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Introduction: Multiple sclerosis (MS) and neuromyelitis optic spectrum disorder 
(NMOSD) are mimic autoimmune diseases of the central nervous system 
with a very high disability rate. Their clinical symptoms and imaging findings 
are similar, making it difficult to diagnose and differentiate. Existing research 
typically employs the T2-weighted fluid-attenuated inversion recovery (T2-
FLAIR) MRI imaging technique to focus on a single task in MS and NMOSD 
lesion segmentation or disease classification, while ignoring the collaboration 
between the tasks.

Methods: To make full use of the correlation between lesion segmentation and 
disease classification tasks of MS and NMOSD, so as to improve the accuracy 
and speed of the recognition and diagnosis of MS and NMOSD, a joint model is 
proposed in this study. The joint model primarily comprises three components: 
an information-sharing subnetwork, a lesion segmentation subnetwork, and 
a disease classification subnetwork. Among them, the information-sharing 
subnetwork adopts a dualbranch structure composed of a convolution module 
and a Swin Transformer module to extract local and global features, respectively. 
These features are then input into the lesion segmentation subnetwork and 
disease classification subnetwork to obtain results for both tasks simultaneously. 
In addition, to further enhance the mutual guidance between the tasks, this 
study proposes two information interaction methods: a lesion guidance module 
and a crosstask loss function. Furthermore, the lesion location maps provide 
interpretability for the diagnosis process of the deep learning model.

Results: The joint model achieved a Dice similarity coefficient (DSC) of 74.87% on the 
lesion segmentation task and accuracy (ACC) of 92.36% on the disease classification 
task, demonstrating its superior performance. By setting up ablation experiments, 
the effectiveness of information sharing and interaction between tasks is verified.

Discussion: The results show that the joint model can effectively improve the 
performance of the two tasks.

KEYWORDS

MS, NMOSD, joint model, MRI, disease classification, lesion segmentation

1 Introduction

The demyelinating disease of the central nervous system is an autoimmune disease 
characterized by multifocal and inflammatory demyelination of the central nervous system. Both 
Multiple sclerosis (MS) and Neuromyelitis optic spectrum disorder (NMOSD) are demyelinating 
diseases of the central nervous system (Bruscolini et al., 2018; McGinley et al., 2021). MS and 
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NMOSD may be  easily confused clinically due to their overlapping 
features (Yokote and Mizusawa, 2016).

Magnetic Resonance Imaging (MRI) is a commonly used medical 
imaging technology in clinical practice (Bauer et  al., 2013) for 
prognosis and treatment response evaluation of MS and NMOSD 
(Filippi et al., 2016; Rotstein and Montalban, 2019). Furthermore, the 
T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) 
sequence can inhibit a certain range of fluid signals, thereby reducing 
the cerebrospinal fluid signal intensity and enhancing the visibility of 
small brain lesions and periventricular lesions. Therefore, T2-FLAIR 
sequence imaging plays a crucial role in the diagnosis of cerebral 
nervous system diseases (Wattjes et al., 2021).

In order to accurately diagnose MS and NMOSD clinically, it is usually 
necessary for radiologists to manually segment the white matter high 
signal presented on MRI images, and then diagnose MS according to the 
McDonald diagnostic criteria (Wattjes et al., 2021) and NMO diagnostic 
criteria (Griggs et al., 2016) according to the distribution and morphology 
of lesions and the clinical manifestations of patients. However, the entire 
diagnostic process is a time-consuming and onerous task for doctors.

Deep learning has achieved advanced performance in image 
processing due to a large amount of labeled data, enabling accurate 
diagnosis of MS and NMOSD (Lee et  al., 2017; Lundervold and 
Lundervold, 2019). The MS and NMOSD auxiliary diagnosis based on 
deep learning mainly includes two tasks: lesion segmentation and 
disease classification. The task of lesion segmentation involves 
identifying and segmenting the lesions according to the high white 
matter signal observed by the patient’s MRI, judging the severity of the 
patient, and monitoring the course of the disease through quantitative 
measurement. The task of disease classification aims to accurately 
diagnose patients, distinguishing between MS and NMOSD according 
to the shape and distribution characteristics of the lesions.

In most research, the segmentation and classification of MS and 
NMOSD are studied independently. In order to improve the efficiency 
and accuracy of the auxiliary diagnosis model, this study analyzes the 
correlation between lesion segmentation and disease classification 
tasks and combines the existing deep learning technology to carry out 
the following research work:

 (1) We proposed a joint model of lesion segmentation and disease 
classification of MS and NMOSD, which is based on the 

intrinsic correlation between the two tasks and used to segment 
and classify MS and NMOSD simultaneously. The structure of 
the joint model (Figure 1) mainly includes three components: 
an information-sharing subnetwork, a lesion segmentation 
subnetwork, and a disease classification subnetwork.

 (2) We proposed two information interaction methods to improve 
the performance of lesion segmentation and disease 
classification tasks in a mutually guided manner, one is a lesion 
guidance module and the other is a cross-task loss function. 
Moreover, the lesion location maps provide interpretability for 
the diagnosis of MS and NMOSD.

The subsequent work consists of four sections, each briefly 
described as follows: in Section 2 we  provide an overview of the 
relevant research on lesion segmentation and disease classification in 
MS and NMOSD. In Section 3 we offer a detailed presentation of the 
joint model for MS and NMOSD in this study. In Section 4 we involve 
experimental validation of the performance of the joint models 
proposed in this study. In Section 5 we present the conclusions drawn 
from this study and provide prospects.

2 Related works

Deep learning-based auxiliary diagnosis of MS and NMOSD 
mainly includes two tasks: lesion segmentation and disease 
classification. The lesion segmentation task involves identifying and 
segmenting lesions based on high signal white matter in a patient’s 
MRI, enabling quantitative measurement to assess the severity of the 
patient’s condition and monitor disease progression. The disease 
classification task aims to diagnose the specific condition a patient has, 
distinguishing whether the patient has MS or NMOSD based on the 
morphology and distribution characteristics of the lesions.

Traditional segmentation methods include threshold segmentation 
algorithms, region-growing algorithms, edge detection algorithms, and 
watershed algorithms. Among these, threshold segmentation algorithms 
enhance images based on the differences in signal intensity between 
healthy brain tissue and lesion regions. These methods involve setting one 
or more thresholds manually or using algorithms after preprocessing the 
images to segment them into different parts based on intensity values. For 

FIGURE 1

The main work content of this study.
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instance, Wicks et al. (1992) proposed an intensity-based global threshold 
segmentation method for MS lesion segmentation. Hence, Wang et al. 
(1998) addressed the impact of scanner sensitivity on thresholds by 
proposing histogram matching algorithms. Their study demonstrated that 
histogram matching significantly reduces dependence on threshold 
selection for lesion segmentation.

