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The brain entropy dynamics in 
resting state
Xiaoyang Xin 1,2†, Jiaqian Yu 1† and Xiaoqing Gao 1*
1 Center for Psychological Sciences, Zhejiang University, Hangzhou, China, 2 Preschool College, 
Luoyang Normal University, Luoyang, China

As a novel measure for irregularity and complexity of the spontaneous 
fluctuations of brain activities, brain entropy (BEN) has attracted much attention 
in resting-state functional magnetic resonance imaging (rs-fMRI) studies during 
the last decade. Previous studies have shown its associations with cognitive and 
mental functions. While most previous research assumes BEN is approximately 
stationary during scan sessions, the brain, even at its resting state, is a highly 
dynamic system. Such dynamics could be characterized by a series of reoccurring 
whole-brain patterns related to cognitive and mental processes. The present 
study aims to explore the time-varying feature of BEN and its potential links 
with general cognitive ability. We adopted a sliding window approach to derive 
the dynamical brain entropy (dBEN) of the whole-brain functional networks 
from the HCP (Human Connectome Project) rs-fMRI dataset that includes 812 
young healthy adults. The dBEN was further clustered into 4 reoccurring BEN 
states by the k-means clustering method. The fraction window (FW) and mean 
dwell time (MDT) of one BEN state, characterized by the extremely low overall 
BEN, were found to be negatively correlated with general cognitive abilities (i.e., 
cognitive flexibility, inhibitory control, and processing speed). Another BEN state, 
characterized by intermediate overall BEN and low within-state BEN located in 
DMN, ECN, and part of SAN, its FW, and MDT were positively correlated with the 
above cognitive abilities. The results of our study advance our understanding of 
the underlying mechanism of BEN dynamics and provide a potential framework 
for future investigations in clinical populations.
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1 Introduction

Spontaneous fluctuations of brain activity are a fundamental feature of the human brain, 
which can be  characterized by blood oxygenation level dependent (BOLD) signal using 
resting-state functional magnetic resonance imaging (rs-fMRI). The characteristics of these 
fluctuations are essential to understand the individual differences in brain function and the 
pathologies associated with neuropsychiatric conditions (e.g., Yu-Feng et al., 2007; Fornito and 
Bullmore, 2010; Takahashi, 2013). Brain entropy (BEN) is a measure of the irregularity (Wang 
et al., 2014; Xue et al., 2019; Lin et al., 2022) and complexity (Sokunbi et al., 2013; Wang et al., 
2014; Nezafati et al., 2020) of such fluctuations. As BEN can serve as an approximate estimation 
of neural complexity (Yang and Tsai, 2013; Keshmiri, 2020; Cieri et al., 2021) which can 
be altered in many disease states, numerous rs-fMRI studies have found BEN can serve as a 
potential biomarker for various mental or neuropsychiatric disorders (e.g., Yang et al., 2015; 
Hager et al., 2017; Xin et al., 2022). Two recent studies hypothesized that BEN can also serve 
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as a negative quantification of temporal neuronal coherence which is 
highly related to general cognitive functions such as memory, 
attention, and perception (Wang, 2021; Lin et  al., 2022). The 
hypothesis has been supported by negative correlations between BEN 
and several general cognitive abilities (working memory and fluid 
intelligence) in the default mode network (DMN) and the executive 
control network (ECN). It should be noted that such results are in 
disagreement with previous BEN research: reduced BEN is widely 
considered to be  related to decreased neural complexity which is 
harmful to cognitive functions (Yang and Tsai, 2013; Keshmiri, 2020; 
Xin et al., 2021). Therefore, lower BEN is considered to be associated 
with lower cognitive performance instead of higher 
cognitive performance.

