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Atypical clinical variants of 
Alzheimer’s disease: are they 
really atypical?
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Alzheimer’s disease (AD) is a neuropathological disorder defined by the 
deposition of the proteins, tau and β-amyloid. Alzheimer’s disease is commonly 
thought of as a disease of the elderly that is associated with episodic memory 
loss. However, the very first patient described with AD was in her 50’s with 
impairments in multiple cognitive domains. It is now clear that AD can present 
with multiple different non-amnestic clinical variants which have been labeled 
as atypical variants of AD. Instead of these variants of AD being considered 
“atypical,” I  propose that they provide an excellent disease model of AD 
and reflect the true clinical heterogeneity of AD. The atypical variants of AD 
usually have a relatively young age at onset, and they show striking cortical tau 
deposition on molecular PET imaging which relates strongly with patterns of 
neurodegeneration and clinical outcomes. In contrast, elderly patients with AD 
show less tau deposition on PET, and neuroimaging and clinical outcomes are 
confounded by other age-related pathologies, including TDP-43 and vascular 
pathology. There is also considerable clinical and anatomical heterogeneity 
across atypical and young-onset amnestic variants of AD which reflects the 
fact that AD is a disease that causes impairments in multiple cognitive domains. 
Future studies should focus on careful characterization of cognitive impairment 
in AD and consider the full clinical spectrum of AD, including atypical AD, in the 
design of research studies investigating disease mechanisms in AD and clinical 
treatment trials, particularly with therapeutics targeting tau.
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Introduction

Alzheimer’s disease (AD) was first described in 1906 with the description of a patient in her 
50’s who developed memory impairment, language problems and changes in behavior and was 
found to have neurofibrillary tangles and senile plaques in her brain at autopsy (Alzheimer, 
1907). The abnormal proteins in these brain lesions were later identified as tau (Kidd, 1963; 
Grundke-Iqbal et al., 1986) and β-amyloid (Glenner and Wong, 1984). This initial case was 
labeled as a presenile dementia, but the concept of AD was later expanded to include senile 
dementia affecting patients over age 65 years (also known as late-onset AD). In the 1980’s 
diagnostic criteria for AD were published that defined probable Alzheimer’s dementia as a 
predominantly amnestic disorder in which other cognitive domains can become affected 
(McKhann et al., 1984). Most studies in the 1990’s focused on characterizing this amnestic-
predominant AD with neuroimaging studies highlighting atrophy of the hippocampus (Seab 
et al., 1988; Jack et al., 1992) and whole brain (Fox et al., 1996), and neuropathological findings 
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showing that tau pathology spreads from the transentorhinal region to 
the hippocampus and then the lateral temporal and cortical regions 
(Braak and Braak, 1991). It was also shown that the prevalence of 
amnestic AD increases with age (Katzman, 1976) and, hence the 
concept of AD being an amnestic disease affecting the elderly became 
the generally held view of AD. However, during the 1980’s and early 
90’s, cases were reported that had pathological evidence of AD but who 
presented with non-amnestic features, including visual symptoms (Hof 
et  al., 1989; Levine et  al., 1993; Ross et  al., 1996), alien-hand 
phenomenon (Ball et al., 1993), aphasia (Pogacar and Williams, 1976; 
Green et al., 1990) and frontal/executive dysfunction (Johnson et al., 
1999; Back-Madruga et al., 2002). Small case series were subsequently 
reported showing that the clinical presentation in AD was 
heterogeneous (Neary et al., 1986; Price et al., 1993; Galton et al., 2000). 
It was recognized that these different cognitive presentations were 
associated with different distributions of tau pathology in the brain and 
different patterns of atrophy (Kanne et al., 1998; Galton et al., 2000), 
with greater involvement of the cortex and relative sparing of the 
hippocampus compared to amnestic AD patients (Galton et al., 2000). 
This pattern of relatively greater tau deposition in the cortex compared 
to the hippocampus was later defined as the hippocampal-sparing 
variant of AD which contrasted with limbic-predominant patterns in 
patients with relatively greater involvement of the hippocampus 
compared to the cortex (Murray et al., 2011). These patients tend to 
have a younger age at onset compared to amnestic AD, accounting for 
at least a third of AD cases with onset under age 65 years (Koedam 
et al., 2010; Sarto et al., 2022; Tort-Merino et al., 2022), and hence were 
labeled “atypical AD” (Galton et al., 2000); a term that has persisted 
over time.