In recent years, deep learning methods have exhibited superior 
performance in the field of image segmentation (Wang et al., 2022). 
Particularly, since the introduction of Fully Convolutional Networks 
(FCN) (Shelhamer et al., 2017), which can produce probability prediction 
maps of the same size as the original images without restricting input 
image size, there has been significant progress in the image segmentation 
task. One of the most classical models in medical image segmentation task 
is UNet (Ronneberger et al., 2015). UNet combines lower-level detailed 
information with higher-level semantic information through its encoder-
decoder structure and skip connections. Building upon UNet, Bauer et al. 
(2013) replaced the convolutional blocks in UNet with dense blocks 
Huang et al. (2017), enabling features reuse across channel dimensions, 
and leading to a more accurate and easily trainable network. Zhou et al. 
(2020) proposed the UNet++, which enhances the skip connection 
structure to aggregate features from various scales in the decoder 
sub-network, thereby improving model flexibility.

As medical images like MRI are often three-dimensional, one 
approach involves slicing the images into 2D slices along specific 
dimensions, training 2D models, and then reassembling the 
segmentation results into a 3D format (Tseng et al., 2017). Aslani et al. 
(2019) designed an end-to-end encoder-decoder network. They divided 
MRI images of MS patients into 2D slices along three dimensions, 
inputting them into multiple 2D segmentation models, and reassembled 
the resulting 2D segmentations into a 3D format using a majority voting 
approach. Zhang et al. (2019) proposed a method using 3D stacked 
slices that combine information from adjacent slices in multiple 
channels, increasing inter-slice information. To better extract inter-slice 
information, Çiçek et al. (2016) replaced 2D convolutional operations 
with 3D convolutions, fully utilizing information within and between 
image slices. Building upon this, La Rosa et al. (2020) proposed 3D 
UNet-, segmenting cortical and white matter lesions based on FLAIR 
and MP2RAGE sequences of MS patients. Hu et al. (2020) introduced 
a three-dimensional context-guided module in the encoding and 
decoding stages of 3D UNet, expanding the perceptual field, guiding 
contextual information, and enriching feature representations of MS 
lesion segmentation using a three-dimensional spatial attention block. 
Gessert et al. (2020) proposed a dual-path 3D convolutional structure 
with attention-guided interaction, separately processing MS data from 
two-time points and effectively exchanging information.

Due to the similarities between MS and NMOSD, classifying MS 
and NMOSD is also a critical step in auxiliary diagnosis.

Imaging-based classification methods using handcrafted features 
involve constructing a feature set from digital medical images and 
subsequently employing machine learning models for analysis. These 
methods typically require experienced radiologists to manually extract 
high-dimensional image data into low-dimensional handcrafted 
features. These features, along with relevant clinical variables, are used 
to create a feature set. Feature selection is then performed, and an 
optimal subset of features is utilized to build a predictive model. Huang 
(2019) extracted 273 radiomic features from the lesion area of patients’ 
brain T2-weighted images, including semantic, intensity, and texture 
features. They incorporated 11 radiomic features using the LASSO 

method, combined with 5 clinical features, to construct a diagnostic 
radiomic signature, achieving an AUC result of 0.93 on the test set. 
Kister et al. (2013) conducted quantitative analysis on the shape and 
distribution of localized T2 white matter lesions based on clinical brain 
MRI sequences of 44 AQP4-IgG antibody-positive NMOSD patients 
and 50 MS patients, creating a diagnostic procedure for classifying MS 
and NMOSD. Liu et al. (2019) extracted 9 features, including lesion 
heterogeneity and lesion volume, from patient imaging data, combined 
with clinical information, to build a logistic regression model to 
differentiate MS and NMOSD. However, these imaging-based methods 
rely heavily on radiologists manually extracting imaging features, 
limiting the repeatability and generalizability of these methods.

Deep learning-based classification methods efficiently capture 
classification features automatically without requiring manual 
extraction and selection. For instance, Hagiwara et  al. (2021) 
developed an automatic classification model based on Convolutional 
Neural Networks (CNN). Due to limited available data, they primarily 
utilized SqueezeNet to prevent overfitting, achieving an accuracy of 
0.81, sensitivity of 0.80, and specificity of 0.83 using common features 
to classify MS and NMOSD. Wang et al. (2020) compressed 3D MS 
and NMOSD MRI images into multi-channel 2D images and used a 
2D ResNet model for classification. By leveraging transfer learning 
subsequent to pre-training the model on ImageNet, they attained an 
accuracy of 0.75. Kim et al. (2020) developed a 3D CNN model based 
on the ResNeXt concept to differentiate MS and NMOSD, which 
effectively utilized MRI spatial features and achieved improved 
performance with an accuracy of 0.71, sensitivity of 0.87, and 
specificity of 0.61 when integrating clinical information.

From existing research, it is evident that deep learning-based 
methods generally exhibit promising results in the task of classifying 
MS and NMOSD, often without extensive involvement from 
radiologists, thus possessing considerable practical value.

3 Materials and methods

3.1 Datasets and evaluation metrics

3.1.1 Datasets
The datasets used in this study are MS and NMOSD MRI datasets. 

The MS datasets come from the Multiple Sclerosis Lesion 
Segmentation Challenge organized by the 2015 IEEE International 
Symposium on Biomedical Imaging (ISBI) (referred to as the ISBI 
dataset) and The First Hospital of Jilin University. The NMOSD 
dataset comes from the First Hospital of Jilin University.

Table 1 outlines the composition of the MS and NMOSD datasets 
utilized in this study. The ISBI dataset contains brain MRI images of 5 

TABLE 1 MS and NMOSD datasets.

Disease 
classification

Data sources
Number of 

samples
Sequence 

type

MS

ISBI 2015 21 T2-Flair

The First Hospital 

of Jilin University
48 T2-Flair

NMOSD
The First Hospital 

of Jilin University
62 T2-Flair
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MS patients scanned at different time points, among which 4 patients 
scanned 4 groups of images and 1 patient scanned 5 groups of images, 
a total of 21 groups of image data, each group of images can utilize as 
a separate sample. Each group of images includes MRI images of four 
modalities: T1WI, T2WI, PD, and T2-FLAIR. This study only utilized 
the data of the T2-FLAIR modality. All the MRI images were scanned 
using a 3.0 Tesla MRI scanner and were registered to standard space, 
with the image size normalized to 181 × 217 × 181. At the same time, 
the ISBI dataset provides a lesion segmentation map manually 
annotated by experts corresponding to each image.

