
TYPE Original Research

PUBLISHED 30 April 2024

DOI 10.3389/fnins.2024.1346374

OPEN ACCESS

EDITED BY

Krishna Kumar Mohbey,

Central University of Rajasthan, India

REVIEWED BY

Neha Sharma,

Delhi Technological University, India

Zhe Huang,

University of Illinois at Urbana-Champaign,

United States

*CORRESPONDENCE

Tianlu Mao

ltm@ict.ac.cn

RECEIVED 29 November 2023

ACCEPTED 11 April 2024

PUBLISHED 30 April 2024

CITATION

Liu S, Sun J, Yao P, Zhu Y, Mao T and Wang Z

(2024) DTDNet: Dynamic Target Driven

Network for pedestrian trajectory prediction.

Front. Neurosci. 18:1346374.

doi: 10.3389/fnins.2024.1346374

COPYRIGHT

© 2024 Liu, Sun, Yao, Zhu, Mao and Wang.

This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

DTDNet: Dynamic Target Driven
Network for pedestrian
trajectory prediction

Shaohua Liu1, Jingkai Sun1,2, Pengfei Yao2,3, Yinglong Zhu1,2,

Tianlu Mao2* and Zhaoqi Wang2

1School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China,
2Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing

Technology, Chinese Academy of Sciences, Beijing, China, 3School of Computer Science and
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Predicting the trajectories of pedestrians is an important and di�cult task for

many applications, such as robot navigation and autonomous driving. Most

of the existing methods believe that an accurate prediction of the pedestrian

intention can improve the prediction quality. These works tend to predict

a fixed destination coordinate as the agent intention and predict the future

trajectory accordingly. However, in the process of moving, the intention of a

pedestrian could be a definite location or a general direction and area, and may

change dynamically with the changes of surrounding. Thus, regarding the agent

intention as a fixed 2-d coordinate is insu�cient to improve the future trajectory

prediction. To address this problem, we propose Dynamic Target Driven Network

for pedestrian trajectory prediction (DTDNet), which employs a multi-precision

pedestrian intention analysis module to capture this dynamic. To ensure that

this extracted feature contains comprehensive intention information, we design

three sub-tasks: predicting coarse-precision endpoint coordinate, predicting

fine-precision endpoint coordinate and scoring scene sub-regions. In addition,

we propose a original multi-precision trajectory data extraction method to

achieve multi-resolution representation of future intention and make it easier to

extract local scene information. We compare our model with previous methods

on two publicly available datasets (ETH-UCY and Stanford Drone Dataset). The

experimental results show that our DTDNet achieves better trajectory prediction

performance, and conducts better pedestrian intention feature representation.

KEYWORDS

multimodal trajectory prediction, pedestrian intention prediction, multi-precision

motion prediction, multi-task neural network, trajectory endpoint prediction

1 Introduction

Trajectory prediction is an essential research area that has various applications in

autonomous driving (Bennewitz et al., 2005; Ma et al., 2019; Chandra et al., 2020),

robot navigation (Rasouli et al., 2019), and surveillance systems (Oh et al., 2011; Sultani

et al., 2018). For instance, in autonomous driving, vehicles need to estimate the future

movements of pedestrians to avoid collisions and plan a safe driving path.

One of the basic challenges for trajectory prediction is to analyze the pedestrian future

intention in the changing context, such as whether the pedestrian intends to cross the road

before or after a car passes. This analysis can provide a useful information for trajectory
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prediction. Recently, some works have considered the agent

intention prediction in the trajectory prediction task, such as

PECNet (Mangalam et al., 2020), TNT (Zhao et al., 2021),

DenseTNT (Gu et al., 2021), and so on. However, these methods

simplify the problem by assuming that the agent intention

endpoint, which reveals the agent movement intention, remains

constant during the prediction range.

In fact, predicting the endpoint coordinates of pedestrians

is a very challenging task. Pedestrians will dynamically adjust

their intent endpoint coordinates in respond to the change of

scene information in different regions. As shown in Figure 1,

the pedestrian in the red frame is the target pedestrian. In

the left image, the vehicle on the right is parked at the

upper right of the image and has no tendency to move

forward. At this time, the short-term movement target of the

pedestrian is the red star below the vehicle. However, during the

movement of the pedestrian, the vehicle starts to move forward,

blocking the original movement target of the pedestrian. Due to

environmental changes, pedestrians must change their original

intention and move toward the green star at the upper right.

It is important to dynamically analyze the pedestrian’s intent

coordinate by combining the pedestrian’s motion state and scene

characteristics.

