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Background and objectives: Glioblastoma (GBM) and brain metastasis (MET) are 
the two most common intracranial tumors. However, the different pathogenesis 
of the two tumors leads to completely different treatment options. In terms of 
magnetic resonance imaging (MRI), GBM and MET are extremely similar, which 
makes differentiation by imaging extremely challenging. Therefore, this study 
explores an improved deep learning algorithm to assist in the differentiation of 
GBM and MET.

Materials and methods: For this study, axial contrast-enhanced T1 weight 
(ceT1W) MRI images from 321 cases of high-grade gliomas and solitary brain 
metastasis were collected. Among these, 251 out of 270 cases were selected 
for the experimental dataset (127 glioblastomas and 124 metastases), 207 
cases were chosen as the training dataset, and 44 cases as the testing dataset. 
We  designed a new deep learning algorithm called SCAT-inception (Spatial 
Convolutional Attention inception) and used five-fold cross-validation to verify 
the results.

Results: By employing the newly designed SCAT-inception model to predict 
glioblastomas and brain metastasis, the prediction accuracy reached 92.3%, 
and the sensitivity and specificity reached 93.5 and 91.1%, respectively. On 
the external testing dataset, our model achieved an accuracy of 91.5%, which 
surpasses other model performances such as VGG, UNet, and GoogLeNet.

Conclusion: This study demonstrated that the SCAT-inception architecture 
could extract more subtle features from ceT1W images, provide state-of-the-art 
performance in the differentiation of GBM and MET, and surpass most existing 
approaches.
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1 Introduction

Glioblastoma (GBM) and brain metastasis (MET) are the two 
most common types of intracranial tumors, posing a significant threat 
to human health. The incidence rate of GBM is reported to be 3.2–3.5 
per 100,000 individuals, whereas MET has a higher incidence rate of 
10 per 100,000 individuals (Zhou et al., 2023). GBM constitutes a 
primary tumor originating from glial cells in the brain and represents 
the most prevalent brain tumor type. In contrast, MET denotes a 
secondary tumor resulting from metastasis of malignant cells from 
other organs to the brain via the bloodstream or lymphatic system. 
Owing to divergent pathogenic mechanisms, treatment strategies also 
differ between these two tumor types. Currently, accurate 
differentiation of GBM and MET relies on pathological examination 
of tissue specimens (Bae et al., 2020). However, this invasive approach 
increases surgical risks for patients (Qian et al., 2019).

MRI has been routinely used in brain tumor detection and 
diagnosis. Contrast-enhanced T1 weighted (ceT1W) MR images can 
make intracranial lesions bright and provide more details by IV 
injection of gadolinium. However, GBM and Single MET both have 
enhanced core and significant peri-tumor edema on the ceT1W 
images. These similar appearances on ceT1W images pose a challenge 
for preoperative GBM and MET differentiation. Therefore, developing 
effective computational methods to distinguish between these 
intracranial tumors is of great importance.

With advancements in computer vision and deep learning, various 
techniques for automated medical image recognition and analysis 
have made remarkable progress. From traditional machine learning 
algorithms to modern end-to-end deep neural networks (Chang et al., 
2018), these innovations continue to enable intelligent classification 
and diagnosis of brain tumors based on MRI scans.

Some studies have applied machine learning and deep learning 
methods to analyze features of brain MRI images, achieving reasonable 
tumor classification and prediction accuracy. Blumenthal et al. utilized 
a support vector machine model to learn texture features from brain 
tumor images (Artzi et al., 2019), attaining moderate performance. 
Sohi et al. employed a deep convolutional neural network, obtaining 
89.0% accuracy in tumor type prediction. However, most of these 
models rely on standard convolution operations, adapted from large-
scale datasets like ImageNet, with little consideration of fine-grained, 
pixel-level semantic information (Tateishi et al., 2020). This limitation 
impedes learning of subtle, local lesion details.