The brain MRI images of T2-FLAIR sequences obtained from the 
First Hospital of Jilin University comprised 48 MS samples and 62 
NMOSD samples. Among them, all MS samples met the McDonald 
diagnostic criteria revised in 2017, and all NMOSD patients met the 
NMO diagnostic criteria revised in 2015. Due to the long collection 
time of the datasets, there are some differences in the collection 
parameters among images, as shown in Table 2.

At the same time, the First Hospital of Jilin University provided 
lesion annotation maps for all images that were manually annotated 
by two radiologists with 5 and 10 years of experience in diagnosing 
brain diseases respectively, and were finally combined with the 
annotations of the two doctors. The intersection of the results is 
utilized as the annotation map of this study. Therefore, the datasets 
utilized in this study are a total of 69 MS samples and 62 NMOSD 
samples, all of which are T2-FLAIR modality.

3.1.2 Data preprocessing
The ISBI dataset provides preprocessed images, which have 

been skull-stripped and registered to the MNI template. Therefore, 
we preprocessed the datasets provided by the First Hospital of Jilin 
University. The specific preprocessing steps are divided into the 
following four stages: Firstly, skull stripping was performed on the 
brain MRI images using the Brain Extraction Tool (BET) (Smith, 
2002). Secondly, the images were corrected for bias field using the 
N4 bias field correction method (Tustison et al., 2010). Thirdly, the 
black background area of the images was removed. Finally, the size 
of the images is normalized to (160, 160, 160), while the voxel 
values of the images are normalized to a standard data distribution 
with a mean of 0 and a standard deviation of 1 using the 
Z-Score method.

3.1.3 Data augmentation
Due to the challenges in collecting and annotating MS and 

NMOSD datasets, there is a limited amount of data available, making 
it difficult to train models. Therefore, this study utilizes data 
augmentation to expand the datasets and improve the generalization 
ability of the models. When training the deep learning models, the 

preprocessing images are flipped randomly (randomly selecting one 
of the three axes to flip) and rotated randomly with a fixed 
probability p = 0.5 each time (Figure 2).

3.2 Joint model

3.2.1 Model overall architecture
The joint model comprises three primary components: an 

information-sharing subnetwork, a lesion segmentation subnetwork, 
and a disease classification subnetwork. It leverages two types of 
information interaction methods to enhance the performance of both 
tasks. The overall architecture of this joint model is illustrated in 
Figure 3.

Initially, the MRI datasets are fed into the model and processed 
through the information-sharing subnetwork. Subsequently, the 
obtained segmentation feature maps fseg  and classification feature 
maps fcls  are inputted into the lesion segmentation subnetwork and 
the disease classification subnetwork, respectively. The outputs of the 
lesion segmentation subnetwork comprise binarized lesion 
segmentation maps, while the disease classification subnetwork 
provides classified predictions for MS or NMOSD.

Moreover, to bolster the interaction between these two tasks 
during the model training, we have introduced a Lesion Guidance 
Module (LGM) and a cross-task loss function. These additions 
aim to mutually guide and enhance the model’s performance.

3.2.2 Information-sharing subnetwork
MS and NMOSD manifest characteristics of dispersion and 

multifocality, with lesions varying in shape, size, and discrete 
distribution. In the tasks involving segmentation and disease 
classification, it becomes imperative to consider not only the local 
details such as lesion shape and contour but also their global 
distribution within the brain. While convolutional operations 
primarily capture local information, they fail to establish long-distance 
dependencies across the entire image (He et al., 2016).

To concurrently capture both local and global information, the 
information-sharing subnetwork in the joint model is structured as a 
two-branch architecture. The local branch employs convolutional 
operations to extract detailed information about specific lesions, while 
the global branch utilizes Swin Transformer (Vaswani et al., 2017; Liu 
et al., 2021) coding modules to model long-range dependencies among 
image contexts. This specific architectural design is depicted in Figure 4.

To achieve the integration of local and global information, the 
segmentation feature maps for input into the segmentation 
subnetwork and classification feature maps for input into the 
classification subnetwork are obtained by combining them with cross-
elements in a linear weighted manner.

In the global branch, to reduce computational complexity, image 
blocks of size 16 × 16 × 16 within the input images are treated as 
computational units for self-attention in the Transformer. A 
convolutional layer with a kernel size of 8 × 8 × 8 and a stride of 8 is 
utilized to extract features from the image I H W D∈ × × . This 
extraction process is followed by an average pooling operation, 
reducing the scale of the extracted features by half. The resulting 
feature maps 

16 16 16E
H W D
× ×

∈
 serve as the input to the Transformer. 

The output of the global branch can be computed as follows 
(Equations 1,2):

TABLE 2 MRI parameters were collected from the First Hospital of Jilin 
University.

Parameter type Parameter values

Slice number 160–192

Slice thickness (mm) 1

Repeat time (ms) 4,800

Echo time (ms) 279–324

Reverse time (ms) 1,650

Flip angle (°) 40
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 GTX UP ST LN Eglobal = ( )( )( ) (1)

 E PE I= ( ) (2)

Where PE ⋅( ) denotes patch embedding, which involves two 
operations: a convolution operation with a kernel size of 8 × 8 × 8 and 
a stride of 8, followed by an average pooling operation with a kernel 
size of 2 × 2 × 2 and a stride of 2. LN ⋅( ) represents layer normalization. 
ST ⋅( ) refers to two layers of Swin Transformer, with a window size of 
5 × 5 × 5 and a switch between different window modes across these 
two layers (shift window mechanism). UP ⋅( )  denotes the output of 
the global branch achieved through interpolation. Through these 
operations, applied to the original images of size 160 × 160 × 160, 
we capture sufficient global information within this context.

In the local branch, three convolutional layers with 3 × 3 kernels 
are utilized as context extractors to capture local features. The first 
convolutional layer has a stride of 2, while the other two layers have 
a stride of 1. The output of the local branch can be computed as 
follows (Equation 3):

 CTX Conv LN Ilocal = ( )( ) (3)

Where CTXlocaldenotes the output of the local branch.
To enhance the information interaction between the classification 

and segmentation tasks, the local feature CTXlocal and global features 
CTXglobal are linearly combined by the crossover unit to obtain the 
segmentation feature maps fseg  for the classification subnetwork and 
the classification feature maps fcls  for the classification subnetwork 
respectively, which are calculated as Equation 4:

FIGURE 2

Effect of data augmentation.