In addition, when modeling the future intention of the

pedestrian, existing methods generally use the multi-layer

perceptrons (MLPs) to predict a 2-d coordinate as the intention

feature. Huang et al. (2021) models the intention with a Mutable

Intention Filter to address the drift in long-term pedestrian

trajectory prediction, and its experiment demonstrates the goal

prediction is changing during the prediction process. But there

are limitations in the work. Firstly, this work assumes that all

targets are located at the scene edges, which is unrealistic. And it

models the intention with specific 2-D locations. The pedestrian’s

movement intention information should not be modeled as a

specific physical coordinate, and the observable coordinate cannot

fully represent the pedestrian’s intention to help predict the future

trajectory as in Figure 1.

In this paper, we model the intention as features that

combine both fine-precision destination and coarse-precision

region representation, and could be dynamically changed in

the prediction process, consider the dynamic changing caused

by environment and pedestrian. To extract a feasible dynamic

intention feature, we propose a multi-precision pedestrian

intention analysis module, which dynamically predicts intent from

the scene information and history trajectory. We generate the

coarse-precision coordinate from the history trajectory, then we use

the scene heatmap and the coarse-precision coordinate to calculate

the local dynamic feature. By combining the local dynamic feature

and the coarse-precision coordinate, we predict agent intention

feature as an assistance to predicting the future trajectory. In

addition, three sub-tasks including prediction of coarse-precision

endpoint coordinate, fine-precision endpoint coordinate and scene

sub-regions scoring are proposed to help training the feasible

dynamic agent intent extraction module.

We propose Dynamic Target Driven Network for pedestrian

trajectory prediction (DTDNet). First, we use a motion pattern

encoding module to extract movement patterns from pedestrian

historical trajectories. After that, we use multi-precision pedestrian

intention analysis module to extract the feasible intention based

on multi-precision feature input. At the same time, multi-precision

intention analysis sub-tasks are introduced to aid pedestrian intent

information extraction. Finally, a pedestrian trajectory decoding

module based on the CVAE generation framework combines

pedestrian movement patterns and scene information to predict

pedestrian intent coordinates dynamically. The contributions of

this paper are as follows:

1. We discuss the dynamic changing attribute of pedestrian

intention prediction process, and propose a novel module to

extract the dynamic intention feature accordingly. This module

encodes the pedestrian future intention at each time steps

iteratively with scene information, and we propose a multi-task

structure to aid the feature learning process with three related

subtasks.

2. We propose a novel multi-precision pedestrian trajectory

data representation method to estimate the multi-precision

intention, including three aspects: coarse-precision coordinates,

fine-precision coordinates, and local scene information.

3. We design a new trajectory prediction model DTDNet, which

conducts the prediction with dynamic intention modeling

and multi-precision history data. Qualitative and quantitative

experiments show that this model outperforms current methods

and predicts endpoint coordinates closer to the future endpoint.

2 Related work

2.1 Trajectory prediction

Early researches on trajectory prediction are based on hand-

craft rules and energy potentials. Helbing andMolnar (1995) model

the force between pedestrians by attractive force and repulsive

force. However, with the limitation of the hand-craft functions, the

previous approaches cannot model the complicated interactions in

crowded scenarios. Trajectory prediction is a time series prediction

task, many data-driven methods (Oliveira et al., 2021; Zhang

et al., 2022) have been proposed to solve this problem in recent

years. Alahi et al. (2016) propose one of the earliest deep learning

models for trajectory prediction, which uses a grid-based “social

pooling” layer to aggregate the hidden state of the pedestrians in

the neighborhood. Gupta et al. (2018) also use the pooling-based

method and propose a “pooling module” to share information of

all the pedestrians in the whole scene. Vemula et al. (2018) and

Kosaraju et al. (2019) introduce the attention mechanism to assign

different importance to different agents. Recent works (Huang

et al., 2019; Hu et al., 2020; Mohamed et al., 2020; Tao et al., 2020)

are all graph-based methods that use graph neural networks to

model the interactions among the pedestrians.

2.2 Human-scene interaction

Pedestrian motion is not only affected by surrounding

pedestrians, but the layout features of the scene also limit the

movement space of pedestrians. Therefore, effectively extracting
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FIGURE 1

Dynamic change of the pedestrian intention.

scene information plays a crucial role in trajectory prediction.

Some works (Vemula et al., 2018; Huang et al., 2019) use

VGGNet to encode a large scene’s complete overhead image

information. The model can learn any scene information and use

the visual attention mechanism to assign important spatial regions

to pedestrians. To incorporate scene category information, Yao

et al. (2021) use a semantic segmentation model to process scene

pictures. Pixel-level scene category information can be obtained by

using semantic segmentation information. However, this method

still has ambiguous information and does not know whether

pedestrians in this category could move forward.Wang et al. (2022)

proposed a heat map construction method based on historical

trajectory statistics and used the GLU module to model scene

information continuity.

