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In defense of local
descriptor-based few-shot
object detection

Shichao Zhou*, Haoyan Li, Zhuowei Wang and Zekai Zhang

Key Laboratory of Information and Communication Systems, Ministry of Information Industry, Beijing

Information Science and Technology University, Beijing, China

State-of-the-art image object detection computational models require an

intensive parameter fine-tuning stage (using deep convolution network, etc).

with tens or hundreds of training examples. In contrast, human intelligence

can robustly learn a new concept from just a few instances (i.e., few-shot

detection). The distinctive perception mechanisms between these two families

of systems enlighten us to revisit classical handcraft local descriptors (e.g., SIFT,

HOG, etc.) as well as non-parametric visual models, which innately require no

learning/training phase. Herein, we claim that the inferior performance of these

local descriptors mainly results from a lack of global structure sense. To address

this issue, we refine local descriptorswith spatial contextual attention of neighbor

a�nities and then embed the local descriptors into discriminative subspace

guided by Kernel-InfoNCE loss. Di�ering from conventional quantization of

local descriptors in high-dimensional feature space or isometric dimension

reduction, we actually seek a brain-inspired few-shot feature representation for

the object manifold, which combines data-independent primitive representation

and semantic context learning and thus helps with generalization. The obtained

embeddings as pattern vectors/tensors permit us an accelerated but non-

parametric visual similarity computation as the decision rule for final detection.

Our approach to few-shot object detection is nearly learning-free, and

experiments on remote sensing imageries (approximate 2-D a�ne space)

confirm the e�cacy of our model.

KEYWORDS

few-shot learning, local descriptors, contextual features, kernelmethod, visual similarity

1 Introduction

Human intelligence can robustly learn a new concept from just a few of instances (Lake

et al., 2015). For example, a child can generalize the concept of “airplane” from a single

picture in a book. Yet existing supervised machine learning models need large amounts

of labeled data and intensive parameters fine-tuning stage (Hinton and Salakhutdinov,

2006; Lecun et al., 2015). This motivates the setting we are interested in: “few-shot” object

detection or localization, which involves searching for objects in a larger target image, given

only a few query objects of these categories.

Generally, data augmentation and regularization techniques can alleviate over-fitting in

low sample complexity settings for state-of-the-art image object detection computational

models (e.g., deep convolution network), but do not solve it (Vinyals et al., 2016).

Furthermore, a naive but much more practical approach, such as fine-tuning the model

on new data, would severely over-fit. Due to the degradation on this few-shot setting,

and inspired by the few-shot learning ability of humans, two recent strategies have made
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significant progress. One of the strategies is meta-learning, which

decomposes training into an auxiliary meta-learning phase where

transferable knowledge is learned, resulting in models that once

trained can “learn” on new such tasks with relatively few examples

(Huisman et al., 2021). The other approach is metric learning,

which employs many instances of known categories to learn an

embedding into a metric space where new categories are classified

via proximity to the few labeled training examples embedded in the

same space (Kaya and Bilge, 2019). Actually, both of the strategies

still rely on large amounts of training samples. For the former, large

amounts of training instances are elaborately organized into many

meta-tasks, in which the training or support sets consist of several

instances. For the latter, flexible combination and permutation of

instances pairs/tuples demanded by the metric learning implicitly

augment the training sets. Here, we claim the crucial limitation of

the aforementioned methods lies in the over-parametric aspect of

the utilized deep model, in which extensive training examples need

to be learned by the model into its parameters.

In contrast, classical handcraft local descriptors and non-

parametric models [e.g., SIFT (Lowe, 2004), and nearest neighbor

classifier (Boiman et al., 2008)] allow novel examples to be

rapidly assimilated while not suffering from catastrophic forgetting.

Such kind of models have several intriguing advantages that are

not shared by most learning-based approaches: (a) Require no

training stages (i.e., lazy learning); (b) Avoid over-fitting of model

parameters; (c) Can naturally handle a large number of categories

via changing class/exemplars instantaneously.