FIGURE 3

Structure of the joint model.
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Where wseg ,1, wseg ,2 , wcls,1, and wcls,2  are learnable parameters. 
The size of fseg  and fcls  is both (32, 80, 80, 80).

3.2.3 Lesion segmentation subnetwork
The lesion segmentation subnetwork is utilized to segment brain 

white matter lesions in MS and NMOSD. Figure 5 shows the schematic 
structure of the lesion segmentation subnetwork, which mainly 
consists of three parts: the contraction path, the expansion path, and 
the multiscale binding module.

In the lesion segmentation subnetwork, the contraction path 
comprises three encoding modules and two downsampling modules 
aimed at capturing contextual information within the segmented 
feature maps 

fseg
D H W

∈
× ×

 2 2 2
 and extracting lesion-related features. 

Meanwhile, the expansion path involves three decoding blocks and 
three upsampling modules for restoring the feature maps to the 
dimensions of the input images. Between the contraction path and 
the expansion path, the low-level feature maps obtained from the 
contraction path and the high-level feature maps obtained from the 
expansion path are merged in the channel dimension through skip 
connections. This process aids in integrating detailed image 
information into the high-level semantic features, thereby enhancing 
segmentation performance. Additionally, the channel established by 
the skip connections between high and low levels facilitates gradient 
backpropagation (Zhang et al., 2018).

Given the substantial disparity in lesion sizes between MS and 
NMOSD, a strategy is employed to combine richer multi-scale 
features. Feature maps obtained at multiple levels are weighted and 
fused to generate the final lesion probability maps Mlesion  as 
follows (Equation 5):

 
M sigmoid Up f flession

i
i seg

i= ⋅ ( )( )( )









=
×∑

1

4

1 1α
 

(5)

Where f1 1× ⋅( ) denotes the convolution operation with a kernel 
size of 1 × 1 × 1 acting on the feature maps of size 20 × 20 × 20, 
40 × 40 × 40, 80 × 80 × 80, 160 × 160 × 160 for adjusting the number of 
output channels to 1. Up ⋅( ) denotes the upsampling operation using 
nearest neighbor interpolation to resize the multi-scale feature maps 
to match the original image dimensions. Subsequently, the four-layer 
feature maps undergo a weighted combination with respective weights 
of 0.25, 0.25, 0.5, and 1. Finally, the feature maps are mapped to the (0, 
1) interval using the sigmoid activation function, resulting in the final 
lesion probability maps.

3.2.4 Disease classification subnetwork
The disease classification subnetwork is dedicated to the 

classification and diagnosis of two diseases, MS and NMOSD. The 
outputs y yi i

i

NL( ) ( )
=

= ∈{ }{ }01
1

,
 provide classified predictions for MS 

or NMOSD. For the ith sample, y i( ) = 0 denotes classification as MS, 
while y i( ) =1 denotes classification as NMOSD. Considering the 
relatively limited number of samples, an excessively complex or deeply 
layered model can lead to overfitting. In this study, the classification 
model is composed of three 3D coding blocks with residual 
connections, as depicted in the structure outlined in Figure 6.

The traditional approach in image classification involves 
unwinding the feature maps generated by the convolutional layer to 
form feature vectors for inputting into the fully connected layer. 
However, this method escalates the model’s parameter count, raising 
the risk of overfitting (Szegedy et al., 2015). In this study, we adopt a 
global average pooling of feature maps as an alternative to feature 
maps unwinding. There are several reasons for this approach: Firstly, 
global average pooling integrates spatial information from the feature 
maps, thereby enhancing the model’s generalization while preserving 

FIGURE 4

Structure of information-sharing subnetwork.
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classification performance. Secondly, global average pooling requires 
fewer training parameters, mitigating the risk of overfitting associated 
with a fully connected layer.

Inspired by the concept of skip connections in the segmentation 
subnetwork, our model dynamically extracts classification features. 
The initial layers in the network capture low-level features like texture 
and color, while deeper layers extract high-level semantic features. To 
enhance the model’s performance, we combine the low-level feature 
maps with the high-level ones. Consequently, the final category 
prediction probability is computed as follows (Equation 6):

 
p soft f f f w fcls FC

k
k w

k
k

k n

k

k n= + ⋅ +
=

⋅
= =

∑ ∑ ∑max , ,
,

,

1

64

1

2

128

2 2

3

256

1
33

3
,

,k wk n⋅




















 
(6)

Where f k k1 1

64
,{ } =

, f k k2 2

128
,{ } =

, and f k k3 3

256
,{ } =

 denotes the feature 
vectors obtained after global average pooling of the feature maps of 
the three layers with different scales. These feature vectors were 

connected as the input of the fully connected layer fFC ⋅( )  and then 
the softmax activation function was applied to obtain the classification 
prediction probabilities of MS and NMOSD.

3.3 Information interaction module

3.3.1 Lesion guidance module
Since the lesion regions only occupy a small portion of the brain 

MRI, the majority of the image consists of normal brain tissues or 
blood vessels. This can present challenges for the model when 
attempting to accurately classify based solely on the presence of 
lesions. To address this, the lesion segmentation feature maps are 
utilized as prior information for lesion location and morphology by 
sharing the lesion probability maps obtained from the segmentation 
subnetwork into the classification subnetwork. By doing so, the 
influence of other parts of the MRI image on classification is mitigated, 
thereby facilitating disease classification and diagnosis.

FIGURE 5

Structure of the lesion segmentation subnetwork.

FIGURE 6

Structure of disease classification subnetwork.
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To enhance the effectiveness of the segmented prior information, 
a Lesion Guidance Module (LGM) is proposed. The structure of the 
LGM, depicted in Figure  7, consists of two main components: 
computation of attention maps and fusion of raw features, 
corresponding to (a) and (b) in Figure 7, respectively.