Since the early 2000’s, there has been increasing recognition and 
characterization of atypical variants of AD. The visual variant of AD is 
synonymous with the diagnosis of posterior cortical atrophy (Tang-Wai 
et  al., 2004; Crutch et  al., 2017), with patients presenting with 
visuospatial and perceptual difficulties and other posterior cognitive 
functions, including simultanagnosia, Gerstmann syndrome, 
oculomotor apraxia, and optic ataxia. There has been characterization 
of the language variant of AD recognizing that the most common 
symptoms include anomia with word-finding pauses (Rogalski et al., 
2016) and trouble with sentence repetition, with phonological sound 
errors often observed (Mesulam et al., 2008). Some of these patients can 
meet criteria for the logopenic variant of primary progressive aphasia 
(Gorno-Tempini et al., 2011), although in many cases the presence of 
other cognitive impairments may preclude the diagnosis of primary 
progressive aphasia (Owens et al., 2018). Alzheimer’s disease pathology 
has also been observed as the primary pathology in some patients with 
corticobasal syndrome, with these patients referred to as the motor (or 
praxic) variant of AD (Graff-Radford et  al., 2021). These patients 
present with asymmetric rigidity, bradykinesia, dystonia, myoclonus, 
ideomotor apraxia, cortical sensory deficit, and alien limb phenomenon 
(Armstrong et al., 2013). Alzheimer’s disease can also present with 
changes in behavior and personality, mimicking the behavioral variant 
of frontotemporal dementia (Forman et al., 2006; Beach et al., 2012). 
These patients have been defined to the behavioral variant of AD 
(Ossenkoppele et al., 2015, 2022). Lastly, the dysexecutive variant of AD 
has recently been defined where patients have predominant problems 
with core executive functions of working memory, cognitive flexibility, 
and cognitive inhibitory control (Townley et al., 2020). These atypical 
variants of AD are all associated with neurodegeneration of the cortex, 

with differing regional patterns associated with each variant (Figure 1). 
The visual variant of AD is associated with atrophy and hypometabolism 
of the parietal and occipital lobes (Whitwell et al., 2007), the language 
variant with involvement of the left temporoparietal cortex (Gorno-
Tempini et al., 2004), the motor variant with involvement of the frontal, 
posterior temporal and parietal lobes (Josephs et  al., 2010), the 
behavioral variant with involvement of the temporoparietal and frontal 
cortex (Ossenkoppele et al., 2022), and the dysexecutive variant with 
involvement of frontoparietal cortex (Townley et al., 2020). The atypical 
variants of AD tend to show different patterns of atrophy than amnestic 
AD, with relative sparing of the hippocampus (Josephs et al., 2020b) 
and different patterns of cortical involvement, at least early in the 
disease (Phillips et  al., 2018), although overlap has been observed, 
particularly between the behavioral variant of AD and amnestic AD 
(Ossenkoppele et al., 2015; Singleton et al., 2020; Therriault et al., 2021). 
The clinicopathological concordance of these clinical phenotypes with 
AD varies. A large proportion of patients presenting with the features 
of the visual and language variants of AD have underlying AD, 
approximately 30% of corticobasal syndrome have AD (Hu et al., 2009; 
Ling et al., 2010; Lee et al., 2011; Boyd et al., 2014; Ouchi et al., 2014; 
Koga et al., 2022; Shir et al., 2023), and AD is relatively rare (<10%) in 
patients that present with behavior and personality change (Kertesz 
et al., 2005). However, molecular PET ligands that can detect β-amyloid 
and AD-tau deposition in the brain antemortem have made the 
diagnosis of AD in patients with these clinical presentations much 
easier during life. Evidence of deposition on both β-amyloid and tau 
PET scans provides a biomarker diagnosis of AD (Jack et al., 2018). 
Most patients diagnosed with the visual and language variants of AD at 
specialist centers have biomarker evidence for AD (Singh et al., 2022).