Despite the aforementioned advantages, the large performance

gap between traditional handcraft features, non-parametricmodels,

and state-of-the-art deep learning-based approaches led to the

perception that classical methods are not useful. Here, we claim

that the capabilities of classical methods have been under-valued,

especially in the few-shot setting. Specifically, the arrangements

of local feature descriptors rather than themselves account for the

inferior discriminative, which can be further explained as following

two aspects:

1. Power law descriptor distribution gives rise to quantization

errors in high-dimensional space. It is well known that densely

sampled image local descriptors follow a power-law or heavy-

tail distributions (Boiman et al., 2008), which imply that most

descriptors would be rather isolated and found in low-density

regions in the high-dimensional vector space. Furthermore,

such isolated descriptors tend to be informative because they

are only found in few categories but rare in other ones. In

contrast, the frequent descriptors tend to appear abundantly

and share among most of the classes and thus are the least

discriminative for feature representation. In other words, there

are almost no intuitive “clusters” in the high-dimensional

space to group “visual vocabulary” with kmeans-based methods,

which would consecutively degrade descriptors quantization as

well as histogram scoring for global image impression.

2. Geometry preservation-based dimension reduction of

descriptors makes no sense for discriminativity enhancement

in the few-shot setting. It is well believed that the dimension

reduction of local descriptors is essential for computational

tractability and avoiding over-fitting. However, it entirely differs

from the feature representation in the few-shot setting, which

has not enough training instances (i.e., sparsity) to form a

credible object manifold in high-dimensional feature space.

In this case, the geometry preservation-based embedding of

local descriptors cannot guarantee the feature discriminativity.

Because the local descriptor groups only compose object

instances rather than be the object instances themselves,

that is, there will be no maximization interclass difference

as well as separability for the embeddings in the established

low-dimensional space.

To address these issues, we incorporate desirable characteristics

from both parametric and non-parametric models namely,

rapid acquisition of query examples while providing reliable

generalization. Previous work on visual similarity in non-

parametric setups has been influential on our model (Biswas and

Milanfar, 2016). Herein, we propose a remarkably simple local

descriptors based few-shot object detector, which requires less

training costs. We focus on the context and structure information

among local descriptors, which are inherently discriminative in

identifying objects. Specifically, we refine local descriptors with a

spatial contextual attention of neighbor affinities and then embed

the local descriptors into discriminative subspace guided by Kernel-

InfoNCE loss, which permits us an accelerated but non-trivial

object-specific similarity computation as the decision rule for

detection.

This paper is organized as follows. Section 2 briefly reports

past works, which can be classified into two categories. Section 3

analyzes our motivations on the modeling of brain-inspired feature

representation. Section 4 details the proposed approach. In Section

5, we compare our method with relevant few-shot object detection

approaches on real-world datasets, and related analyses are also

demonstrated. The conclusion is drawn in Section 6.

2 Related work

CNN-based representation learning methods have witnessed

the improvement of object detectors (Liu et al., 2016; Redmon et al.,

2016). Some of the proposed elementary tricks, such as ROI pooling

(Girshick, 2015) and multi-scale feature aggregation (Lin et al.,

2017), indeed adapt to few-shot settings. However, these methods

generally require large amounts of training data because of their

over-parametric and large-scale networks. Here, we conclude two

essential paradigms related to solving the aforementioned issue:

meta learning and handcraft feature representations.

2.1 Meta-learning

Meta-learning is a quite general learning mechanism

interpreted as a “multi-task adaption process,” which mimics the

capacity of human learning to learn. Given base training data

(i.e., knowledge of prior tasks) and novel object categories of few

supervisions to be adapted, Meta-learning devotes to a model that

simultaneously detects objects from both base and novel domains.

Existing meta-learning methods are further categorized as data

augmentation (Shorten and Khoshgoftaar, 2019), metric learning

(Wang et al., 2019), and optimization learning (Bohdal et al., 2021).
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The data argumentation methods learn to generate additional

examples for novel object categories to be accommodated. The

metric learning methods train model to predict whether two

instances belong to the same category. The optimization learning

approaches specify optimization or loss functions which force faster

adaptation of parameters to new categories with few examples.

Following some of the aforementioned meta-learning methods,

many researchers contributed few-shot detection methods that

fully exploited training data from base categories while quickly

adapting the classical detection framework to predict novel classes

(Finn et al., 2017), that is, most methods treat few-shot detection

as an extended few-shot classification problem, ignoring the role

of features for object localization. Furthermore, one can see that

the data-hungry properties still exist in the meta-learning-based

methods because large-scale training samples in both base class

and novel ones are required, which hinders their applications in

practical scenarios.

