AUTHOR=Wu Hemmings , Cai Chengwei , Ming Wenjie , Chen Wangyu , Zhu Zhoule , Feng Chen , Jiang Hongjie , Zheng Zhe , Sawan Mohamad , Wang Ting , Zhu Junming TITLE=Speech decoding using cortical and subcortical electrophysiological signals JOURNAL=Frontiers in Neuroscience VOLUME=18 YEAR=2024 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2024.1345308 DOI=10.3389/fnins.2024.1345308 ISSN=1662-453X ABSTRACT=Introduction

Language impairments often result from severe neurological disorders, driving the development of neural prosthetics utilizing electrophysiological signals to restore comprehensible language. Previous decoding efforts primarily focused on signals from the cerebral cortex, neglecting subcortical brain structures’ potential contributions to speech decoding in brain-computer interfaces.

Methods

In this study, stereotactic electroencephalography (sEEG) was employed to investigate subcortical structures’ role in speech decoding. Two native Mandarin Chinese speakers, undergoing sEEG implantation for epilepsy treatment, participated. Participants read Chinese text, with 1–30, 30–70, and 70–150 Hz frequency band powers of sEEG signals extracted as key features. A deep learning model based on long short-term memory assessed the contribution of different brain structures to speech decoding, predicting consonant articulatory place, manner, and tone within single syllable.

Results

Cortical signals excelled in articulatory place prediction (86.5% accuracy), while cortical and subcortical signals performed similarly for articulatory manner (51.5% vs. 51.7% accuracy). Subcortical signals provided superior tone prediction (58.3% accuracy). The superior temporal gyrus was consistently relevant in speech decoding for consonants and tone. Combining cortical and subcortical inputs yielded the highest prediction accuracy, especially for tone.

Discussion

This study underscores the essential roles of both cortical and subcortical structures in different aspects of speech decoding.