2.3 Human intention prediction

Pedestrians have subjective intentions to guide themselves

to reach their expected goals. Recently, some researchers have

begun to research the endpoint prediction of pedestrians.

Mangalam et al. (2020) used the CVAE module to predict

the endpoint information and then predicted the complete

trajectory. Different from the previous model, Lerner et al.

(2007) used the bidirectional trajectory fitting method to

predict the complete trajectory in the stage of generating the

complete trajectory. Zhao et al. (2021) propose to set up

multiple candidate endpoints in the region where pedestrians

are likely to reach and score different candidate endpoints

based on pedestrian characteristics. Gu et al. (2021) improved

TNT (Zhao et al., 2021) and proposed a trajectory prediction

method without pre-defining candidate targets. It dramatically

improves the performance of target estimation without relying

on heuristic predefined target quality. Unlike previous work

that only modeled a single long-term objective, Robicquet

et al. (2016) proposed a step-wise objective-driven network for

trajectory prediction that evaluates and uses the goal at multiple

time scales.

3 Method

In this section, we introduce structure of our DTDNet model,

as shown in Figure 2. At first, we present the construction of multi-

precision data. Then we discuss the three sub-networks of DTDNet:

the motion pattern encoding module, multi-precision pedestrian

intention analysis module and trajectory decoding module.

3.1 Formulations

We assume that there are N pedestrians in the scene I, the

position coordinates of pedestrian i at time step t is denoted

as Pti = (xti , y
t
i ). Our model uses historical trajectories Pi_h =

{Pti , t ∈ [1,Tobs]} to predict the future locations P̂i_f = {P̂ti , t ∈
[Tobs+1,Tpre]} and minimize the distance between prediction and

future trajectory
Tpre
∑

t=Tobs+1

N
∑

i=1
‖ P̂ti − Pti‖2.

3.2 Multi-precision data construction

We get three kinds of data for the model to perform the multi-

precision modeling, namely fine-precision coordinates, coarse-

precision coordinates, and dynamic local scene information.

3.2.1 Coarse precision coordinate generation
A schematic diagram of coarse-precision coordinates is shown

on the left in Figure 2, the model divides the global scene into

multiple sub-regions. The region coordinates are the input coarse-

precision coordinates, which retain the physical information of the

scene location and are easy to combine with the scene information.

First, we collect coordinate ranges (xmin, xmax, ymin, ymax) of

different scenes based on the training data. Following the principle

of equal spacing, we get the segmentation space of each region

according to the set division resolution R = m×n. Furthermore, we

could use the pedestrian’s current position Pi, the coordinate range
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FIGURE 2

Overview of our proposed DTDNet. Take fine-precision, coarse-percision pedestrian coordinate and local scene information as input, the DTDNet is

consisted of three parts: a motion pattern encoding module based on pedestrian historical trajectories (blue), a dynamic multi-task intent analysis

module based on multi-precision feature input (orange), a multi-modal trajectory decoding module based on the CVAE freamwork (green and

brown). Green part in the CVAE module is used only in the training stage.

Require: The target resolution of region partition

R = m × n, the coordinate scope of the scene

(xmin, xmax,ymin,ymax), the position of each

pedestrian Pi (i ∈ [1,N])

1: Initialize i=0

2: Initialize the regional coordinates matrix

PR = zeros(N × 2)

3: while i < N do

4: PRi(x) = ⌊ (Pi(x)−xmin)∗m
(xmax−xmin)

⌋
5: PRi(y) = ⌊ (Pi(y)−ymin)∗n

(ymax−ymin)
⌋

6: end while

7: Return PR

Algorithm 1. Strategy of coarse-precision coordinate generation.

of the scene (xmin, xmax, ymin, ymax), and the length of the region to

calculate the coarse precision coordinates. By using Algorithm 1,

we could get the pedestrians’ coarse precision coordinates PR as

shown in Algorithm 1.

3.2.2 Fine precision coordinate generation
After obtaining the coarse-precision coordinates of pedestrians,

we perform data pre-processing on both fine-precision coordinates

and coarse-precision coordinates. To increase the generation

capability of the model, we set the position (xTobs , yTobs ) of the

target pedestrian at the last observation time step as the origin, and

convert the absolute position into relative position according to the

position of origin.

We adopt the same data pre-processing method as

Trajectron++ (Salzmann et al., 2020). In addition to the position

coordinates, the input data also uses the first-order derivation

and second-order derivation of position to calculate the speed

information and acceleration information in both x and y direction.

And we augment the training dataset by rotating all trajectories

every 15 degrees around the origin point.

3.2.3 Dynamic scene information
Most existing methods use semantic segmentation of the

scene image to model scene information. Although semantic

segmentation information has proved useful in 3D stereo

reconstruction and other fields, this information is ambiguous and

lacks the interaction semantics between scenes and pedestrians.