Firstly, the lesion probability map, which is the output of the last 
layer of the segmentation subnetwork, undergoes feature 
transformation and normalization to generate the lesion attention 
map. Next, the lesion attention map is element-wise multiplied by the 
classification feature map, emphasizing the presence of lesions. The 
specific calculation process is as follows:

First, we utilize a 3 × 3 convolution with a stride of 2 to make the 
lesion segmentation probability map P D W H{ }∈ × ×  output from the 
last layer of the segmentation subnetwork to downsample to the same 
size as the categorized feature map 

D P
D H W

, ′{ }∈
× ×

 2 2 2
. Then the 

features are decoupled by a linear transformation of the Sigmoid 
function to generate the lesion attention map αi  (Equations 7,8):

 αi P iSoft f P= ( )( )max  (7)

 ′ = ⋅D Diα  (8)

Where P D W H{ }∈ × ×  denotes the lesion segmentation 
probability map, fP ⋅( ) denotes a convolution operation with a kernel 
size of 3 × 3 × 3 and a stride of 2, 

αi
D H W

∈
× ×

 2 2 2
 denotes the lesion 

attention map, D
D H W

∈
× ×

 2 2 2  denotes classification feature map 
output from the information-sharing subnetwork, ′D  denotes 
segmentation feature map after emphasizing the lesions.

In order to further utilize the prior knowledge of lesion 
segmentation, the segmentation probability map is directly fused with 
the classification feature map after emphasizing the lesion in the 
channel dimension as a form of auxiliary information in the original 
feature fusion part. The joint features 

J
C D H W

{ }∈
× × ×

 2 2 2
 are obtained 

by downscaling (Equation 9):

 
J f concat f P f Di i i= ( ) ( )( )( )× × ×1 1 3 3 3 3

' '
,

 
(9)

Where f1 1× ⋅( ) denotes a convolution operation with a kernel size 
of 1 × 1 × 1, f3 3× ⋅( ) denotes a convolution operation with a kernel size 
of 3 × 3 × 3 and a stride of 2, Pi′ denotes lesion segmentation probability 
map after downsampling, and concat ⋅( )  denotes channel 
dimension splicing.

3.3.2 Cross-task loss function
For the classification task of MS and NMOSD, the basis for 

classification lies in the morphological and positional features of the 
lesions. Thus, the lesion point of the classification subnetwork during 
the classification process should be the lesion regions. Based on this 
analysis, this study utilizes the idea of CAM (Zhou et al., 2016) to 
achieve lesion localization in MRI images and generate lesion 
localization maps. To effectively assist the segmentation task, a cross-
task loss function is proposed, which supervises the lesion localization 
map created in the classification subnetwork and the corresponding 
lesion segmentation maps in the segmentation subnetwork through a 
loss function. This helps enhance the lesion localization ability in each 
task. According to the theory of CAM, the lesion localization maps are 
obtained by global average pooling the feature maps, multiplying the 
resulting scalar with the class weights corresponding to the output 
layer, and accumulating it with the feature maps. To incorporate 
multi-scale features, this study generates lesion localization maps at 
three different layers. The specific calculation formula is as follows  
(Equation 10):

 
V F wi

k

N
i k i k

c= ⋅
=
∑
1

, ,

 
(10)

Where Vi represents the lesion localization map formed in the ith 
layer (i = 1,2,3), N  represents the total number of feature maps in the 
ith layer, Fj k,  represents the kth feature map in the ith layer, and wi k

c
,  

represents the weight corresponding to class c. Then, the lesion 
localization maps are weighted and computed with the lesion 

FIGURE 7

Structure of lesion guidance module.
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segmentation maps of the same size from the segmentation 
subnetwork using the Mean Square Error (MSE) loss. This results in a 
cross-task loss function, with the specific formula as follows  
(Equation 11):

 
L S Vcross

i
i i i= ⋅ −

=
∑
1

3

2
2η

 
(11)

Where Si represents the intermediate multi-size segmentation 
maps obtained from the lesion segmentation subnetwork. ηi  are set to 
0.25, 0.25, and 0.5, respectively.

Furthermore, the generation of lesion localization maps achieves 
the interpretability of deep learning black-box models in the process 
of classification diagnosis, which is of significant importance for 
research related to medically auxiliary diagnosis.

3.4 Overall loss function

For the disease classification task, the difference between the 
predicted categories and the true labels was evaluated using the binary 
cross entropy loss with the formula Equation 12:

 ( ) ( )ˆ ˆlog 1 log 1= −∑ + − −clsL y y y y
 

(12)

Where ŷ  represents the categories of model predictions, y 
represents the real categories.

For the lesion segmentation task, the Dice Similarity Coefficient 
(DSC) is utilized to measure the degree of similarity between the 
segmentation results and the real segmentation maps, which can 
measure the accuracy of the segmentation results and take the value 
in the range of [0,1]. Therefore, the segmentation model can 
be supervised by using 1-Dice as a loss function, called Dice loss, the 
specific formula is Equation 13:

 
L Dice

X Y
X Yseg = − = −

∩
+

1 1
2

 
(13)

Where X  represents the segmentation result of the lesion 
segmentation task, Y  represents the real segmentation result, and ⋅  
represents the number of voxels that satisfy the condition.

Therefore, to optimize the learnable parameters wt t= ( )θ  of the 
joint model, where θt is the model parameter, an overall loss function 
for the joint model is designed in conjunction with the single-task loss 
described above. Since single tasks may have different levels of 
contribution in optimizing the parameters of the model, the single 
task loss function is weighted by setting a weighting factor βt , and the 
joint loss function constituted is Equation 14:

 L L L Lseg cls cross= + +β β β1 2 3  (14)

The variable βi i, , ,=1 2 3 represents a hyperparameter. Considering 
that the segmentation task involves pixel-level classification of images, 
while the classification task involves categorizing individual samples, 

segmentation tasks are comparatively more complex and challenging to 
learn. Therefore, in the training process, the contribution of parameter 
optimization for the segmentation task should be  relatively higher. 
Hence, in this study, β1, β2, and β3 are set to 1, 0.8, and 1, respectively.

4 Experiment and results

4.1 Experiment settings

The hardware platform for the experiments in this study is the 
NAVIDA GTX 3090 graphics card and the network models are all 
built by the PyTorch framework. During model training, the batch size 
was set to 2, the number of iterations was set to 200, the optimization 
algorithm utilized Adam optimizer with default parameters (Kingma 
and Ba, 2014), and the learning rate was initially set to 0.0001. If the 
loss of the model did not decrease after surpassing 10 training 
iterations, the learning rate was then reduced to half of its 
original value.

To reduce experimental variability and provide a more 
accurate and objective reflection of model performance, 
we  utilized a five-fold cross-validation strategy during the 
experiment. Initially, the entire dataset is randomly divided into 
five subsets. During each training iteration, four of these subsets 
are used as the training set, while the remaining subset serves as 
the test set. Upon completion of each training iteration, 
evaluation results are obtained on the corresponding test set. The 
final experimental outcome is determined by averaging the 
evaluation results obtained from the five training iterations.