Despite progress made in this research area, most of the 
research1 treated BEN as temporally stationary throughout the 
measurement period. However, the resting brain is a highly 
dynamic system with non-stationary neural activity and rapidly 
changing neural interactions (e.g., Deco et al., 2011; Preti et al., 
2017). Such dynamic information is not likely to be captured by the 
static BEN analytic approach. A series of studies have demonstrated 
that the time-varying features of the resting brain can be described 
by specific reoccurring whole-brain patterns, regarded as “brain 
states” (Liu and Duyn, 2013; Allen et al., 2014; Fu et al., 2018). The 
dynamic properties of these brain states are highly related to 
cognitive and mental processes. Many researchers in the field of 
dFC (dynamical functional connectivity) have identified FC states 
from the time-varying resting-state FC matrices. These FC states 
have clinical relevance with various mental and neuropsychiatric 
disorders (Kim et al., 2017; Bai et al., 2021; Luo et al., 2021) and are 
related to cognitive abilities (Li et  al., 2017; Nomi et  al., 2017; 
Cohen, 2018). In contrast to the dynamics of FC which represents 
the synchrony of these brain activities between regions, the time-
varying patterns of the brain activity itself are less investigated. 
Spontaneous fluctuations of BOLD signal are supposed to 
be generated from mental processes (Raichle and Snyder, 2007), for 
which they might also have reoccurring patterns related to cognitive 
processes. One recent study (Fu et al., 2018) investigated the time-
varying patterns of ALFF (amplitude of low-frequency fluctuation), 
one widely used measure for spontaneous fluctuations of BOLD 
signal itself (reflects regional brain activity strength; Yu-Feng et al., 
2007). They identified several ALFF states and revealed that the 
alterations in the dynamical properties of these ALFF states were 
associated with disrupted cognitive functions in mental disorders. 
As BEN is independent of a specific frequency band, it may provide 
a more comprehensive picture of brain activity than ALFF (Song 
et al., 2019). Therefore, we hypothesized that BEN, another measure 
of brain activity itself (i) has time-varying and reoccurring patterns 
in resting state; (ii) the dynamics of these reoccurring patterns are 
linked to cognitive functions. Furthermore, since dynamical 
analytical methods can provide more insights into fundamental 
properties of brain activity that are not captured by conventional 
static analytical methods (Hutchison et al., 2013), we hypothesized 

1 It should be noted that Wang (2021) calculated the temporal stability of 

BEN using a sliding window approach, without exploring the reoccurring BEN 

patterns.

that our dBEN (dynamical brain entropy) approach, especially by 
exploring the underlying relations between BEN dynamics and 
cognitive functions, may help to disentangle the controversial 
association between “static” BEN and general cognitive ability 
mentioned above.

In order to verify these hypothesis, we use a large set of rs-fMRI 
data, aiming to (i) derive dBEN in resting state and identify the 
reoccurring BEN states using clustering analysis, (ii) explore the 
associations between temporal properties of BEN states and general 
cognitive ability.

2 Materials and methods

2.1 Data acquisition and preprocessing

The rs-fMRI data used in our study are part of the Human 
Connectome Project (HCP) 1,200 subject release.2 The rs-fMRI data 
are collected from a 3 T Siemens scanner using a standard 32-channel 
head coil and a body transmission coil. For each participant, four 
resting scans were acquired with the acquisition parameters as follows: 
repetition time (TR) = 720 ms, echo time (TE) = 33.1 ms, 
resolution = 2 × 2 × 2 mm3, time points = 1,200. Our study uses the 
preprocessed HCP dataset labeled as PTN (Parcellation + Timeseries 
+ Netmats) consisting of 812 healthy participants (ages 22–35 years 
old, 410 females), which also had been used in recent dFC studies 
(e.g., Nomi et al., 2017; Zhou et al., 2020). The main preprocessing 
steps for PTN dataset were as follows: rs-fMRI data were firstly 
processed according to the HCP minimal preprocessing pipeline 
(Glasser et  al., 2013; Smith et al., 2013) using FreeSurfer, which 
includes B0 unwarping and normalization to MNI-152 template; 
Second pipeline, HCP netmats pipeline was then adopted to remove 
artifacts using FMRIB’s ICA-based X-noisifier (ICA + FIX; Griffanti 
et al., 2014); Group-ICA was performed using FSL’s MELODIC tool 
to generate group-ICA spatial maps and subject-specific node time 
series in PTN dataset (Smith et al., 2015).

2.2 The framework of dBEN analysis

The framework of dBEN analysis is illustrated in Figure  1. 
Meaningful independent components were first identified according 
to spatial maps of components (see Section 2.3 for detailed 
information). A sliding window approach was then adopted to derive 
dBEN from the time series of the meaningful ICs (see Section 2.4 for 
detailed information). Several BEN states and their associated 
dynamics were further derived from dBEN using the k-means 
clustering method (see Section 2.5 for detailed information). The 
correlations between temporal properties of BEN states and general 
cognitive ability were calculated and the significance of each 
correlation coefficient was tested (see Section 2.6 for 
detailed information).