Despite detailed clinical characterization of these atypical AD 
variants, the advent of molecular PET to aid diagnosis, and the fact that 
these atypical variants of AD have been included in recent clinical 
diagnostic criteria for AD (McKhann et al., 2011; Dubois et al., 2021), 
there is still a lack of consideration of these patients in the large majority 
of the AD literature with these variants considered rare compared to the 
“typical” amnestic presentation of AD. Importantly, these patients are 
also not commonly considered in clinical treatment trials for AD which 
often still require amnestic impairment. It is, therefore, difficult to know 
how currently available AD therapeutics may perform in these 
populations, even though they are eligible for treatment. I propose that 
these atypical variants of AD provide the ideal disease model of AD and 
should be the focus of future research into AD disease mechanisms and 
therapies. The fact that these phenotypes have been labeled with the 
term “atypical” has likely done them a disservice and minimized their 
perceived importance and value to the field.

Strong relationship between tau, 
neurodegeneration, and clinical 
symptoms

Molecular PET findings in the atypical variants of AD have been 
well characterized over the last few years. In β-amyloid PET positive 
atypical AD patients, striking patterns of cortical tau deposition are 
observed using tau PET ligands such as 18F-flortaucipir [formally 
known as AV-1451 (Xia et al., 2017)]. Patterns of uptake differ across 
the AD variants, largely matching the patterns of atrophy observed in 
each variant (Ossenkoppele et al., 2016; Sintini et al., 2020), although 
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overlap across variants is observed (Figure 1). The patterns of tau 
uptake also concur with pathological studies showing different 
regional distributions of neurofibrillary tangles across atypical and 
amnestic variants of AD (Gefen et  al., 2012; Josephs et  al., 2013; 
Petersen et al., 2019; Martersteck et al., 2022). The degree of cortical 
tau deposition in AD is strongly related to age, with greater deposition 
observed in younger patients (Whitwell et al., 2018a, 2019; La Joie 

et al., 2021; Tanner et al., 2022). Among younger AD patients, those 
with atypical presentations tend to show similar degrees of cortical tau 
uptake on PET compared to amnestic AD, but lower uptake in 
hippocampus and entorhinal regions (Whitwell et al., 2018a; Josephs 
et  al., 2020b). In these young AD patients, tau uptake is strongly 
regionally related to volume loss and hypometabolism on FDG-PET 
(Whitwell et al., 2018b; Sintini et al., 2019), as well as degeneration of 

FIGURE 1

Patterns of FDG-PET hypometabolism and flortaucipir PET uptake in individual patients with different variants of atypical AD. The FDG-PET images are 
shown as CortexID Z score images of hypometabolism compared to age-matched controls. The flortaucipir PET images are shown as standardized 
uptake value ratio (SUVR) images referenced to the cerebellar crus grey matter. The language variant of AD shows left temporoparietal 
hypometabolism and flortaucipir uptake; the visual variant shows abnormalities predominantly in the occipital lobe; the motor variant shows 
abnormalities in the posterior temporal, parietal and frontal lobes, predominantly on the right; the dysexecutive variant shows left-sided abnormalities 
predominantly in the superior parietal and frontal lobes; the behavioral variant showed abnormalities in the temporal lobes, with milder changes in the 
parietal and frontal lobe.
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a network of white matter tracts (Sintini et al., 2019). These findings 
support the fact that tau is the driving force behind neurodegeneration 
in atypical AD, as well as young-onset amnestic AD. Tau uptake, 
volume loss and hypometabolism are also strongly associated with 
clinical outcomes in these patients (Tanner et al., 2022). However, 
older amnestic AD patients over the age of 65 years can show very 
little cortical or medial temporal uptake on PET (Whitwell et  al., 
2018a; Figure 2) and the relationship between tau uptake and volume 
loss breaks down, with volume loss of the medial temporal lobe 
occurring in the absence of appreciable tau uptake (Josephs et al., 
2020b), suggesting that other factors are contributing to this volume 
loss in elderly AD patients. Hence, it would be advisable to recruit 
patients with atypical AD or young-onset amnestic AD in treatment 
trials of therapeutic agents that target tau since we need a disease 
model where tau is central to the degenerative process. Furthermore, 
atypical AD patients show greater change over time in tau 
accumulation measured on PET compared to amnestic AD (Sintini 
et al., 2020), and, hence, it would be more feasible to assess longitudinal 
tau outcome measures in treatment trials in these patients.