The images used in the experiments are obtained from the dataset 
after undergoing the data preprocessing and data augmentation 
described in Section 3.1. The original size of each input is (160, 160, 
160). After being processed by the information-sharing subnetwork, 
the inputs for the lesion segmentation subnetwork and disease 
classification subnetwork are resized to (80, 80, 80).

4.2 Evaluation metrics

The joint model proposed in this study mainly consists of two 
tasks, the lesion segmentation task and the disease classification task. 
Multiple evaluation metrics were employed to assess the performance 
of each model.

The evaluation metrics utilized for the segmentation task are Dice 
Similarity Coefficient (DSC), Positive Predict Value (PPV), True 
Positive Rate (TPR), and Volume Difference (VD) (Equations 15–18).

 

ˆ2
ˆ

× ∩
=

+

Y Y
DSC

Y Y
 

(15)

Where Y  represents the ground truth, Ŷ  represents the 
output of the model, ∩  represents the intersection operation of 
two matrices, and .  represents the number of elements in the 
matrix. The higher the DSC, the closer the prediction to the 
manually segmented label.
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PPV represents the proportion of true positive voxels among all 
voxels predicted as positive. In this context, positive refers to the lesion 
voxels. A higher PPV indicates that the impact of the noise caused by 
them on the model is smaller.

 

ˆ∩
=

Y Y
TPR

Y
 

(17)

TPR represents the proportion of true positive voxels among all 
actual positive voxels. The higher the TPR, the stronger the model’s 
ability to identify lesions.

 
VD

TP TP
TP
P gt

gt
=

−

 
(18)

Where TPp represents the number of predicted TP voxels and TPgt 
represents the number of lesion voxels in the ground truth. A lower 
VD indicates a better agreement between the predicted and true 
lesion volumes.

The metrics utilized in the classification task are Accuracy (ACC), 
Sensitivity (SN), Specificity (SP) (Equations 19–21), and Area Under 
the ROC Curve (AUC).

 
ACC TP TN

TP FP FN FN
=

+
+ + +  

(19)

 
SN TP

TP FN
=

+  
(20)

 
SP TN

TN FP
=

+  
(21)

Where TP represents true positive, TN represents true negative, 
FP represents false positive, and FN represents false negative. These 
metrics can be used to assess the performance of classification models.

4.3 Comparison and analysis of 
experimental results

To validate the superiority of the proposed joint model for 
lesion segmentation and disease classification in MS and 
NMOSD, this section conducts comparative analyses between the 
joint model and three advanced segmentation methods: 3D UNet, 
VNet, and AttentionUNet, as well as three advanced classification 
methods: 3D ResNet34, 3D ResNet50, and 3D DenseNet. 
Throughout the experiments, efforts are made to ensure that the 
primary parameters of all methods remain consistent with those 
introduced in Section 4.1.

4.3.1 Comparison of the segmentation methods
Table 3 shows the comparison of the results of the joint model on 

lesion segmentation. It can be seen that the joint model performs the 
best on the lesion segmentation task and achieves the highest DSC, 
TPR, and VD, which are 74.87, 72.21, and 22.34%, respectively, and 
PPV achieves the sub-optimal results, which is second only to the 3D 
UNet. Where AttentionUNet achieves sub-optimal results on DSC, 
TPR, and VD which differed from the joint model by 2.8, 0.89, and 
4.33%, respectively. The results prove that the lesion segmentation 
results obtained by the joint model have higher similarity with the real 
lesion segmentation results and higher check-accuracy for lesion pixel 
points. The result of PPV is lower than that of 3D UNet by 0.17%, 
proving that checking accuracy for lesion pixel points of the 
segmentation model is slightly lower than 3D UNet. Overall, the joint 
model has the optimal segmentation effect, and AttentionUNet is the 
second best.

Figure 8 shows the lesion segmentation visualization results 
of the four segmentation models acting on a MS case and a 
NMOSD case, respectively. In order to clearly demonstrate the 
segmentation effect, the lesion segmentation results are 
superimposed on the original MRI image in red. From left to 
right, it shows the ground truth segmentation annotated manually 
by the doctors, the joint model segmentation results, the UNet 
segmentation results, the VNet segmentation results, and the 
AttentionUNet segmentation results. As can be seen from the 
visualization results, the models can achieve localization for 
lesion regions with relatively large volumes. However, the discrete 
point lesions in the brains of MS and NMOSD patients are 
difficult to recognize, as well as some regions in the brain MRI 
with similar imaging features to the white matter high signals are 
very easy to confuse during segmentation. The blue boxed part 
in the figure shows the under-segmentation or over-segmentation 
problem of the model during segmentation. In contrast, the joint 
model greatly avoids the above problems due to the combination 
of the lesion location information provided by the classification 
network, and the segmentation results are closer to the ground 
truth segmentation.

Overall, based on evaluations of various metrics and visualized 
results, it can be observed that the segmentation performance of the joint 
model is superior. Particularly for some challenging pinpoint lesions and 
locations with similar imaging characteristics, the segmentation results 
achieved by the joint model is more refined. Given the highly irregular 
morphology of MS and NMOSD lesions, even expert radiologists find it 
challenging to completely delineate their contours during annotation. 
However, the model proposed in our study ensures the ability to 
accurately locate the majority of lesions.

TABLE 3 Comparative experimental results of the lesion segmentation 
method.

Method DSC (%) PPV (%) TPR (%) VD (%)

3D UNet 70.64 74.11 65.25 36.38

VNet 71.93 72.24 69.71 43.43

AttentionUNet 72.07 70.22 71.32 26.67

Joint Model 74.87 73.94 72.21 22.34

Bold values indicate the best results in evaluation metrics. Underlined values indicate the 
second best results in evaluation metrics.
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4.3.2 Comparison of the classification methods
Table 4 demonstrates the disease classification results of the joint 

model and the other five advanced classification models for MS and 
NMOSD. From the results in the table, it can be seen that the joint 
model achieved a classification accuracy of 92.16%, which is the best 
performance among several methods and 2.36% higher than SENet50 
with the second-best accuracy. In addition, the ROC curves for the 
classification results of the five methods are shown in Figure  9. 
Compared with the other models, the joint model has the largest area 
under the line of the ROC curve, which is 96.33%, indicating that the 
joint model has a better effect.