For example, the lawn beside the road is defined the same as the

lawn in the park. However, the lawn in the park is allowed for

pedestrians to walk, and the roadside lawn is generally prohibited

for pedestrians. The two have the same semantic information, but

different social rules.

To solve the ambiguity of pedestrian interaction with semantic

segmentation and make the scene information guide pedestrian

future movement more accurately, DTDNet uses the method of

STHGLU (Wang et al., 2022) to get the probability heatmap of

each scene generated from historical trajectory collections. This

method could provide the distribution of pedestrian movable area
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and the corresponding probability information. Coarse-precision

coordinates keeps the spatial location information of the scene,

combined with the regional information to get the local scene

information.

Assuming that the coarse precision of the scene isR = m×n, we

divide each sub-region with the precision of 9 × 9, and obtain the

global scene information with the precision of R = 81 × m × n.

At each moment, the model dynamically models the local scene

s based on the pedestrian coarse-precision coordinate, provides

information to guide the pedestrian futuremovement and avoid the

pedestrian moving into the unreasonable area.

3.3 Motion pattern encoding sub-network

As shown in the upper blue part of Figure 2, the backbone of

motion pattern encoding module is GRU, which inputs the fine-

precision coordinates of pedestrians to model the motion pattern

feature of pedestrians.

In Equation 1, we encode three input trajectory data including

the position xt , yt , velocity 1xt ,1yt and acceleration axt , ayt to

the pedestrian motion hidden representation et . In addition to

the pedestrian motion state et , as shown in Equation 2, the model

includes the pedestrian target intent vector gt . At each moment, the

endpoint decoding module uses the MLP as fgoal to map the output

of GRU to the endpoint coordinates p̂tg of pedestrian, as shown in

Equation 3. The goal prediction is trained with Lossdes, as shown

in Equation 4. The goal prediction is trained with Lossdes, which is

the distance between the real and the predict goal. Generation of

the target intention vector gt from ht will be introduced in detail in

Section 3.4.2.

et = fe
(

xt , yt ,1xt ,1yt , axt , ayt;We

)

(1)

ht = GRU
(

ht−1, eti , g
t;WGRU

)

(2)

p̂tg = fgoal
(

ht;Wgoal

)

(3)

Lossdes = MSE
(

p̂tg , pg

)

(4)

3.4 Dynamic pedestrian target prediction

3.4.1 Multi-precision pedestrian intention
analysis sub-network

In the model, the output ht is used to predict the pedestrian

target coordinates at each time step, using the mean square error

as loss can not guarantee complete converge at. In order to model

the pedestrian’s target intention and achieve a better convergence

effect, we design a pedestrian dynamic intent prediction sub-

network to update the pedestrian’s intent dynamically.

The model input of the sub-network consists of three parts:

the fine-precision coordinate pf , the coarse-precision coordinate

pc, the scene information s. It is the same as Equation 1, the multi-

layer perceptron encodes the fine-precision pf and coarse-precision

pc coordinate and obtains embeddings ef and ec, respectively. As

shown in Equation 5, the model uses the convolutional neural

network (CNN) to encode the local scene information st to

obtain hts.

hts = CNN
(

st;Wcnn

)

(5)

In order to model the time series features and fuse them with

the modeling information of the main network, we also use GRU

to model the sequence of three kinds of information input by

the sub-network. As shown in Equation 6, the input of the GRU

model of the sub-network contains et
f
, etc, h

t
s three dimensions of

information, the output ht
sub

is the intent embedding predicted by

the sub-network at time t, andWGRUsub is the training parameters.

htsub = GRU
sub

(

ht−1
sub

, etf , e
t
c, h

t
s;WGRU

sub

)

(6)

3.4.2 Multi-precision pedestrian intention
analysis sub-tasks

To extract the pedestrian intention feature, in addition to

predicting the fine-precision coordinates of the target coordinate,

DTDNet proposes two additional sub-tasks to model the

pedestrian intent information, namely predicting the coarse-

precision endpoint region and score the pedestrian intent

destination region.

The first sub-tasks is shown in Equation 7. The model uses the

MLP ff to map the pedestrian motion intention embedding ht
sub

to

predict the fine-precision coordinates of the pedestrian intention,

whereWf are trainable parameters.

p̂f = ff
(

htsub;Wf

)

(7)

The second sub-tasks is shown in Equation 8. The model

uses the MLP fc to map the pedestrian motion intention vector

ht
sub

to predict the coarse-precision coordinates of the pedestrian’s

endpoint, whereWc are the model update parameters.

p̂c = fc
(

htsub;Wc

)

(8)

The third sub-task is to estimate the likelihood of all sub-

regions. First, the model uses the MLP fscore to map ht
sub

, where

Wscore are the model update parameters. Then uses the Softmax

function to score R = m × n sub-regions in the scene, as shown

in Equation 9. Because there is only one ground truth region, we

set the score of the true region to 1 and the scores of other regions

to 0.

score = Softmax(fscore(h
t
sub;Wscore)) (9)

Through the above introduction, the loss function of the sub-

network consists of three parts as shown in Equation 10. Where p̂

is the endpoint coordinate predicted by the model, p is the actual

endpoint coordinate, score is the region scoring result, the label

is the actual region scoring label, and LCE is the cross-entropy

function.