2.2 Hand-craft feature representations

For classical feature extraction methods, images are often

represented by the collection of delicately designed local image

descriptors with prior knowledge [e.g., SIFT and LARK (Seo and

Milanfar, 2010)]. Specifically, these descriptors typically model the

local similarity/dis-connectivity of the gray-scale, which results

from the statistical facts that the image is often replete with self-

similar patterns as well as abundantly appeared edges and corners.

Furthermore, the arrangement of the local descriptors also

contributes to the feature discriminativity. For instance, classical

“Bag of Words (BoWs)” employed normalized patches or SIFT

descriptors over Difference of Gaussian, Harris-scale or Harris-

affine keypoints (Mikolajczyk and Schmid, 2002), vector quantized

using k-means variants. Grauman and Darrell (2005) proposed a

fast kernel function that maps local descriptors to multi-resolution

histograms and computes a weighted histogram intersection

in feature representation space. By considering the relative

position of descriptors, Biswas and Milanfar (2016) estimated a

low-dimensional subspace where the original high-dimensional

descriptors are embedded with their geometry intact.

3 Motivation

Compared with meta-learning paradigms, we endorse the

handcraft feature representation methods because of their

encapsulation of prior knowledge and naturally learning-free

property. In addition, while contextual information is important,

this issue could not be addressed by the biological-implausible

BoWs, or obscured by the geometric-preserved low-dimensional

embedding, which actually considers the relative position of local

descriptors rather than the entire object instances, that is, the

resulting scored histogram or low-dimensional embeddings cannot

guarantee the desired discriminativity.

Here, we desire a brain-inspired representation learning

mechanism for the challenging few-shot object detection task. It is

in general acknowledged that the influence of extrinsic information

on the visual representations in the brain increases with its level in

the hierarchy (Kruger et al., 2013). This fact inspires us with dual

principles of reusability and composition. Two observations argue

for these motivations.

1. Reusable and less data-dependent local features. In the visual

world, physical objects and scenes decompose naturally into

a hierarchy of meaningful and generic parts, which could be

described by local features. On the other hand, the notion of

the feature itself has been already based upon the reusability

assumption that similar attributes will be shared among different

entities from scene to scene. These reusable local features would

be sufficient to compose the large ensemble of shapes and

objects that are in the repertoire of human vision (Jin and

Geman, 2006). In addition, we believe that the local features

are inherently data-independent because there is no report on

any learning or adaptation processes in the retina and also quite

some evidence on a high influence of genetic prestructuring for

orientation maps in V1 (Kruger et al., 2013).

2. Semantic contexts and compositional representation learning.

It is often observed that reliable object detection is notoriously

difficult when purely utilizes low-level visual cues (i.e., local

features) in a bottom-up inference framework, without more

global contextual constraints that contribute to semantic

comprehension. Actually, the semantic contexts participate in

compositional representation held by humans that perceive and

organize information as syntactically constrained arrangements

of reusable parts. More importantly, we believe that the

compositional representation should really be learned rather

than hand-craft since of its semantic flexibility. This inference

is supported by the neuroscience research: learning can alter the

visual feature selectivity of neurons, but the measurable changes at

the single-cell level induced by learning appear to be much smaller

at earlier levels in the visual hierarchy such as V1 compared to

later stages such as V4 or IT (Kruger et al., 2013). Hence, it is

perhaps no coincidence that there is an apparent compositional

structure in the ventral visual pathways of the more highly

evolved visual systems.

4 Proposed method

Our brain-inspired few-shot feature representation involves

object parsing, understanding, and localization from images.

Specific algorithms consist of three aspects:

1. Feature representation: extract handcraft local descriptors from

image patches;

2. Feature learning: learn contextual information among patches

guided by Kernel-InfoNCE loss;

3. Object inference: predict object presence with cosine similarity

measure.

The core of our algorithm is the first two steps as the inference

step is a naive sliding window searching process. Practically, we

unify feature representation and learning into a feed-forward

hierarchical network that enjoys end-to-end training, as shown

in Figure 1. We first introduce the proposed model (i.e., feature

representation) and its training in the few-shot setting and then

describe its application to the object inference.
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FIGURE 1

Overview of proposed model. We construct a layered model on

image patches. In the bottom layer, a group of image patches is

categorized as “positive” or “negative.” In the middle layer, HoG

features are extracted for each patch. In the top layer, contextual

relationships among these features are built with the guidance of

Kernel-InfoNCE Loss.