4.4 Results and analysis of ablation 
experiments

The joint model proposed in this study focuses on the mutual 
guidance of the lesion segmentation and disease classification 
tasks through an information-sharing subnetwork and two 
information interaction methods which include the lesion 
guidance module and the cross-task loss function. In this section, 
we will first validate the effectiveness of the joint learning strategy, 
and then conduct ablation experiments on the information 
sharing subnetwork and the two information interaction methods, 
respectively, to verify the influence of each component in 
improving the performance of the two tasks.

4.4.1 Influence of the joint learning strategy
To demonstrate the impact of joint learning strategy on 

model performance, this section will compare the results of the 
joint model and two fundamental models: the lesion segmentation 
model (corresponding to the lesion segmentation subnetwork in 
Section 3.2.3) and the disease classification model (corresponding 
to the disease classification subnetwork in section 3.2.4). This 
comparison aims to establish the effectiveness of the joint 
learning strategy. The joint model will be abbreviated as the Joint 
Model, the lesion segmentation model will be  abbreviated as 
Only Seg Model and the disease classification model will 
be abbreviated as Only Cls Model.

 (1) Influence on the lesion segmentation task
Table 5 compares the performance of the Only Seg Model and 

Joint Model in lesion segmentation tasks. The Joint Model 
demonstrated improvement across all metrics compared to the Only 
Seg Model, with an increase of 3.63% in DSC, 3.80% in PPV, 2.34% in 
TPR, and 2.63% in VD. This demonstrates that incorporating 
information from the classification task effectively enhances the 
performance of lesion segmentation.

Figure 10 displays the lesion segmentation results using the Only 
Seg Model and Joint Model for three different cases. From left to right: 
original T2-FLAIR images, manually segmented images, visualizations 
of results from the Only Seg Model, and visualizations of results from 
the Joint Model. In the visualizations, red indicates true positives—
pixels classified correctly as lesions; green represents false positives—
pixels classified as lesions but normal tissues; yellow denotes false 
negatives—pixels classified as normal tissues but lesions. In the 
segmentation results of Case One, the Only Seg Model misclassifies 
some normal tissue as lesions (shown in green) due to its similarity to 
high-intensity white matter, leading to misjudgments. However, the 
Joint Model correctly identifies this portion. For Case Two, the Only 
Seg Model struggles to delineate the contours of patchy lesions 
(depicted in yellow), indicating segmentation inadequacies. Similar 
issues of segmentation insufficiency are observed for Case Three with 
the Only Seg Model (yellow portion). Because lesions in MS and 
NMOSD often exhibit highly irregular shapes, segmenting lesion 
edges presents a challenge. The visual results show that both the Only 
Seg Model and Joint Model have some false positives and negatives 

FIGURE 8

Comparison of experimental visualization results.

TABLE 4 Comparative experimental results of lesion classification 
method.

Method ACC (%) SN (%) SP (%) AUC (%)

ResNet50 87.24 87.14 88.33 94.84

ResNet101 86.63 80.28 92.38 87.66

ResNet152 86.40 85.52 85.47 85.43

DenseNet121 88.36 90.85 83.57 92.47

SENet50 89.80 86.00 93.57 93.33

Joint Model 92.16 95.60 92.60 96.33

Bold values indicate the best results in evaluation metrics.
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along the lesion edges. Nevertheless, overall, the Joint Model 
demonstrates significantly better segmentation performance 
compared to the Only Seg Model.

The visual results demonstrate that the segmentation performance 
of the Joint Model surpasses that of the Only Seg Model across all four 
samples. This outcome suggests that the lesion features extracted from 
the classification task, especially positional characteristics, effectively 
assist the segmentation task in capturing the varied locations and sizes 
of MS and NMOSD lesions.

 (2) Influence on the Disease Classification task
Table 6 is the comparison between the Only Cls Model and the 

Joint model on the results of the MS and NMOSD classification task. 
Compared to the Only Cls Model, the joint model demonstrated 
improvement across all metrics, with ACC increasing by 4.36%, SN by 
8.36%, and SP by 3.14%.

Figure 11 displays the ROC curves for the Only Cls Model 
and Joint Model in the classification task. The AUC for the Joint 
Model is 96.33%, while the AUC for the Only Cls Model is 
87.59%. When combined with the table, this demonstrates that 
leveraging the information extracted from the segmentation task 
and utilizing the segmented lesion results effectively guides the 
classification task, thereby enhancing the overall performance of 
the classification task.

Based on the comprehensive analysis, the Joint Model based on 
the joint learning strategy demonstrated performance improvements 
in both lesion segmentation and disease classification tasks. It 
exhibited superior results across various metrics and visualization 
outputs compared to single-task models. This validates that the joint 
learning strategy effectively leverages the features, harnesses hidden 
information learned from shared classification and segmentation 
tasks, and enhances the model’s fitting capability. Consequently, it 
elevates the performance in both tasks.

4.4.2 Influence of the information sharing module
To investigate the effectiveness of the dual-branch structure 

within the information-sharing subnetwork, the following 
experiments were conducted in this section: Removing the 
information-sharing subnetwork, denoted as ‘w/o share’; Using only 
the local branch to share underlying information through hard 
parameter sharing, denoted as ‘only local’; Using only the global 
branch to share underlying information through hard parameter 
sharing, denoted as ‘only global.’

Table  7 presents the ablation experiment results for the 
information-sharing subnetwork. The experimental findings indicate 
that the information-sharing subnet significantly enhances the 
performance of both lesion segmentation and disease classification 
tasks. Performance is notably poorest when the information-sharing 
subnet is entirely removed, while the Joint Model demonstrates the 
optimal performance. When utilizing only the local branch for hard 
parameter sharing of the underlying information, the performance in 
the lesion segmentation task ranks second, following closely behind 
the Joint Model. This demonstrates that local lesion information, such 
as morphology and edges, holds greater significance for the lesion 
segmentation task. When employing local sharing, the model 

FIGURE 9

ROC curve of the classification methods.

TABLE 5 The influence of the joint learning strategy on segmentation 
task.

Method DSC (%) PPV (%) TPR (%) VD (%)

Only Seg Model 71.24 70.14 69.87 24.97

Joint Model 74.87 73.94 72.21 22.34

Bold values indicate the best results in evaluation metrics.
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prioritizes aspects related to the segmentation task. In the case of 
using only the global branch for hard parameter sharing of the 
underlying information, the performance in the disease classification 
task ranks second, closely following the Joint Model. This highlights 
that global image information, such as lesion distribution, plays a 
more advantageous role in the disease classification task.