To address this gap, we propose a novel deep learning model 
called SCAT-inception that optimizes module design based on the 
GoogLeNet architecture. SCAT-inception was tested and compared 
with other models in academic publications in this study.

2 Materials and methods

As illustrated in Figure 1, the experiment collected axial enhanced 
T1 weighted (ceT1W) MRI images of 321 cases of high-grade gliomas 
and isolated brain metastases. 26 cases were randomly selected from 
the total number of GBM cases, and 25 cases were randomly selected 
from the total number of MET cases, for a total of 51 cases as the 
external test dataset. The remaining GBM and MET cases were 
merged, and 251 cases were selected from the 270 cases to compose 
the training dataset and test dataset. This study comprised 251 tumor 

patients from two clinical centers (Jinling Hospital and The Second 
People’s Hospital of Yibin), including 105 glioblastoma (GBM) cases 
and 102 brain metastasis (MET) cases. Using a five-fold cross-
validation approach (Shin et al., 2021), 207 cases were partitioned into 
the training set, while the remaining 44 cases constituted the testing 
set. All included cases were solitary tumors, excluding those with prior 
surgical resection or multiple metastases. The patient age ranged from 
35 to 70 years, with approximately equal gender distribution.

2.1 Experimental procedure

2.1.1 Slices selection and ROI segmentation
As shown in Figure 2, all the ceT1W images were collected from 3 

MRI scanners of the two clinical centers. The 1.5-T scanner 
(Erlangen,Siemens Espree, Germany) was used to obtain MRI images of 
all patients before surgery. DICOM images of axial T1CE with a 
thickness of 1 mm were collected. The parameters for T1CE were as 
follows, Slicer thickness = 1 mm, Field-of-view = 130 mm, Flip angle = 15°, 
Echo time = 3.02 ms, Matrix size = 512 × 512 × 176, Repetition 
time = 1,650 ms, and Voxel dimensions = 0.997 × 0.997 × 1 mm3. The 
tumor regions were segmented via 3D Slicer software by two radiologists 
to extract the tumor core and surrounding edema, constructing three 
distinct datasets: core, edema, and overall. Considering the impact of 
dataset quality on model training, images with clearly delineated lesions 
were selected as candidate datasets. For each case, three representative 
slices exhibiting prominent pathological features were chosen, 
constituting a total analysis dataset of 753 slices. Of these, 621 slices 
across 207 cases were assigned as the training dataset, while the 
remaining 44 cases with 3 slices each formed the testing dataset.

2.1.2 Data augmentation
Data augmentation was implemented on the constructed datasets, 

encompassing cropping of tumor sub-regions, pixel value range 
normalization, data centering, random rotation and translation, and 
color contrast transformation. Post-augmentation, the image corpus 
tripled to 1863 slices, which expands dataset size, enhances sample 
diversity, improves adaptation to varied features, and promotes 
generalization capability.

2.1.3 Model training and validation
The training subsets were propagated through the SCAT-inception 

deep neural network for optimization. A five-fold cross-validation 
strategy was adopted for performance evaluation. Specifically, all 251 
cases were partitioned into five distinct sets. The model was built on 
the PyTorch framework, leveraging the Adam optimizer with a 
learning rate of 1e-2 over 250 epochs. For each cross-validation fold, 
accuracy, sensitivity, and specificity were computed on the testing 
split. Upon completing five-fold validation, the mean and variance of 
these metrics were derived. Finally, an additional 51 external cases 
were utilized to evaluate generalization ability via accuracy calculation.

2.2 Network model architecture

Owing to the relative paucity of available medical imaging data, 
shallow network architectures may lack sufficient feature learning and 
fitting capacities. Conversely, deep networks with copious parameters 
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risk overfitting. To surmount these challenges, we propose the SCAT-
inception network, achieving balanced feature extraction and 
generalization through judicious depth and width enhancement. The 
SCAT-inception algorithm encompasses multiple Inception modules 
(Szegedy et al., 2015).