2 https://db.humanconnectome.org/data/projects/HCP_1200
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2.3 Identification of meaningful 
independent components

In the PTN dataset, several different numbers of independent 
component (IC) parcellations (15, 25, 50, 100, 200, and 300 ICs) were 
obtained by GICA. We chose the 100 ICs and the first 1,200 time 
points of these ICs for our analysis according to previous dFC studies 
(Nomi et al., 2017; Zhou et al., 2020). Out of the 100 ICs, 43 ICs were 
identified as meaningful components based on the following criteria 
(Allen et al., 2014): peak coordinates of spatial maps located in gray 
matter, with minimal spatial overlap with white matter, vessels, 
ventricles, or susceptibility artifacts, and time courses characterized 
by a high dynamic range. Based on the Stanford functional ROI 
template,3 we adopted a spatial correlation method to sort the 43 ICs 
into seven functional networks: subcortical (SCN), auditory (AN), 
default mode (DMN), executive control (ECN), salience (SAN), 
sensorimotor (SMN), and visual (VN) as displayed in Figure 2. The 
detailed information (brain areas, peak coordinates, and correlation 
coefficients with the template) of each meaningful IC was provided in 
Supplementary Table S1. The time series of the 43 ICs underwent the 
subsequent preprocessing steps to reduce physiological and scanner 

3 findlab.stanford.edu/functional_ROIs.html

noise: removing the first 10 time points, detrending (regressing linear, 
quadratic, and cubic trends), despiking using 3D-DESPIKE, and 
low-pass filtering with frequency cut-off of 0.15 Hz.

2.4 Computation of dBEN

The dBEN of the 43 ICs were computed by using a sliding window 
approach, which is a common computation method for dFC and 
dALFF. The window type was set to the rectangular window instead 
of the tapered window used in dFC and dALFF to better capture the 
features of brain activity itself as suggested by previous studies 
(Leonardi and Van De Ville, 2015; Mokhtari et al., 2019). According 
to Yang et  al. (2018), data length of at least 97 time points is 
recommended for the sufficient reliability of BEN analysis, therefore 
the window length was set to 100 TR in the current study. BEN was 
calculated by using sample entropy (SampEn), which is a measure of 
regularity of a time series. Mathematically, SampEn computes the 
“logarithmic likelihood” that a small section (within a pattern length 
m) of the time series that matches with other sections will still match 
the others if the section length increases by 1 (Shi et al., 2020). “Match” 
is defined by a tolerance factor r. In our study, the pattern length (m) 
and tolerance factor (r) of BEN were set to be 2 and 0.55, respectively, 
according to the BEN parameter selection method proposed in a 
previous study (Yang et al., 2018; see more in Supplementary material). 

FIGURE 1

The flowchart of dBEN analysis in the present study. (A) Identification of meaningful independent components. (B) Computation of dBEN. 
(C) Clustering analysis. (D) Calculation of temporal properties of BEN states.
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The window was slid along time in steps of 1 TR which provides 
720 ms temporal resolution for dBEN, resulting in 1191 windows 
across the entire scan. For each subject, a 43 (number of ICs) × 1,191 
(number of windows) dBEN matrix was derived representing the 
time-varying changes of BEN along with the sliding windows.

2.5 Clustering analysis

The k-means clustering method was applied to the dBEN matrices 
of all subjects to estimate the reoccurring dBEN patterns (i.e., BEN 
States) and their dynamics. The settings of this method were in 
accordance with previous dFC and dALFF research (Allen et al., 2014; 
Kim et al., 2017; Fu et al., 2018): L1 (Manhattan) distance was used as 
the similarity measure of cluster centroids; the optimal cluster number 
was estimated to be 4 by the cluster number validity analysis (using 
the elbow criterion, Supplementary Figure S2). The dBEN matrices of 
all subjects were then categorized into 4 clusters (i.e., States). Thus (i) 
four cluster centroids of the whole sample and (ii) state transition 
vectors of all subjects across entire time windows, are derived 
(Figure 3D).

The state transition vectors were further used to derive the 
following temporal properties of BEN states: fractional window 
(FW), mean dwell time (MDT), number of transitions (NT), and 
state transition probability (STP). The fractional window, measured 
by percentage, is the proportion of time spent in each state. The mean 
dwell time is the average duration of time intervals spent in each 
state, calculated by averaging the number of consecutive windows 
belonging to one state before changing to another state. The number 
of transitions is the number of states changed from one to another 
throughout the entire 1,191 windows. The state transition probability 
represents the probability of changing from one state to another.