Losssub = RMSE
(

p̂f , pf
)

+ RMSE
(

p̂c, pc
)

+LCE(score, label)
(10)
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However, since the current sub-network and the main network

are decoupled, the main network cannot use the sub-networks

loss function to assist in the model update. In order to use

the back-propagation of the model to update the two networks

synchronously, we design two network fusion schemes to couple

the two parts of the network.

The first method is to fuse the motion state of the main network

with the important scene information selected by the sub-network.

The sub-network of the model scores the importance ofm× n sub-

regions at each moment and selects the Top K with the highest

scores. The target sub-region is used as the key region, and the CNN

shown in Equation 5 encodes the selected K regions, respectively.

hts =
K
∑

j=1

scorej × h
j
s (11)

After encoding K regions, the model uses Equation 11 to fuse

K scene information to obtain the crucial regional information

that pedestrians need to consider. Finally, the multi-attention

mechanism and residual connection are used to combine the two

networks to get the target intention vector gt .

sr = Softmax

(

<WQh
t
r ,WKh

t
s,r >√

D

)

(12)

gt =
∑

r∈{1,...,p}sr ·
(

WVh
t
s,r

)

+ ht (13)

Where < ·, · > is the inner product operator, and r ∈ {1, ..., p},
WQ, WK and WV are trainable parameters, ht is the output of the

motion encoding network GRU of time step t, D is the embedding

dimension of ht , p is the number of heads in the multi-head

attention mechanism, sr is the attention score, and gt is the target

intent embedding.

The fusion method introduced in Algorithm 1 directly

combines K important scene information, which may introduce

excessively artificially set rule information. It is difficult to

determine the optimal value of parameter K. Therefore, we attempt

to directly fuse the output ht
sub

of the sub-network with the GRU

output ht of the main network using the attention mechanism

introduced in Equations 12, 13.

3.5 Trajectory decoding sub-network

This sub-network utilizes CVAE based framework to generate

multi-modal trajectories. CVAE framework is composed by

an encoding module and a decoding module. The encoding

network is further divided into a recognition distribution network

qψ (z|Ph,Pf) and a prior distribution network pθ (z|Ph) given future

ground truth trajectory as Pf = {Pt , t ∈ [Tobs+1,Tpre]}.
As shown in Equation 14, the model encodes the pedestrian

historical and future motion feature, and generates the mean µ and

variance σ corresponding to a Gaussian distribution, and samples

high-dimensional latent variable z from Gaussian distribution

N(µ, σ ). Then combines the sampled high-dimensional latent

variable z with the GRU output ht to obtain the hidden state

ht
dec

, and iterate the hidden state at each time step, as shown in

Equations 15, 16. Finally use the decoding module Equation 17 to

predict the complete future trajectory.

µ, σ = qψ (z|Ph,Pf), z ∼ N(µ, σ ) (14)

h
Tobs
dec

= fmlp

(

hTobs ⊕ z;Wmlp

)

(15)

ht+1
dec

= D− GRU
(

htdec, fpred
(

x̂t , ŷt;Wpred

))

(16)

x̂t+1, ŷt+1 = fdecoder
(

ht+1
dec

;Wdecoder

)

(17)

Where qψ , fmlp,fpred,fdecoder are implemented as MLPs, and

⊕ represents the concatenate operation. h
Tobs
dec

represents the

initial embedding of decoder GRU(D-GRU), hobs is the motion

information of the pedestrian at time Tobs, z represents the latent

variable generated by the CVAE framework; x̂t ,ŷt represents the

pedestrian position predicted by the model at time step t.

In the testing phase, the latent variable z is directly sampled

from pθ (z|Ph), and the recognition distribution is not calculated.

We use KL divergence to make sure that prior distribution is same

with the recognition distribution in the training stage, as shown

in Equation 18. Finally, the model is trained end-to-end from loss

Lossvariety, which is composed by the KL-divergence, sub-tasks loss,

goal prediction loss, and the distance between the best prediction

and the future trajectory, as shown in Equation 19.