As depicted in Figure 3, a spatial convolutional attention module 
termed SCAT is incorporated into the Inception structure. As depicted 
in Figure 4, this SCAT module first reduces the dimensionality of the 
feature maps using a 1 × 1 convolution, followed by another 1 × 1 
convolution to generate channel-wise attention vectors. The attention 

vectors are subsequently softmax-normalized to derive attention 
weights, which are applied in an element-wise manner to the feature 
maps, enabling the network to learn pixel-level attention distributions.

Each SCAT-inception module encompasses convolutional blocks 
of assorted sizes, including 1 × 1, 1 × 3, 3 × 3, and 5 × 5 kernels (Szegedy 
et al., 2016). The width of the inception modules was set to 5, ensuring 
model stability. Different convolution operations can capture local 
image features from distinct perspectives (Skogen et al., 2019; Romano 
et  al., 2022), thereby enabling collaborative target recognition. 
Compared to alternatives, the SCAT-inception architecture strikes an 

FIGURE 1

Flow chart showing the patient population.

FIGURE 2

Flowchat of Deep learning develepment.
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efficient balance between global and local feature learning. It combines 
the multi-branch design of Inception modules with varied receptive 
fields to concurrently learn global and local representations. By 
integrating pixel-level spatial attention modules like SCAT, it further 
acquires sensitivity to fine-grained details. This fusion of global 
context and localized attention allows comprehensive feature learning 
and expression. Relative to single-scale models, SCAT-inception 
demonstrates superior performance and efficiency.

As shown in Figure  5, the SCAT-inception network comprises 
multiple convolutional layers and diverse Inception modules. Specifically, 
it contains 3 SCAT Inception-A units, 2 SCAT Inception-B units, 4 
Inception-C units, 1 Inception-D unit, and 1 Inception-E unit, followed 

by global average pooling, Dropout, and fully-connected classification 
layers. The multi-scale convolutions within the Inception modules enable 
joint learning of global and localized image features (Sunwoo et al., 2016).

2.3 Model performance evaluation

In this study, T1-weighted contrast-enhanced (T1CE) preoperative 
MRI data were utilized, comprising a total of 251 glioblastoma and 
brain metastasis samples (Cha et al., 2007). Among these, 207 samples 
were assigned to the training set, while 44 samples constituted the 
test set.

FIGURE 3

The structure of the SCAT inception.

FIGURE 4

Spatial attention convolutional structure diagram.
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The hyperparameters for model training were configured as 
follows: 250 epochs, a learning rate of 0.01, and a dropout rate of 
0.5. The evaluation metrics employed in this study included 
accuracy, sensitivity, and specificity, calculated using the following 
Equations 1–3:

 
Accuracy TP TN TP FN TN FP� �� � � � �� �/

 (1)

 
Sensitivity TP TP FN� �� �/

 (2)

 
Specificity TN TN FP� �� �/

 (3)

In the classification task, glioblastoma (GBM) samples were 
designated as positive cases, while brain metastasis (MET) samples 
were denoted as negative cases. In the prediction outcomes, True 
Positives (TP) represent positive samples correctly classified by the 
model, True Negatives (TN) are negative samples correctly predicted, 
False Negatives (FN) denote negative samples incorrectly classified, 
and False Positives (FP) are positive samples incorrectly predicted.

2.4 Models training of VGG, UNet, and 
GoogLeNet

Several classic models including VGG, UNet (Cao et al., 2021), 
and GoogLeNet were trained using the same dataset, to serve as 
experimental comparisons. The hyperparameters for those model 
training were configured as follows: 250 epochs, a learning rate of 0.01, 
and a dropout rate of 0.5, the recognition results of several classic 
models are shown in Table 1.

Compared with models such as VGG, UNet, and GoogLeNet, the 
SCAT initial algorithm consists of different types of initial modules 
and includes spatial attention convolution modules. This enables the 
model to retain important information and recognize microscopic 
features in images such as brain tumors, while VGG is only composed 
of simple linear convolutional layers, UNet uses downsampling and 
upsampling structures, but it is more commonly used in the field of 
image segmentation. The GoogLeNet module is composed of identical 
repeating components, and its recognition feature direction is weaker 
than SCAT insertion. The diversity of SCAT feature extraction brings 
better performance than the unified structure of other networks 
lacking universal feature recognition.