2.6 Associations between BEN dynamics 
and general cognitive ability

General cognitive performance data of the 812 subjects in PTN 
dataset were also obtained from HCP website. Table 1 provides a 
summary of these cognitive tests. Detailed information on these tests 
and references can be found in the HCP Data Dictionary 1,200 Subject 
Release.4 The Pearson correlation (controlling for the effects of age and 
gender) was adopted to explore the associations between temporal 
properties of BEN states and cognitive test scores described in Table 1. 
FDR (False Discovery Rate) was then adopted to correct the p-values 
of the correlations that involve multiple states (i.e., the correlations 
involving FW and MDT).

3 Results

3.1 The clustered BEN states

Figure 3A displays the centroids of the four BEN states derived by 
k-means clustering, and the boxplots of these centroidal BEN are 
presented in Figure 3B. It can be observed from Figure 3B that: (a) 
State 1 and State 4 were of the lowest and highest overall BEN 
respectively, while State 2 and State 3 were of intermediate overall 
BEN; (b) significant differences in the overall BEN occurred between 
different pairs of states except between State 2 and State 3. Figure 3C 
displays the similarity matrix of BEN pattern between different states: 

4 https://wiki.humanconnectome.org/display/PublicData/

HCP-YA+Data+Dictionary-+Updated+for+the+1200+Subject+Release

FIGURE 2

Spatial maps of the 43 meaningful independent components (ICs) and their corresponding seven functional networks.

https://doi.org/10.3389/fnins.2024.1352409
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://wiki.humanconnectome.org/display/PublicData/HCP-YA+Data+Dictionary-+Updated+for+the+1200+Subject+Release
https://wiki.humanconnectome.org/display/PublicData/HCP-YA+Data+Dictionary-+Updated+for+the+1200+Subject+Release


Xin et al. 10.3389/fnins.2024.1352409

Frontiers in Neuroscience 05 frontiersin.org

(a) high BEN pattern similarity existed between State 1 and State 3, 
and between State 2 and State 4; (b) the lowest BEN pattern similarity 
existed between State 2 and State 3. Combined with Figure 3A we can 
find that: (a) high within-state BEN were all located in SCN and 
cerebellum (the last two ICs of SMN) in different states; (b) the 
location of low within-state BEN differed between different states and 
such difference was presented between State 2 and State 3—low 
within-state BEN in State 2 were mainly located in DMN, ECN and 
part of SAN while those in State 3 were mainly located in 
SMN and VN.

3.2 Temporal properties of BEN states and 
their associations with general cognitive 
abilities

The descriptive statistics (mean and standard error) of FW, MDT 
of different BEN states are displayed in Figures 4A,B. We can see that 
FW of State 1 was relatively lower than other states, while the MDT of 
State 1 and State 4 were much higher than that of State 2 and State 3. 

The state transition probability matrix is presented in Figure 4C, from 
which we can find that: (a) no state transition occurred between two 
extreme low/high BEN states (State 1 and State 4); (b) transition 
probabilities from extreme states to intermediate states were higher 
than the opposite transition probabilities (see Supplementary Figure S3 
for detailed information); (c) the largest between-state transition 
probabilities occurred between two intermediate states (State 2 and 
State 3; see Supplementary Figure S3). The stationary probability 
(Figure 4D), representing the expected behavior of the system in the 
long run, was further approximated from the state transition 
probability matrix (Allen et al., 2014). We can find that the stationary 
probabilities of two intermediate states were higher than those of two 
extreme states, demonstrated by the non-overlapped confidence 
interval between these two kinds of states.

The results of correlation analysis between temporal properties of 
BEN states and cognitive test scores show: (a) FW of State 1 was 
negatively correlated with cognitive flexibility, inhibitory control and 
processing speed (Figures 5A–C) while FW of State 2 was positively 
correlated with cognitive flexibility and processing speed 
(Figures 5D,E); (b) MDT of State 1 was negatively correlated with 

FIGURE 3

(A) Centroids of each BEN states derived by k-means clustering representing in each column. (B) Boxplot of centroidal BEN in different state 
[***represents pcorr (The pcorr is the corrected p-value by FDR method.) <0.001, paired-sample t test]. (C) Similarity matrix of the centroidal BEN 
pattern between different states. (D) State transition vector of one example subject.
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processing speed (Figure  5F) while that of State 2 was positively 
correlated with cognitive flexibility and processing speed 
(Figures  5G,H); (c) NT was positively correlated with processing 
speed (Figure 5I).