LossKLD = KLD(qψ (z|Ph,Pf), pθ (z|Ph)) (18)

Lossvariety = min
k

Tpre
∑

t=Tobs+1

∥

∥p̂tk − pt
∥

∥

1
+ Lossdes

+LossKLD + Losssub

(19)

4 Experiments and results

Datasets: We evaluate the performance of our model and

report results on two real-world public datasets: ETH-UCYDataset

(Pellegrini et al., 2009; Dendorfer et al., 2021) and Stanford Drone

Dataset (Shi et al., 2021). ETH-UCY contains five subsets: ETH,

HOTEL, UNIV, ZARA1, ZARA2. It contains 1,536 pedestrians and

introduces interactions like group interactions, collision avoidance.

We follow the experimental settings in Trajectron++ (Yu et al.,

2020), which convert the data to the world coordinate system and

split them into 8 s segments (20 time steps). We use historical

3.2 s (eight time steps) to predict the future 4.8 s (12 time

steps). Stanford Drone Dataset contains 20 scenes. We use the

data released by NMMP (Tao et al., 2020), whose coordinates of

trajectories are provided in pixels, and the experimental settings

are the same as ETH-UCY. For the ETH-UCY and Stanford

Drone Dataset, we use the leave-one-out evaluation strategy to test

different models.

Implementation details: We train our models with Adam

optimizer, batch size 64, learning rate 0.0001 on a single NVIDIA

Tesla T4 GPU. In coarse-precision modeling, we adopt different

partitioning strategies. We divide ETH-UCY into 5×5 regions, and

Stanford Drone Dataset into 9× 9 regions. The resolution of scene
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TABLE 1 Quantitative results of all the previous state-of-the-art methods and our model on ETH-UCY.

Method ETH HOTEL UNIV ZARA1 ZARA2 AVG

PMP-NMMP (Tao et al., 2020) 0.61/1.08 0.33/0.63 0.52/1.11 0.32/0.66 0.29/0.61 0.41/0.82

Social-STGCNN (Hu et al., 2020) 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.48 0.30/0.48 0.44/0.75

STAR (Yuan et al., 2021) 0.36/0.65 0.17/0.36 0.31/0.62 0.26/0.55 0.22/0.46 0.26/0.53

PECNet (Mangalam et al., 2020) 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48

Trajectron++ (Yu et al., 2020) 0.43/0.86 0.12/0.19 0.22/0.43 0.17/0.32 0.12/0.25 0.21/0.41

MG-GAN (Dendorfer et al., 2021) 0.47/0.91 0.14/0.24 0.54/1.07 0.36/0.73 0.29/0.60 0.36/0.71

SGCN (Shi et al., 2021) 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65

Agentformer (Yuan et al., 2021) 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 0.23/0.39

DTDNet (No sub-tasks) 0.38/0.69 0.13/0.24 0.23/0.47 0.13/0.27 0.12/0.24 0.20/0.38

DTDNet (Ours) 0.37/0.67 0.13/0.23 0.21/0.44 0.13/0.26 0.12/0.23 0.19/0.36

We calculate the metrics for Tobs = 8 (3.2s) and Tpre = 12 (4.8 s) (best of 20 samples). The bold value indicates the best result.

TABLE 2 Quantitative results of all the previous state-of-the-art methods and our model on ETH-UCY.

Method ETH HOTEL UNIV ZARA1 ZARA2 AVG

STGAT (Mohamed et al., 2020) 0.88/1.66 0.56/1.15 0.51/1.13 0.41/0.91 0.31/0.68 0.51/1.11

STAR (Yuan et al., 2021) 0.56/1.11 0.26/0.50 0.52/1.15 0.41/0.90 0.31/0.71 0.41/0.87

Trajectron++ (Yu et al., 2020) 0.71/1.68 0.22/0.46 0.41/1.07 0.30/0.77 0.23/0.59 0.37/0.95

DTDNet (Ours) 0.63/1.42 0.25/0.51 0.43/1.01 0.26/0.63 0.24/0.57 0.36/0.83

We calculate the metrics for Tobs = 8 (3.2 s) and Tpre = 12 (4.8 s) (one sample). The bold value indicates the best result.

information for each sub-region is 9 × 9. MLP and GRU hidden

layer dimension are set to 256. The dimension of latent variable

z is 64, which is sampled from a CVAE framework generated

distribution. The hyper-parameter of variety loss weight is

set to 20.

4.1 Quantitative evaluation

We compare our method with seven state-of-the-art methods,

including PMP-NMMP, Social-STGCNN, STAR, PECNET,

Trajectron++. The results are shown in Table 1, which are

evaluated with the ADE and FDE metrics. The results indicate

that our method significantly outperforms all the competing

methods on the ETH and UCY datasets. Our method outperforms

Agentformer (Yuan et al., 2021) by 17.4% on the ADE metric,

and on the FDE metric, our method outperforms Agentformer

by 7.7%.

To compare the results of deterministic sampling, we compared

the past three models, namely STGAT, STAR, and Trajectron++.