3 Experimental results

Experiments were conducted via five-fold cross-validation on tumor 
core (Girshick et al., 2014), edema, and overall lesion images. The results 
are tabulated in Table  2. The accuracy on tumor core recognition 
reached 92.3%, while the edema and overall image accuracies were 85.5 
and 87.8%, respectively. The core region performance exceeded that of 
edema and overall images, potentially attributable to more archetypal 
lesions with enhanced discriminative clues in the tumor core.

FIGURE 5

The model is composed of multiple improved inception structures of different sizes. Each inception structure is composed of 1 * 1, 3 * 3, 5 * 5, SCAT, 
etc. The whole model is composed of multiple inception modules, followed by average pooling, Dropout, and linear networks.

TABLE 1 Accuracy of the three models for prediction.

Data Model Accuracy Sensitivity Specificity

T1CE VGG 75.6% 76.7% 74.5%

T1CE UNet 79.3% 81.2% 77.4%

T1CE GoogLeNet 89.5% 91.3% 88.7%

T1CE SCAT-

inception

92.3% 93.5% 91.1%
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FIGURE 7

Loss curves of the four models during training process.

As depicted in Figure  6, test set accuracy exhibited continual 
improvement with more training epochs, eventually plateauing and 
validating effective model optimization. In this study, four models 
were compared: VGG, U-Net, GoogLeNet, and SCAT-inception. The 
accuracy, sensitivity, and specificity of each model are detailed in 
Table 1. The SCAT-inception model achieved 92.3% accuracy, 93.5% 
sensitivity, and 91.1% specificity. The VGG model attained 75.6% 
accuracy, 76.7% sensitivity, and 74.5% specificity. For the U-Net 
model, the metrics were 79.3% accuracy, 81.2% sensitivity, and 77.4% 
specificity. GoogLeNet yielded 89.5% accuracy, 91.3% sensitivity, and 
88.7% specificity. Moreover, SCAT-inception produced 91.5% 
accuracy on external validation, demonstrating superior recognition 
performance compared to other models and validating the stability 
and efficacy of the proposed approach.

Additionally, the loss function of the SCAT-inception model 
exhibited a continuous decreasing trend (Figure 7). By the 100th epoch, 
the loss converged close to 0, indicating effective lesion feature learning 
by the model. Figure 8 shows the Receiver Operating Characteristic 
(ROC) curve of the classifier, with an AUC value of 0.931.

4 Conclusion

In this study, we  propose a novel deep learning model called 
SCAT-inception for classifying glioblastoma and brain metastasis in 
MRI scans. By incorporating spatial convolutional attention within 
Inception modules, the method effectively emphasizes crucial local 
lesion patterns (Kamson et al., 2013; Takao et al., 2022). Experimental 
results demonstrate that SCAT-inception achieves 92.3% accuracy and 
93.5% sensitivity, outperforming several classical models and attaining 
clinically viable performance.

In summary, the key innovations and contributions of this 
study are:

 1 Integration of spatial convolutional attention modules into the 
Inception architecture to enable adaptive learning of lesion 
attention distributions.

 2 Design of an efficient network balancing global and localized 
feature extraction.

 3 Training and validation of robust recognition efficacy on a 
brain tumor MRI dataset.

This work provides an effective deep learning solution for 
computer-assisted diagnosis of brain tumors. Future directions involve 
validating generalization on large-scale multi-center data and 
exploring multimodal integration.