4.1 Patch based representation

Given only a few images (queries) containing objects of interest,

we would like to know where the objects of interest lie. Note that

the few-shot setting can not support modern deep neural network

training without the pretraining stage. In this case, we employ

patch-based image representation with hand-craft local descriptors,

as shown in Figure 2. Intuitively, the dense sampling will produce

many more image patches than the original large queries (i.e.,

implicit data augmentation), and then, a fine-grained visual parsing

of the object will make sense. Moreover, the handcraft descriptors

of local image patches are inherently embedded in prior knowledge,

which need not be learned with amounts of training samples.

4.1.1 Dense sampling and labeling
Assuming that the size of a image isM × N, we sample a dense

grid of patches X = {x1, x2, .., xm} as the observations. For any

image patch x ∈ R
p, we allocate a binary label y to indicate presence

(y = 1) or absence (y = 0) of the object. The corresponding

label group Y = {y1, y2, . . . ym} carry the information of global

object presence. The relationship between X and Y is modeled by

conditional probability p(Y|X).

With the dense sampled image patches, we can then utilize

conventional intersection and concurrency ratio (IoU) to quantify

whether or not the patch (partially) covers the object for following

the supervised learning stage. Specifically, given pixel or bounding

box-based annotations, we label a patch as positive if the IoU is

greater than a threshold t. In this way, we can obtain a group

of binary patch-based label masks as well as latent contextual

information (illustrated in the next subsection) from each query

image, and thus, the limited queries are fully utilized.

4.1.2 Data-independent feature representation
In our current implementation, handcraft feature descriptors

for representing the raw image patch were chosen to be HoG

(Dalal and Triggs, 2005) without loss of generality. This type of

descriptor can capture local texture information by calculating the

gradient histograms (i.e., gradient direction and intensity of local

regions). Actually, the essential gradient-like computations mimic

the function of luminance sensitive cells with a center-surround

receptive field, which emphasizes spatial change in luminance.

Notably, this type of transformation into a representation

emphasizing spatial change is performed at a very early stage,

immediately following the receptor level, before any other visual

processing takes place (Kruger et al., 2013). Hence, we advocate

this data-independent and universal feature representation for the

few-shot setting.

4.2 Context learning with Kernel-InfoNCE
loss

Patch-based representation from xi or their naive cascades x

usually contain only local information about the objects, resulting

in semantic ambiguities. The semantics or visual grammars are

inherently discriminative cues for object detection and recognition.

Thus, a further consideration of context information (i.e., the

compositional structure) among patch-based representation is

necessary. More importantly, while prior knowledge about image

statistics points to the usefulness of gradient-like computations at

the patch representation stage, there is no similar prior knowledge

that would allow to design sensible transformations for the

subsequent processing stage corresponding to the depths of the

hierarchical visual cortex. Hence, we argue that it is one of few

tractable ways of deep learning that enables the computational

model to obtain the context information. Figure 3 gives the

overview of the network model.

4.2.1 Kernel-based context representation
Inspired by the well-established Reproducing Kernel Hilbert

Space (RKHS) theory, we use kernel-based matrix to represent the

contextual information between any two local descriptors within

the global image. Theoretically, there is a nice duality homogeneity

between inner products of (deep) feature representations and

kernels. This duality can be utilized to refine neural network

modules using kernels and vice-versa (Rasmussen, 2003).

Our specific implementation involves a group of n local

descriptors X = {x1, x2, .., xm} within hand-craft feature space.

For these descriptors, we can construct a kernel matrix KX, in

which Ki,j = K(i, j) denotes the probability of xi and xj being

semantically relevant defined in the initial data annotation step.

Here, we adapt the most conventional translation-invariant kernel

function k :X ×X → R, where k(xi, xj) is equivalent to k
⋆(xi − xj)

for k⋆
:X → R. Classical Moore–Aronszajn’s theorem states that

if KX is a symmetric, positive definite kernel matrix on X , there

is a unique Hilbert space H on X for which k is a reproducing

kernel. Note that it is almost impossible to calculate the semantic

relevance of two descriptors using a predefined reproducing kernel
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FIGURE 2

Patch-based representation. Patches are obtained from the original image. Each patch is manually labeled as “posi” or “negi.” HoG features are

extracted for each patch.