The experimental results are shown in Table 2. Although our

method is consistent with Trajectron++ in ADE metrics, our

method is superior to Trajectorn++ by 12.6% in FDE, which shows

that the intent predictionmodule has played a role, and pedestrians’

intent coordinates could be predicted more accurately.

Table 3 shows the experimental results of Stanford Drone

Dataset. The scenes of Stanford Drone Dataset are rich and various,

and our model performs better than all previous works on this

dataset. We outperform the best Trajectron++ model on the ADE

metrics by 7.1%, and in the FDE metrics, our method outperforms

TABLE 3 Quantitative comparison on Stanford Drone Dataset.

Method ADE FDE

Sophie (Vemula et al., 2018) 16.3 29.4

PMP-NMMPN (Tao et al., 2020) 14.7 26.7

STGAT (Mohamed et al., 2020) 14.2 26.7

MG-GAN (Dendorfer et al., 2021) 13.6 25.8

Trajectron++ (Yu et al., 2020) 9.9 16.8

PECNet (Mangalam et al., 2020) 10.0 15.9

DTDNet (Ours) 9.2 15.4

Given previous 3.2 s, predicting future 4.8 s. ADE/FDE is reported in pixels (20 samples). The

bold value indicates the best result.

the PECNet model by 3.1%. It means that our model has a better

ability in the migration of different scenes.

4.2 Ablation study

To verify the role of the auxiliary loss function in the sub-

tasks, we designed an ablation experiment on ETH-UCY dataset for

comparison in the last two lines of Table 1. The ablation model still

retains local scene information and coarse-precision coordinates

but does not add the loss function for auxiliary sub-tasks updates.

Compared with the ablation model, the whole model can improve

the ADE and FDE metrics by 5.0 and 5.6%, respectively.

To evaluate the promotion effect of the three sub-tasks on

pedestrian intent prediction, as shown in Table 4, we designed
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four ablation models on SDD dataset for comparative experiments:

(1) Replace the CVAE module with Gaussian noise sampling,

(2) without the sub-task of scene scoring, (3) without the

coarse-precision prediction sub-task, (4) without the fine-precision

prediction sub-task. It shows that the fine-precision prediction task

is still the most effective task that affects the trajectory prediction

results most significantly. The coarse-precision prediction and

scene scoring tasks also could improve the trajectory prediction

effect. Our model does not take any pedestrian interaction

information into consideration, which shows that only using

pedestrian motion features and scene information could achieve

sota results.

To evaluate the effectiveness of the sub-tasks and choose an

appropriate region division accuracy, we conduct experiments in

Tables 5, 6. In Table 5, we conduct experiments with different coarse

precision settings on the SDD dataset, and the ADE/FDE results

show that the 9 × 9 precision division results are better than

other precision settings. In Table 6, we evaluated the recall for the

important region scoring sub-tasks at time step T8 and compared

the effects of different region division accuracy and different recall

numbers. TP is the number of target regions recalled by the model,

P is the number of samples in the test experiment, each sample

has only one target region, and Precall is the recall rate, as shown

in Equation 20.

Precall =
TP

P
× 100% (20)

TABLE 4 Ablation study of DTDNet structure on Stanford Drone Dataset.

Method ADE FDE

No CVAE module 9.7 16.4

No scene scoringmodule 9.4 15.8

No coarse precision loss function 9.5 15.9

No fine precision loss function 9.6 16.1

DTDNet (Ours) 9.2 15.4

Given previous 3.2 s, predicting future 4.8 s. ADE/FDE is reported in pixels (choose the best

from 20 samples). The bold value indicates the best result.

TABLE 5 Ablation study of di�erent coarse precisions on Stanford Drone

Dataset (ADE/FDE is reported).

Precision ADE FDE

5× 5 9.4 15.8

9× 9 9.2 15.4

15× 15 9.3 15.5

The bold value indicates the best result.

Table 6 shows that the model recalls the Top 1 scored region,

and the recall rate of the target area is more than 60%. When the

recall number is 6, the recall rate of the target region is close to

100%. The regional scoring task can identify important areas and

predict the target region of pedestrians with better accuracy. Table 6

shows that the recall rate of the model in the 9 × 9 precision are

better than the 5× 5 or 15× 15 precision. This result is consistent

with the results in Table 5, so we set the coarse precision size to 9×9

on dataset with a larger scene.

4.3 Qualitative evaluation

4.3.1 Visualization of the DTDNet and ground
truth

We select two motion modes for display: group motion and

pedestrian motion to avoid collision. In Figures 3A, B, multiple

groups of pedestrians are moving in the same direction, and the

results predicted by our model almost completely fit the actual

red trajectories. In Figures 3C, D, the pedestrian motion trajectory

avoids collision with surrounding pedestrians and obstacles. Our

model predicts the pedestrian’s turning motion intention and

effectively predicts the pedestrian’s offset angle, avoids collision

with vehicles and passing pedestrians.

