM CW-SSIM FID

Pix2Pix 14.95 0.2282 0.4854 216.89

Pix2PixHD 14.70 0.2041 0.4760 219.06

Palette 14.80 0.2719 0.4274 182.38

Proposed 15.93 0.2831 0.5086 170.26

The bold values represent the best result for a given metric.

and the results are shown in Figure 5 and Table 2. We set the

recommended parameters for each network as stated in their

respective papers and selected the best test results after multiple

trainings.We compare all experiments using the same set of images.

From the Figure 5, it can be observed that most networks

designed for low-resolution images perform poorly on high-

resolution images and face challenges in achieving convergence.

Even for pix2pixHD, which is specifically designed for high-

resolution image generation, there are still instances of blurriness

and artifacts in the results. In fact, networks based on conditional

GANs often fail to produce convincing high-resolution images,

possibly due to the introduced L1 loss, which only tends to

encourage low-frequency features. In contrast, our proposed model

not only capture low-frequency features but also effectively acquire

high-frequency features, resulting in images that closely resemble

optical images. Furthermore, our proposed model outperforms

the Palette, indicating its suitability for SAR-to-optical image

translation tasks.

The quantitative results are shown in the table. Compared with

the GAN-based model, the diffusion model-based results obtained
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better FID, indicating a closer distance between the distribution

of translated images and the real images. Compared with Palette,

the improved method proposed in this paper successfully makes

the basic diffusion model more suitable for SAR to optical image

translation tasks, improving PSNR and SSIM.

4 Conclusion

In this paper, the diffusion model is employed to accomplish

the SAR-Optical images translation, assisting in the interpretation

of SAR image. In experiments on the high-resolution data set,

the stability of SAR to optical image translation model training

is guaranteed, and the image translation quality was better than

that of GAN-based methods. The proposed model combines

long-skip connections and self-attention mechanisms to optimize

feature maps, enhance the feature extraction capabilities of the

model. This architectural style results in a better translation

of the edges, details and overall texture of the image. Data

augmentation implemented on SAR-optical image pairs increases

the training sample size of SAR-optical images while avoiding

leakage of augmentation patterns into translated images. This

significantly improves the quality of translation for patterns

with smaller sample sizes. Experimental results evaluated on

the SAR2Opt dataset demonstrate that our approach achieves

state-of-the-art performance.

On the basis of the current experiments, there are still some

further experiments that could be carried out. First, the diffusion

model requires multiple iterations to complete the translation

of the images, unlike GAN which only requires one. Therefore,

how to improve the translation efficiency of the diffusion model-

based method is an important topic. Second, the proposed method

has only been tested on the SAR2Opt data set, and its general

applicability to different types of data sets remains to be explored.

Third, the current research on SAR to optical image translation is

still limited to the style translation of terrain, which is determined

by the existing data sets. Reasonable other target data sets

should continue to be constructed to promote the SAR to optical

translation technology to more fields.
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