FIGURE 3

Context-aware learning. We constructed a network model, guided by the Kernel-InfoNCE loss, to learn the contextual relationships of patches.

in the low-level feature space because the implicitly defined feature

mapping would not ideally align with the semantic meanings of

specific tasks. Thus, we need to further refine the local descriptors

so as to ensure the adopted translation-invariant kernel function k⋆

is still sufficient in representation, learning and inference.

Based on the established kernel, we devote to learn deep feature

mapping f :X → Z . Denote z , f (x) as the deep embedding

of x, such that the induced Gram matrix KZ representing the

semantically relevant for embeddings z closely approximates

original KX as far as possible. Here, one can see that the adopted

kernel representing contextual information helps guide to learn the

deep feature embeddings.

4.2.2 Kernel-InfoNCE loss
In this subsection, we follow the framework of kernel-based

contrastive learning with Markov random fields (MRFs) (Van

Assel et al., 2022; Tan et al., 2023). A whole comparison between

KX and KZ may be difficult since there are little object samples

in our few-shot setting. Consequently, we alternatively compare

the MRFs of two kernels KX and KZ. Each MRF introduces

a probability distribution of unweighted directed subgraphs on

the local descriptors, denoted as WX and WZ, respectively (Van

Assel et al., 2022). And then the cross-entropy loss between

WX and WZ is naturally minimized to push the KZ toward

KX. Differently, we have artificially specified the Kernel matrix
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KX (i.e., ground truth) for our few-shot and supervised learning

scenarios.

The Kernel-InfoNCE loss, a variant of InfoNCE loss function

(Chen et al., 2020), is represented as follows:

LKernel-InfoNCE = − log
k(x, xi)

∑n
j=1 k(x, xj)

(1)

where k(x, xi) denotes kernel function supported on the descriptor

xi. Technically, the Kernel-InfoNCE loss steers low-level

descriptors toward a feature space in which the positive pairs

are grouped and kept away from negative ones. More importantly,

the relationships between any sample pairs instead of individual

instances are fully considered.

Furthermore, MRFs are employed to represent the (partial)

kernel matrix in a statistical manner. Specifically, eachMRF defines

a probability distribution that describes an unweighted directed

subgraph over kernel matrix, which is defined as Equation 2:

SW , {W ∈ {0, 1}n×n|∀(i, j) ∈ [n]2,W(i, i) = 0} (2)

And the probability of randomly sampled subgraph (i.e., local

descriptors) P(W;KX) is proportional to

5(i,j)∈[n]2KX(i, j)
W(i,j) (3)

where successive multiplication in Equation 3 represents the

likelihood of subgraph been sampled. In this case, the Kernel-

InfoNCE loss could be refined by classical cross-entropy between

WX andWZ, which is defined as follows:

HKX (Z) = −EWX [logP(WZ = WX;KZ)] (4)

Benefiting to the independence of each row in the Wi,

Equation 4 could be further simplified as

HKX (Z) = −

n
∑

i=1

EWX(i,·)[logP(WZ(i, ·) = WX(i, ·);KZ)] (5)

We define P(WZ(i, j) = 1) as the probability of node i pointing

to node j, i.e., the semantic relevance between sample i and j

represented by kernel matrix. Since WX(i, ·) and WZ(i, ·) can have

multiple non-zero elements, this probability is no longer binary but

is based on the ratio of KZ(i, j) to the sum of the weights of all

outdegrees of node i. In this context, the cross-entropy 5 can be

adjusted as follows:

HKX (Z) = −

n
∑

i=1,j6=i

P(WX(i, j) = 1) log
KZ(i, j)

∑

k KZ(i, k)
(6)

One can see that the RHS of Equation 6 is exactly the Kernel-

InfoNCE loss defined in Equation 1. Technically, this formula

indicates that it first samples the augmented pairs (i, j) for each

row i with P(WX(i, j) = 1) and then optimizes the classical

InfoNCE loss so as to push KZ toward KX with the deep feature

representations f :X → Z .