5 Discussion

The SCAT-inception network achieves effective differentiation of 
glioblastoma and brain metastasis in MRI by integrating spatial 
attention mechanisms into the Inception modules to emphasize 
crucial local lesion attributes (Amemiya et al., 2022; Zhang et al., 
2023). The experimental findings demonstrate the robust classification 
capabilities of SCAT-inception. This proficiency can be attributed to 
several key architectural components: Adoption of multi-scale 
Inception modules to concurrently learn global and localized features. 
Patial attention dynamically adjusts feature map weight distributions 
along the spatial dimension, accentuating pathological details. The 
synergy between these two aspects facilitates extraction of 

TABLE 2 Five-fold cross-validation accuracy table.

Class Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Core 92.3% 91.6% 93.4% 90.8 93.5% 92.3%

Overall parts 89.8% 88.7% 90.4% 87.5% 82.5% 87.8%

Edema 87.5% 85.4% 83.2% 86.7% 84.5% 85.5%

FIGURE 6

Accuracy of the four models during Model training process.
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complementary discriminative characteristics across levels. 
Additionally, the network underwent iterative optimization to ensure 
clinical viability.

Spatial attention convolution is a convolutional neural network 
architecture that incorporates spatial attention mechanisms into 
standard convolution operations to automatically learn the more 
important spatial locations in the input feature maps of the current 
task, thereby improving model performance. An attention layer is 
added after the standard convolution layer to generate a spatial 
attention map, where each value on the attention map indicates the 
importance of the features at the corresponding location. At the same 
time, the dot product is performed between the convolution layer’s 
attention map and output feature map to achieve the effect of adjusting 
feature responses according to spatial locations. The feature responses 
at important locations are amplified while unimportant locations are 
suppressed. Additionally, the attention map is generated by a simple 
convolutional subnetwork that can be trained end-to-end with the 
main network. The spatial attention convolution mechanism was 
originally used for processing 2D images, and is mainly applied to 2D 
image analysis tasks in the field of computer vision, such as image 
classification, object detection, semantic segmentation, etc. Therefore, 
by adjusting attention based on spatial locations, modeling of key 
spatial information can be enhanced to improve the model’s ability to 
recognize important features.

The spatial convolutional attention (SCAT) module confers 
several advantages: The convolution operation retains spatial 
information and captures pixel-wise attention mappings, making it 
well-suited for images with fine-grained characteristics (Yan et al., 
2023). The convolutional parameters are relatively compact, conferring 
higher computational efficiency. Additionally, the local connectivity 
intrinsic to convolutional layers is superior for modeling local 

attention interdependencies. Moreover, the convolutional realization 
of attention is readily integrated into convolutional networks, 
facilitating embedding within Inception blocks.

Previous studies have investigated MRI-based brain tumor 
classification (Zhou et  al., 2017). Machiko et  al. applied machine 
learning to analyze MRI texture patterns, attaining 78% accuracy in 
distinguishing glioblastomas from metastases using 260 cases. Qian 
et al. extracted radiomic signatures from 412 MRI scans and tested 
various machine learning models, affirming the utility of radiomics for 
classification. Shin et al. developed a deep ResNet model, achieving 
over 88.9% accuracy on 598 samples. Relative to prior works, this study 
demonstrates competitive performance with fewer training cases of 
321, enabled by the tailored SCAT-inception design. Future efforts 
could expand the multi-center case collection to augment the data 
pool. While only MRI modalities were assessed, incorporating 
multimodal cues could further boost performance. Overall, this study 
puts forth an efficacious deep learning solution for precise brain tumor 
discrimination that warrants continued optimization and investigation.

Although spatial attention convolution has shown effectiveness in 
emphasizing information regions, current methods also have some 
limitations. The fixed attention mode limits the adaptability to 
deformation, while the addition of models also increases 
computational costs. Moving forward, solutions include lightweight 
implementations, regularization techniques, and incorporation of 
dynamic attention concepts to simultaneously retain high performance 
and versatility. Integration with interpretability analysis methods 
would further bridge the gap between outstanding results and model 
transparency. Looking forward to the forefront of the development of 
the examination evaluation mechanism in the future, in order to 
unleash the full potential of applications in both visual and non 
visual fields.

FIGURE 8

Receiver operating characteristic (ROC) curve of the classifier.
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