4.3.2 Visualization of the trajectory distribution
As shown in the Figure 4, we compare our model (DTDNet)

with Social-STGCNN in four different scenarios selected from

ETH, HOTEL, ZARA1 and ZARA2 dataset. The dashed line

represents the observed trajectory, and the solid line represents

ground truth of the prediction and the color density is the predicted

trajectory distribution. Figure 4A shows that the future trajectories

of the two pedestrians above are slightly shifted downward,

DTDNet model predicts the same trajectory distribution, but

Social-STGCNN predicts that the pedestrians are still going

straight. As shown in Figure 4B, compared with Social-STGCNN,

DTDNet can predict the pedestrian’s speed and the pedestrian’s

endpoint more accurately, so it can cover the true trajectory of

the pedestrian. We could even predict multiple distribution trends

in cases where there may be many likely future trajectories, and

our generation framework does not have a mode collapse problem

like other methods. As shown in Figure 4C, taking the green

trajectory in the figure as example, DTDNet not only predicts

the movement of turning upward, but also predicts the trend of

downward turning. However, the prediction effect of themodel also

has certain shortcomings. As shown in Figure 4D, when pedestrians

perform a sudden turning in the prediction time region, existing

methods cannot predict the turning trend successfully. In future,

TABLE 6 Relationship between recall rate P and recall number k under di�erent precisions on Stanford Drone Dataset.

Precision 1 2 3 4 5 6

5× 5 61.8% 84.6% 91.4% 96.9% 98.3% 99.1%

9× 9 68.6% 89.3% 95.1% 98.3% 99.1% 99.6%

15× 15 67.2% 88.1% 94.2% 98.2% 99.0% 99.4%

The bold value indicates the best result.
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FIGURE 3

(A–D) Qualitative analysis of DTDNet. For a better view, only part of the pedestrians in the scene is presented. The illustration scenes are selected

from ZARA1. Observed trajectories are shown as solid lines, and the predicted trajectories are shown as dashed lines. The red line represents the true

trajectory.

FIGURE 4

(A–D) Qualitative analysis of DTDNet and Social-STGCNN. Upper ones are from DTDNet, lower ones are from Social-STGCNN.
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FIGURE 5

Visualization of dynamic intent prediction by DTDNet. Red star is the future endpoint, and yellow star represents the predicted target. Color of each

sub-region represents the scene importance score. Red is the highest, green is the middle and blue is the lowest score. (A) T1. (B) T3. (C) T5. (D) T8.

we will try to introduce interactive information between dynamic

obstacles in the predicting period to explore this problem.

4.3.3 Visualization of intention prediction
To exhibit the dynamic prediction of pedestrian intent

coordinate, we select a scene from the Stanford Drone Dataset

and visualize the dynamic pedestrian intent and regional score

predicted by the model in Figure 5. The red star represents the

future target endpoint, and the yellow star represents the predicted

target coordinate at different time steps, the color of each sub-

region represents the magnitude of the scene importance score, and

the red region represents the high score. In Figure 5, four time step

results of pedestrian movement and divide the scene into 81 sub-

regions according to the precision of 9× 9. The model dynamically

predicts pedestrian intent coordinates and the importance score of

the scene. As the pedestrian moves, the target coordinate of the

yellow star predicted by the model gradually approaches the real

target. The importance score of the region near the actual location

gradually increases. The color of the visualization gradually turns

red, such as the region where the red star is located by the yellow

at time T1 in Figure 5A becomes red at time T8 in Figure 5D.

The number of the red regions near the finish area also increases

significantly.

5 Conclusion

In this work, we propose DTDNet, a Dynamic Target Driven

Network for pedestrian trajectory prediction. Different from

previous models that predict a fixed endpoint, DTDNet is designed

to model the intention of a pedestrian dynamically with a

hidden representation. This hidden representation could jointly

represents mixture information of intention. We also introduce

a multi-precision data representation method and three sub-tasks

to analyze pedestrians motion intentions from different precision

feature. The three sub-tasks are proved helpful to make sure the

hidden representation could converge and be useful to the intention

representation at each time step. Our proposed model is a superior

to the baseline models in quantitative metrics on two publicly

available datasets. Qualitative experiments show that our model

could predict pedestrian intention accurately and dynamically. In

the future, research should consider the potential effects of bringing

related subtasks to help the network hidden representation of

pedestrian converge better and addmore supervision to the feature.

Furthermore, the dynamic modeling of intentions at each timestep,

along with predictions, could benefit from a more complicate

network architecture that incorporates the modeling of complex

interactions among moving objects within the scene to distill

involved information.
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