4.3 Global inference leveraging cosine
similarity measure

Given the context-embedded deep featuresZ , f (X) of queries,

we can localize similar objects within a complete image, which

is a process we refer to as global inference. To comprehensively

evaluate the obtained deep features, an indiscriminate sliding

window scanning is employed to predict object presence without

any ROI or saliency detection preprocess. Figure 4 gives an example

of global inference.

Native cosine similarity measure (i.e., inner product) is adopted

to quantify the visual similarity between two deep features within

each sliding window. Our specific implementation involves two

vectors ZQ and ZTi , which represent the feature vectors, obtained

via deep mapping f , of a query sample and the ith window,

respectively. Mathematically, the visual similarity between ZQ and

ZTi is defined as follows:

ρ(ZQ,ZTi ) =< ZQ,ZTi >F= trace

(

ZT
QZTi

‖ZQ‖F‖ZTi‖F

)

ǫ[−1, 1]

(7)

where ZQ =
[ Z1

Q

‖ZQ‖F
, ...,

Zn
Q

‖ZQ‖F

]

, ZTi =
[ Z1

Ti
‖ZTi

‖F
, ...,

Zn
Ti

‖ZTi
‖F

]

. When

we focus on each column vector z, Equation 7 can be rewritten as

follows:

ρi = ρ(ZQ,ZTi ) =

m
∑

n=1

znqz
n
ti

‖ZQ‖F‖ZTi‖F
=

m
∑

n=1

ρ(znq , z
n
ti
)

‖znq‖‖z
n
ti
‖

‖ZQ‖F‖ZTi‖F

(8)

Based upon the cosine similarity measure as well as sliding

window scanning, we can obtain a confidence map in which

the element indicates the likelihood of object presence and then

place the bounding box at the high confidence region. To avoid

false alarms, two simple tricks are considered in the current

implementation. First, all of the likelihood value in confidence map

are re-scaled with the Lawley-Hotelling Trace statistic f (ρi) =
ρ2
i

1−ρ2
i

(Calinski et al., 2006), which suppresses the small correlation values

of Equation 7 or Equation 8. Second, a conventional non-maximal

value suppression process is adopted to eliminate redundant

bounding boxes.

5 Experimental setup, results and
discussions

To evaluate the effectiveness and robustness of the proposed

method, we compare it with other three handcraft-based (few-shot)

feature representation methods or detectors: LARK-PCA (Seo and

Milanfar, 2010), LARK-LPP (Biswas andMilanfar, 2016) and sparse

codes with LLE variants (hereafter called SMT) (Chen et al., 2018,

2022). Such a choice of comparison methods induces a relatively

fair comparison because all of them only utilize very few queries

for feature learning, rather than rely on large amounts of annotated

samples (i.e., base class) for model pre-training. Notably, it is the

limited queries accessibility and high utilization efficiency that

accord with practical demands of few-shot learning and object

detection task.
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FIGURE 4

Context-aware learning. We constructed a network model, guided by the Kernel-InfoNCE loss, to learn the contextual relationships of patches.

FIGURE 5

P-R curve. The values, at the intersection points of the dotted line

with slope 1 and the P-R curve, represent the EER of the four

evaluated methods.

Our experiments were conducted on a high-performance server

with the following configurations: Intel Gold 6330 CPU @ 2.00

GHz, NVIDIARTX 3090GPU, and 24GB of RAM. To fully leverage

the computational power and enable efficient programming, we

utilized the PyTorch framework with GPU acceleration.

5.1 Experimental setup

5.1.1 Benchmark
We conduct the experiment on Levir dataset (Zou and Shi,

2017), from which 414 remote sensing imageries containing

TABLE 1 Comparative results of the four methods.

The
number
of queries

The
number
of targets

EER

Proposed method 21 393 0.692

SMT 21 393 0.521

LARK-LPP 12 393 0.369

LARK-PCA 12 393 0.282

ocean-going ships are selected. Such choice results from a

deliberated trade-off between complicated real-world scenes and

synthetic ones. Technically, the utilized remote sensing imagery

approximates 2-D affine plane with desired depth degradation,

which is less complicated than the natural scene. Furthermore, the

ocean-going ships also partly exist intractable texture clusters (e.g.,

trajectories and waves), which is more challenging than synthetic

data. Practically, it has been mentioned in Deng et al. (2021), Han

et al. (2022) that understanding of visual data collected from air

platforms becomes urgently needed.