4.4.3 Influence of the lesion guidance module
As mentioned in section 3.3, the information interaction consists 

of two parts, one is the LGM for combining the results of lesion 
segmentation, and the other is the cross-task loss function. In this 
section, the effectiveness of the lesion guidance module is verified 
through ablation experiments.

The LGM serves to utilize the segmentation probability maps as 
prior information about lesion distribution and morphology to 
guide the classification subnet. Its structure involves emphasizing 
lesions by first applying an attention mechanism through the dot 
product operation between the segmentation probability maps and 
the classification feature maps. Subsequently, the segmentation 
probability maps are concatenated with the classification feature 
maps along the channel dimension to further integrate lesion 
information. In this section, we investigate the effectiveness of LGM 
for the classification task, as well as the efficacy of the LGM 
structure. We  conduct ablation experiments as follows: (1) 

Removing the LGM, denoted as ‘w/o LGM’. (2) Using only the dot 
product operation to combine the segmentation probability maps 
and the classification feature maps, denoted as ‘dot product’. (3) 
Using only the concatenation along the channel dimension to 
combine the segmentation probability maps and the classification 
feature maps, denoted as ‘concat.’ (4) Given the common approach 
of fusing information by pixel-wise addition, such as in, we compare 
using the addition operation to combine the segmentation 
probability maps and the classification feature maps, denoted as ‘dot 
add.’ Table 8 presents the performance of different forms of LGM 
on the classification task.

Table  8 highlights that removing the LGM notably worsens 
classification performance, underlining the importance of merging 
lesion segmentation into disease classification. Using attention on 
lesion segmentation probability maps, like with dot product, notably 
boosts classification, although it’s not the best method.

Combining the segmentation maps with classification features 
through channel dimension concatenation and dot product both 
improve the classification. However, channel concatenation works 
better, likely because the segmentation maps may be  inaccurate, 
causing problems with direct addition or summation.

The proposed LGM, using both dot product and channel 
concatenation, significantly enhanced classification performance, 
offered the most improvement.

4.4.4 Influence of cross-task loss function
We set up ablation experiments for the cross-task loss function of 

the information interaction approach in this section. According to 
Equation (14), the overall loss function of the model consists of three 
parts: segmentation loss function, categorization loss function, and 
cross-task loss function, which is verified in this section by removing 
the cross-task loss function, called w/o cross loss.

FIGURE 10

Visual display of lesion segmentation results.

TABLE 6 The influence of the joint learning strategy on classification 
task.

Method ACC (%) SN (%) SP (%) AUC (%)

Only Cls Model 87.80 87.24 89.46 87.59

Joint Model 92.16 95.60 92.60 96.33

Bold values indicate the best results in evaluation metrics.
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Table 9 demonstrates the impact of cross-task loss functions on 
lesion segmentation and disease classification tasks. The results indicate 
that cross-task loss functions effectively enhance the performance of both 
tasks, particularly in the case of lesion segmentation. The average metrics 
show an improvement of 1.23%, validating that the lesion localization 
maps constructed by the classification subnetwork effectively aid the 
segmentation subnetwork in  localizing lesions, thereby enhancing 
segmentation performance. For the disease classification task, there are 
improvements across metrics such as ACC, SP, and AUC. This 
demonstrates that the feature maps obtained by the segmentation 
subnetwork effectively guide the classification subnet in capturing  
lesions.

In addition, Figure 12 illustrates the comparison between lesion 
localization maps generated by the joint model and the annotated lesion 
gold standard for four test samples. The lesion localization maps 
visualize the model’s focus areas during classification using Grad-CAM 
(Wagner et al., 2019) technology, where deeper colors indicate higher 
model attention. Comparing the visualized results with manually 
annotated segmentation gold standards reveals a substantial alignment 
between the areas the model emphasizes during classification and the 
actual lesion locations. Particularly noteworthy is the accurate 
localization of minute dot-like lesions present in Sample 3, which 
represent lesions challenging for the segmentation model to distinguish. 
However, the lesion localization maps manage to accurately pinpoint 

these lesions. This further validates the reliability of guiding the 
segmentation model through cross-task losses.

Simultaneously, these lesion localization maps offer interpretability for 
the joint model in diagnosing MS and NMOSD. They can serve as a basis 
for deriving diagnostic conclusions for MS and NMOSD in clinical practice.

5 Conclusion

This study proposes a joint model for lesion segmentation and 
disease classification of MS and NMOSD. Leveraging the correlation 

TABLE 8 The effect of the LGM on classification performance.

Interactive 
mode

ACC (%) SN (%) SP (%) AUC (%)

w/o LGM 89.44 89.30 86.24 89.38

dot product 91.20 93.42 89.28 94.36

concat 90.66 93.34 91.60 92.24

dot add 89.48 89.36 85.24 89.90

Joint Model 92.16 95.60 92.60 96.33

Bold values indicate the best results in evaluation metrics. Underlined values indicate the 
second best results in evaluation metrics.

FIGURE 11

ROC curve corresponding to Joint Model and Only Cls Model.

TABLE 7 The influence of the information-sharing module.

Method DSC (%) PPV (%) TPR (%) VD (%) ACC (%) SN (%) SP (%) AUC (%)

w/o share 71.98 72.11 67.47 26.35 88.20 86.24 89.24 88.56

Only local 73.80 73.95 71.34 24.12 86.14 86.00 88.26 89.32

Only global 72.04 70.18 70.44 24.92 90.22 91.46 89.60 92.68

Joint Model 74.87 73.94 72.21 22.34 92.16 95.60 92.60 96.33

Bold values indicate the best results in evaluation metrics. Underlined values indicate the second best results in evaluation metrics.
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between lesion segmentation and disease classification tasks, the 
model facilitates mutual guidance between the two tasks through 
information sharing and interaction. This approach allows for the 
effective utilization of the information from limited datasets. 
Furthermore, comparative experiments confirm the joint model’s 
ability to significantly enhance the performance of both tasks. 
Ablation experiments validate the effectiveness of information 
sharing and interaction mechanisms within the joint model. While 
the joint model exhibits strong performance in lesion segmentation 
and disease classification tasks for MS and NMOSD, its 
generalization capability to other diseases remains limited and 
somewhat unstable. Therefore, we plan to gather more extensive 
datasets to enhance the model’s generalizability. Additionally, 
utilizing multimodal data as input to the model aims to augment its 
practical applicability.
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