4 Discussion

The present study, to our knowledge, is the first to explore the 
time-varying features of BEN. The dBEN was derived by a sliding 
window approach. Based on this we  identified four reoccurring 
whole-brain BEN states and their associated dynamics using k-means 
clustering analysis. The BEN states were distinguished from each other 
in terms of the overall BEN as well as BEN pattern across the whole-
brain functional networks. The overall BEN values of different states 
were significantly different from each other except between two 
intermediate states, which, however, exhibited the lowest whole-brain 
BEN pattern similarity. From the perspective of temporal properties 
of BEN states, we find MDT of intermediate states was much lower 
than that of the extreme states, which is in line with the finding that 
state transitions occurred most frequently between two intermediate 
states. Such a finding indicates that these states are more active than 
the extreme states. We also find that the extreme states were more 
likely to transform into intermediate states, which is in line with that 
intermediate states exhibited higher stationary probabilities than the 
extreme states. It suggests that in the long run, the system is more 
likely to be found in State 2 or State 3. Since intermediate BEN is 
considered to correspond to higher neural complexity than extremely 
low/high BEN (Yang and Tsai, 2013; Yang et al., 2015; Xin et al., 2021), 
these findings implicate a healthy brain’s preference for higher whole-
brain neural complexity, which supports the statement that sufficient 
neural complexity is essential for a healthy physiologic system 
(Goldberger et al., 2002a,b).

Importantly, our study identified significant correlations between 
temporal properties of BEN states and general cognitive ability. More 
specifically, the FW and MDT of State 1 were negatively correlated 
with cognitive flexibility and processing speed while the same 
temporal properties of State 2 were positively correlated with these 
cognitive test scores. The NT between different states was positively 
correlated with processing speed. These suggest that whole-brain BEN 
dynamics can also serve as an indicator of cognitive ability that is 
different from those correlated with the “”static” BEN. The negative 
association between temporal properties of State 1 and cognitive 

ability can be explained by the low whole-brain neural complexity 
corresponding to State 1, as reduced neural complexity indicates the 
degradation of the ability to adapt to the ever-changing environments 
and the consequential decrease of general cognitive function 
(Goldberger et al., 2002a,b; Hager et al., 2017). The positive correlation 
between temporal properties of State 2 and cognitive ability is not only 
in line with its corresponding high whole-brain neural complexity, but 
also related to the notion called metastable brain state. Metastable 
brain state refers to the flexible brain configuration that resides in the 
middle of a continuum situated between extreme chaos and extreme 
rigidity. Such a brain pattern is suggested necessary for the brain’s 
cognitive, behavioral, and social functions (Tognoli and Kelso, 2014; 
Kringelbach et al., 2015; Nomi et al., 2017). In the present study, two 
extreme BEN states correspond to extreme chaos and extreme 
regularity while State 2 corresponds to the metastable brain state. 5 
Therefore, the relation between metastable brain state and cognitive 
functions is supported. The positive correlation between NT and 
processing speed is in line with the above-mentioned correlations 
between the temporal properties of State 1/State 2 and processing 
speed: since state transitions occurred less frequently in State 1 and 
more frequently in State 2, higher processing speed which is associated 
with lower occurrence of State 1 and higher occurrence of State 1. 
Such a finding is also consistent with previous dFC research which has 
revealed that higher NT indicates higher flexibility of the system, and 
is linked with better cognitive performances (Li et al., 2017; Fiorenzato 
et al., 2019).

It is worth noting that although the two intermediate BEN states 
all exhibit similar whole-brain neural complexity and have the 
characteristics of metastable brain state, a significant positive 
correlation with cognitive ability only existed in the temporal 
properties of State 2. Since State 2 and State 3 have the lowest BEN 
pattern similarity, it is reasonable to speculate that BEN pattern also 
contributes to the underlying cognitive function of BEN state. In our 
case, BEN pattern dissimilarity between these two states mainly lies in 
the locations of ICs with low within-state BEN: those in State 2 were 
located in DMN, ECN, and part of SAN, while those in State 3 were 

5 As BEN is a negative predictor of the regularity of brain activity, State 1 and 

State 4 which are of the extreme low and extreme high whole-brain BEN 

among all states, are naturally corresponded to extreme regular and extreme 

irregular (chaos) whole-brain activity.

TABLE 1 Measures of the cognitive ability in our study.