Only 21 random sampled images (i.e., objects) in the

aforementioned collection were treated as queries, and the left

images were designated as target images for model testing. For the

queries, we randomly selected 20 ones for context learning and the

left one to generate object template. In the training data setting,

4,335 small patches (32 × 32 pixels) with 10 pixels strides were

sampled. Patches with an IoU above 0.3 with the target object were

classified as positive samples, while those below this threshold were

considered as negative ones. The reason for choosing such a small

IoU value lies in the motivation that we put more emphasis on

patches with salient gradient of grayscale. In addition, this setting
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FIGURE 6

Example detections between two methods are shown here. The results from the proposed method are depicted in (A). Conversely, (B) showcases

the results by using the SMT.

enables the proposed model learn to keep the object away from

background.

5.1.2 Evaluation metrics
Precision-Recall (P-R) curve, plotting precision against recall at

various confidence thresholds, is utilized to evaluate quantitative

performance for each candidate few-shot detector. In addition, we

highlighted equal error rate (EER), a point at which recall equals

precision in the P-R curve, to indicate accuracy and reliability

across each candidate detector.

5.1.3 Parameter setting
To establish the deep feature embedding f :X → Z , we employ

conventional ResNet-18 network (He et al., 2016) without any

pretraining process, whose built-in weights were optimized with

LARS optimizer. We empirically set learning rate as 1 × 10−3,

momentum as 0.9, and weight decay as 1 × 10−6. The training

followed an adaptive schedule across a total of 50 epochs. The

inputs to the model are HoG features of patches, and the size of

HoG features is 32*32.

5.2 Results and discussions

5.2.1 P-R curve and EER evaluation
Figure 5 demonstrates that the P-R curve generated by our

method is better than other ones. Additionally, as shown in

Table 1, our method achieves a much higher EER value of 0.692,

outperforming another three ones: SMT at 0.521, LARK-LPP at

0.369, and LARK-PCA at 0.282. Such a result mainly stems from

the capacity to learn deeper contextual information of the target.

More importantly, all of the candidate detectors share similar local

descriptors (hand-craft LARK, HOG or adaptive sparse codes),

which indicates that the traditional local descriptor is actually not

that “bad,” and the context information is indeed much more

crucial that can not be neglected for the feature discriminativity.

5.2.2 Robustness to angles
Figure 6 offers a comparative analysis between our method,

shown in Figure 6A, and SMT depicted in Figure 6B. Both methods

utilize an equal number of query images. The comparison clearly

reveals that our approach, even with a single image for generating

the object template, is capable of detecting targets across a broader

range of angles. On the other hand, SMT, as shown in the

third line in Figure 6B, demonstrates limitations when dealing

with large-angle changes. The effectiveness of our method stems

from the fact that we are exploring the contextual relationships

between hand-craft features, enabling the model to optimize

spatial relationships and adapt more efficiently to complex angular

variations.

6 Conclusion and future work

In this article, we have utilized classical handcraft

local descriptors, which could lay foundation for learning-

insensitive, effective, and efficient few-shot object detection.

Given only few training samples on query targets, effectively

localizing the similar regions in an imagery is a tough task

given the few-shot setting that the inherently data-driven

DNNs undergo. To explore such concerns, we have resorted

to brain-inspired and biological-plausible computational

model.

Typically, handcraft local descriptors conventionally adopted

in encoding image contents have been embedded in expert

visual knowledge and thus naturally have no more need of fine-

tuning. However, manually arranging them without sacrificing the

descriptor’s discriminative power is not straightforward. To address

this issue, we have studied a kernel-guided spatial context feature

learning (inherently discriminative) by combining handcraft local

descriptors with global semantic relevance. Our experimental

results with HoG descriptor show that Kernel-InforNCE-guided

context learning improves detection in comparison to PCA/LPP

(with LARK descriptors) and SMT (with sparse codes) by being

aware of global structure, that is, the classical local descriptor

is actually not that “bad,” and the context information is
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much more crucial that can not be neglected for the feature

discriminativity.