Relative lack of other confounding 
pathologies

Many additional pathologies can be found in the brains of AD 
patients that contribute to cognitive decline and neurodegeneration 

in older patients. One such contributing pathology is the presence of 
the TAR DNA binding protein of 43 kDa (TDP-43). This protein is one 
of the major disease proteins in frontotemporal lobar degeneration 
(Neumann et al., 2006), but abnormal TDP-43 is also observed in 
many patients with AD pathology (Amador-Ortiz et al., 2007; Josephs 
et al., 2008; Uryu et al., 2008; Arai et al., 2009; Davidson et al., 2011). 
The prevalence of TDP-43 increases with age, with TDP-43 observed 
in almost 70% of AD patients at age 90 years (Carlos et al., 2022). 
TDP-43 pathology in AD progresses in distinct stages, beginning in 
the amygdala before spreading to the entorhinal cortex and 
hippocampus, then to the inferior temporal lobe, basal forebrain, 
insula, and striatum, followed by the midbrain and finally the frontal 
lobes (Josephs et al., 2014a, 2016). The presence of abnormal TDP-43 
is associated with worse cognition (Josephs et al., 2008, 2014b; Wilson 
et al., 2013), smaller brain volumes (Josephs et al., 2008, 2014b) and 
faster rates of atrophy (Josephs et al., 2017), particularly affecting the 
medial temporal lobes, with worse outcomes associated with a greater 
burden of TDP-43 and higher TDP-43 stage (Josephs et al., 2014b, 
2020a). However, TDP-43 plays a larger role in older patients with 
AD. The frequency of TDP-43 is relatively low in the hippocampal 
sparing pathological variant of AD (21%) (Josephs et al., 2015) which 
is associated with atypical AD, and TDP-43 is observed in <25% of 
patients aged 65 years and younger (Carlos et  al., 2022). In fact, 
TDP-43 was only observed in 12% of one atypical AD cohort (Bigio 
et al., 2010) and 12.5% of a young-onset AD cohort (Sarto et al., 2022). 
Furthermore, there is little evidence that clinical or anatomical 

FIGURE 2

Flortaucipir PET uptake and white matter hyperintensities on FLAIR in young-onset and late-onset amnestic AD patients. The flortaucipir PET images 
are shown as standardized uptake value ratio (SUVR) images referenced to the cerebellar crus grey matter. The young-onset patient shows widespread 
flortaucipir uptake with no WMHs, while the late-onset patient shows milder flortaucipir uptake and moderate WMHs.
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features in atypical AD are related to TDP-43 (Sahoo et al., 2018). In 
older amnestic AD patients, it is likely that TDP-43-related medial 
temporal atrophy explains the breakdown between volume and tau 
uptake on PET (Carlos et  al., 2023). In other words, some of the 
medial temporal atrophy observed in these older patients is driven by 
TDP-43, and not tau.