Cognitive ability Test name Outcomes measurement

Episodic memory Picture sequence memory test Score based on correct adjacent pictures

Cognitive flexibility Dimensional change card sort Combination of accuracy and reaction time

Inhibitory control Flanker task Combination of accuracy and reaction time

Fluid intelligence Penn progressive matrices Number of correct responses

Processing speed Pattern completion processing speed Number of items correct in 90-s period

Spatial orientation Variable short Penn line orientation test Number of correct responses

Sustained attention Short Penn continuous performance test Median RT of true positive responses

Verbal episodic memory Penn word memory test Number of correct responses

Working memory List sorting Number of correct responses
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located in SMN (except CBN) and VN. The brain regions of within-
state low BEN in State 2, largely overlap with the highlighted brain 
areas (DMN and ECN) reported in Wang (2021) and Lin et al. (2022) 
where BEN was a negative predictor for general brain functionality, 
which is solid support of our speculation. Taken together, our findings 
under the “dynamic” perspective reconcile the controversial relation 
between “static” BEN and general cognitive ability mentioned in 
Section 1 (Wang, 2021): although the whole-brain BEN configuration 
with a low overall value seems to be harmful to general cognitive 
ability, the whole-brain BEN configuration, with overall intermediate 
value and within-state low BEN located in DMN, ECN and part of 
SAN, facilitates general cognitive ability. As a result, it leads to a 
negative association between BEN and general cognitive ability in 
these brain regions as reported by Wang (2021).

There are several limitations of the present study. Firstly, our 
study adopted a conservative window length (100 TR) to derive 
dBEN, as a window length of around 20 TR is sufficient for dFC 
analysis (Preti et al., 2017). Due to the long time points of the HCP 
dataset, such a setting still can generate a sufficient number of sliding 
windows. However, since many fMRI datasets are of much shorter 
time points (100–200), such a setting may lead to an insufficient 
number of sliding windows. Future research is needed to optimize 
this parameter for the application of dBEN analysis on the fMRI 

dataset with short time points. Secondly, individuals with mental or 
neuropsychiatric disorders are often accompanied by disrupted 
cognitive functions. For example, patients with attention-deficit/
hyperactivity disorder, obsessive-compulsive disorder, and autism 
are associated with impaired cognitive flexibility (Barkley, 2015; 
Rosa-Alcázar et al., 2020; Lage et al., 2023). Since our study revealed 
cognitive flexibility is highly associated with temporal properties of 
BEN state, it is reasonable to assume abnormal BEN dynamics in 
participants with such disorders. Future research may adopt a 
similar analysis framework to investigate altered temporal properties 
of whole-brain BEN states in these clinical populations and their 
associations with certain symptom severity. Thirdly, it has been 
suggested that the brain is a dynamic system that the evolution of 
local activities entangles with the reconfiguration of brain 
interactions (Gross and Blasius, 2008; Fu et  al., 2021), it would 
be meaningful to explore the covarying relations between dBEN and 
dFC (even dynamical network topology) in the future as such 
investigation may provide novel information about the neural 
mechanism of cognitive function that cannot be  obtained by 
investigating either of them alone. Fourthly, recent studies applied 
fuzzy entropy to the dynamic resting-state functional network to 
evaluate the temporal variability of the dynamic resting-state brain 
networks (Li et  al., 2021; Jiang et  al., 2022). They found such 

FIGURE 4

(A) FW and (B) MDT between different BEN states. (C) State transition matrix averaged over subjects, the element in ith row and jth column represents 
the transition probability from State i to State j. (D) Stationary probabilities of different BEN states, error bars represent the 95% confidence intervals 
obtained from 3,000 bootstrap resamples of the stationary probability matrix.
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temporal variability was related to cognitive processes and could 
serve as a potential biomarker for mental disorders. These results 
provide a second-stage analytical direction for dBEN in the future.

5 Conclusion

Here, we presented the first attempt to identify reoccurring patterns 
in BEN in the resting state. Out of the four BEN states we identified, two 
were correlated with general cognitive abilities. The FW and MDT of 
one State, characterized by the extremely low overall BEN, were 
negatively correlated with cognitive flexibility and processing speed. The 
FW and MDT of another State, characterized by its overall intermediate 
value and within-state low BEN located in DMN, ECN, and part of 
SAN, were positively correlated with those cognitive abilities. These four 
whole-brain BEN states differ from each other in terms of characteristics 
of centroidal BEN (including overall BEN value and BEN pattern 
distribution across whole-brain functional networks), which leads to 
differences in their temporal properties and their associations with 

general cognitive ability. The present study advances our understanding 
of the BEN dynamics by providing the first piece of evidence of 
reoccurring BEN patterns and their associations with cognitive ability. 
It can serve as a framework for future investigations exploring abnormal 
BEN dynamics in clinical populations.
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