Our future work involves “adaptive” context learning with

present kernel method “white box” deep embedding unrolling

visual grammar. First, it is more reasonable that the utilized kernel

matrix/graph of which meaningful edge weight assignments needs

to be explicitly formulated instead of being implicitly determined

in the data augmentation process. Alternatively, we will devote to

exploring an explainable (deep) network layer or general module

representing spatial contexts of objects. Given these improvements,

other state-of-the-art few-shot detectors (e.g., meta-learning-based

algorithms) will be further explored and compared in our future

work.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

SZ: Writing—original draft. HL: Writing—review & editing.

ZW: Writing—review & editing. ZZ: Writing—review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was partially supported by theNational Natural Science Foundation

of China (NSFC) under Grant 62201068 and the School Foundation

of BISTU under Grant 9152124103.

Acknowledgments

The authors are grateful to Zhiquan Tan for clarifying a

derivation step in his preprint paper and the reviewers and Prof.

Baojun Zhao for their encouraging and insightful advice that leads

to this improved version and clearer presentation of the technical

content.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Biswas, S. K., and Milanfar, P. (2016). One shot detection with
laplacian object and fast matrix cosine similarity. IEEE Trans.
Pattern Anal. Mach. Intell. 38, 546–562. doi: 10.1109/TPAMI.2015.245
3950

Bohdal, O., Yang, Y., and Hospedales, T. M. (2021). “EvoGrad: efficient gradient-
based meta-learning and hyperparameter optimization,” in Neural Information
Processing Systems (New York, NY).

Boiman, O., Shechtman, E., and Irani, M. (2008). “In defense of nearest-
neighbor based image classification,” in 2008 IEEE Conference on Computer Vision
and Pattern Recognition (Anchorage, AK: IEEE), 1–8. doi: 10.1109/CVPR.2008.45
87598

Calinski, T., Krzysko, M., andWolynski, W. (2006). A comparison of some tests for
determining the number of nonzero canonical correlations. Commun. Stat. B, Simul.
Comput. 35, 727–749. doi: 10.1080/03610910600716290

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. E. (2020). A simple framework
for contrastive learning of visual representations. arXiv [Preprint]. arXiv: 2002.05709.

Chen, Y., Paiton, D. M., and Olshausen, P. A. (2018). The sparse manifold
transform. arXiv [Preprint]. arXiv: 1806.08887. doi: 10.48550/arXiv.1806.
08887

Chen, Y., Yun, Z., Ma, Y., and Olshausen, B. LeCun, Y. (2022). Minimalistic
unsupervised learning with the sparse manifold transform. arXiv. [Preprint].
doi: 10.48550/arXiv.2209.15261

Dalal, N., and Triggs, B. (2005). “Histograms of oriented gradients for human
detection,” in 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), Volume 1 (San Diego, CA: IEEE), 886–893.
doi: 10.1109/CVPR.2005.177

Deng, C., He, S., Han, Y., and Zhao, B. (2021). Learning dynamic spatial-temporal
regularization for uav object tracking. IEEE Signal Process. Lett. 28, 1230–1234.

Finn, C., Abbeel, P., and Levine, S. (2017). “Model-agnostic meta-learning for
fast adaptation of deep networks,” in International Conference on Machine Learning
(New York, NY: PMLR), 1126–1135.

Girshick, R. (2015). “Fast R-CNN,” in Proceedings of 2015 IEEE International
Conference on Computer Vision (Santiago), 1440–1448.

Grauman, K., and Darrell, T. (2005). “The pyramid match kernel: discriminative
classification with sets of image features,” in Tenth IEEE International Conference
on Computer Vision, Volume 2 (Beijing: IEEE), 1458–1465. doi: 10.1109/ICCV.
2005.239

Han, Y., Liu, H., Wang, Y., and Liu, C. (2022). A comprehensive review for typical
applications based upon unmanned aerial vehicle platform. IEEE J. Select. Top. Appl.
Earth Observ. Remote Sens. 15, 9654–9666.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (Las Vegas, NV: IEEE), 770–778. doi: 10.1109/CVPR.2016.90

Hinton, G. E., and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data
with neural networks. Science 313:504. doi: 10.1126/science.1127647

Huisman, M., Van Rijn, J. N., and Plaat, A. (2021). A survey of deep meta-learning.
Artif. Intell. Rev. 54, 4483–4541. doi: 10.1007/s10462-021-10004-4

Jin, Y., and Geman, S. (2006). “Context and hierarchy in a probabilistic image
model,” in 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), Volume 2 (New York, NY), 2145–2152.
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