Vascular pathology is also a major contributor to cognitive 
impairment. Small vessel disease which manifests on MRI as 
subcortical infarcts, white matter hyperintensities (WMHs) or 
subcortical microhemorrhages (microbleeds) is strongly age-related 
(Scheltens et al., 1992; Whitwell et al., 2015) and is found at autopsy 
in over 50% of people aged ≥65 years (Vernooij et  al., 2008; 
Hainsworth et  al., 2023). In fact, WMHs are observed in 95% of 
healthy adults over 65 years (Longstreth et al., 1996; Figure 2). Small 
vessel disease is associated with worse cognition, cerebral brain 
atrophy and medial temporal atrophy in late onset amnestic AD 
(Snowdon et al., 1997; Capizzano et al., 2004; Logue et al., 2011; Chen 
et al., 2022), with small vessel disease providing an additive effect to 
that of AD pathology (Launer et al., 2008). However, young-onset AD 
is not associated with vascular risk factors (Carotenuto et al., 2012; 
Chen et al., 2017) and the burden of small vessel disease, including 
WMHs, is lower than that observed in late onset amnestic AD 
(Scheltens et al., 1992; Carotenuto et al., 2012). WMHs are relatively 
rare in atypical AD, affecting ~15% of patients, and are only observed 
in atypical AD patients >65 years (Pham et  al., 2022). There is, 
however, some evidence that WMHs may be  associated with 
visuoperceptual impairment in atypical AD (Pham et  al., 2022). 
Cortical and subcortical infarcts are rarely observed in atypical AD 
(Pham et al., 2022). Lobar microbleeds have been observed in 30–50% 
of atypical AD patients (Whitwell et al., 2014, 2015; Mendes et al., 
2018), although the prevalence appears to be highest in the language 
variant of AD compared to other atypical variants (Whitwell et al., 
2015; Ikeda et  al., 2021) and microbleeds are not associated with 
clinical outcomes (Whitwell et al., 2015). The presence of microbleeds 
on MRI in atypical AD is associated with moderate–severe underlying 
cerebral amyloid angiopathy (Buciuc et al., 2021). Hence, small vessel 
disease appears to play some role in atypical AD, likely in atypical AD 
patients over age 65, but is not as big a confounder as in late-onset 
amnestic AD.

Clinical overlap across atypical AD 
variants

The atypical AD variants are each characterized by early and 
predominant impairment in a specific cognitive or behavioral 
domain, i.e., language, visual, motor, executive or behavior. However, 
these patients can present with impairments affecting other cognitive 
domains or develop abnormalities in these other domains over time. 
Early anomia, reduced verbal fluency, trouble with sentence 
repetition, and slowed speech rate (i.e., features of the language 
variant of AD), as well as phonological errors, can occur in patients 
with the visual variant of AD (Crutch et al., 2013; Tetzloff et al., 2021; 
Volkmer et al., 2022), and have been observed in 50% of patients 
(Singh et al., 2023). These language features relate to overlapping 
neuroanatomical features, particularly with atrophy in the left 
temporoparietal regions in patients with the visual variant of AD 
(Wicklund et al., 2013; Tetzloff et al., 2021). Conversely, patients with 

the language variant of AD commonly (~30%) present with some 
visual dysfunction, including visuospatial/perceptual deficits (Tippett 
et al., 2020; Foxe et al., 2021; Tee et al., 2022), simultanagnosia and 
Gerstmann syndrome (i.e., features of the visual variant of AD), 
which is related to atrophy and tau deposition developing in the 
parietal and occipital lobes (Singh et al., 2023). Patients with the 
language variant of AD can also display episodic memory impairment 
(Foxe et al., 2021; Tee et al., 2022; Whitwell et al., 2022), executive 
dyfunction (Basaglia-Pappas et al., 2023), and ideomotor apraxia 
(Crutch et al., 2013). In fact, marked cognitive deficits outside the 
domain of language are observed in at least 50% of patients with the 
language variant of AD (Machulda et al., 2013; Owens et al., 2018). 
Patients with the motor variant of AD can also present with 
visuospatial/perceptual deficits, simultanagnosia, visual neglect, 
acalculia, optic ataxia, and episodic memory loss (Shelley et al., 2009; 
Lee et al., 2011; Boyd et al., 2014; Shir et al., 2023). Episodic memory 
loss is also observed in the dysexecutive (Corriveau-Lecavalier et al., 
2023) and behavioral variants of AD (Ossenkoppele et al., 2022), with 
visuospatial deficits observed in some dysexecutive AD patients 
(Corriveau-Lecavalier et al., 2023). In fact, the degree of episodic 
memory impairment can be similar across atypical and amnestic 
variants of AD (Mendez et  al., 2019), particularly the behavioral 
variant of AD (Ossenkoppele et al., 2022), although this may depend 
on the stage and severity of the patients included and issues with test 
scores being confounded by other cognitive deficits. These 
overlapping features often make it difficult to phenotypically classify 
patients (Wicklund et al., 2013; Fitzpatrick et al., 2019). It appears 
phenotypic overlap across variants in atypical AD is the rule rather 
than the exception, with only 25% of atypical AD patients in one 
series showing a “pure” presentation (Singh et al., 2023). Patterns of 
clinical decline in atypical AD over time are similarly heterogeneous 
(Whitwell et al., 2022). Several studies have also shown that early-
onset AD is more cognitively heterogeneous than late-onset AD 
(Koedam et al., 2010; Joubert et al., 2016; Tort-Merino et al., 2022). 
It is, therefore, evident that there is a phenotypic continuum across 
young-onset patients, and the clinical distinction between different 
AD variants may be somewhat artificial. It might be time to stop 
thinking of these clinical variants as “atypical” and instead think of 
them as AD which presents with cognitive impairment that affects 
multiple domains. I would also argue that there lacks rationale for 
focusing on just one clinical variant (i.e., amnestic AD) for 
therapeutic treatment trials, and that all variants of AD should 
be included to capture the true clinical spectrum of AD. The high 
degree of clinical overlap in these AD patients should also 
be  considered for appropriate tailoring of patient management 
strategies (Volkmer et al., 2022).

Discussion

Research over the past two decades has characterized the clinical, 
neuroanatomical, and molecular biology of atypical AD. It has become 
clear that AD with a relatively young age at onset is different from AD 
observed in the elderly, with neurodegeneration and cognition 
strongly driven by tau deposition in young patients while contributions 
of TDP-43 and vascular pathology are important components to 
disease in older patients. Atypical AD provides a clear disease model 
of AD driven by tau. Young-onset patients show considerable 
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heterogeneity with clinical and neuroanatomical overlap across 
variants and there is evidence that this heterogeneity relates to the 
topographic distribution of tau throughout the cortex. This 
heterogeneity, in my opinion, reflects the true clinical phenotype of 
AD and challenges the notion of AD as an amnestic disease. In fact, 
the amnestic presentation in many older patients could be driven by 
TDP-43 and other age-related pathologies, and not AD. As such, it is 
unclear whether pharmacological treatments tested in elderly 
amnestic AD patients will generalize to AD observed in younger and 
atypical AD patients, and clinical treatment trials should recruit 
atypical AD patients. It might be time to revise our views on atypical 
AD and not consider it so “atypical.”

There are, however, several challenges related to the study and 
assessment of atypical AD that will need to be overcome. Clinical 
diagnosis and phenotyping can be challenging given the high degree 
of phenotypic overlap across AD variants and overlap with other 
neurodegenerative diseases. Increasing awareness of the atypical 
presentations of AD will be crucial to avoid early misdiagnosis (Balasa 
et al., 2011; Graff-Radford et al., 2021) and to improve prevalence 
estimates of these presentations of AD (Graff-Radford et al., 2021). 
Molecular PET, cerebrospinal fluid biomarkers (Wellington et  al., 
2018; Pillai et al., 2019) and, likely, blood plasma biomarkers, will 
be crucial to confirm the presence of AD. Clinical heterogeneity also 
makes it challenging to develop clinical outcome measures that could 
be used as disease biomarkers across all patients and variants, and 
hence more generalizable clinical measures are needed. Neuroimaging 
biomarkers (Whitwell et al., 2011) or fluid biomarkers (Wellington 
et  al., 2018; Pillai et  al., 2019) may be  more effective outcome 
measures. Neuroimaging biomarkers that are commonly utilized, 
however, focus on assessing medial temporal regions appropriate in 
late-onset AD and it will be important to develop biomarkers that can 
detect changes across atypical and amnestic AD or multiple 
biomarkers may be needed. There is also a lack of knowledge regarding 
the prevalence and characteristics of atypical AD in minority 
populations, with most studies assessing white non-Hispanic patients. 
Future studies should focus on careful characterization of cognitive 
impairment in AD and consider the full clinical spectrum of AD in 
the design of research studies and clinical treatment trials.
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