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Introduction: Language impairments often result from severe neurological 
disorders, driving the development of neural prosthetics utilizing 
electrophysiological signals to restore comprehensible language. Previous 
decoding efforts primarily focused on signals from the cerebral cortex, neglecting 
subcortical brain structures’ potential contributions to speech decoding in brain-
computer interfaces.

Methods: In this study, stereotactic electroencephalography (sEEG) was 
employed to investigate subcortical structures’ role in speech decoding. Two 
native Mandarin Chinese speakers, undergoing sEEG implantation for epilepsy 
treatment, participated. Participants read Chinese text, with 1–30, 30–70, 
and 70–150  Hz frequency band powers of sEEG signals extracted as key 
features. A deep learning model based on long short-term memory assessed 
the contribution of different brain structures to speech decoding, predicting 
consonant articulatory place, manner, and tone within single syllable.

Results: Cortical signals excelled in articulatory place prediction (86.5% accuracy), 
while cortical and subcortical signals performed similarly for articulatory manner 
(51.5% vs. 51.7% accuracy). Subcortical signals provided superior tone prediction 
(58.3% accuracy). The superior temporal gyrus was consistently relevant in 
speech decoding for consonants and tone. Combining cortical and subcortical 
inputs yielded the highest prediction accuracy, especially for tone.

Discussion: This study underscores the essential roles of both cortical and 
subcortical structures in different aspects of speech decoding.
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Introduction

Humans use a complex process to speak, involving rapid planning of phonemes (sound 
units) in words, engaging prefrontal brain regions within a larger language network responsible 
for word and sentence formation (Bohland and Guenther, 2006; Fedorenko et  al., 2016; 
Kazanina et al., 2018; Hoffman, 2019). This network is connected to areas controlling their 

OPEN ACCESS

EDITED BY

Jun Wang,  
The University of Texas at Austin,  
United States

REVIEWED BY

Vejay Niranjan Vakharia,  
Alder Hey Children's NHS Foundation Trust,  
United Kingdom
Kai Zhang,  
Capital Medical University, China

*CORRESPONDENCE

Hemmings Wu  
 hemmings@zju.edu.cn  

Ting Wang  
 2011ting_wang@tongji.edu.cn  

Junming Zhu  
 dr.zhujunming@zju.edu.cn

†These authors have contributed equally to 
this work

RECEIVED 27 November 2023
ACCEPTED 12 February 2024
PUBLISHED 29 February 2024

CITATION

Wu H, Cai C, Ming W, Chen W, Zhu Z, Feng C, 
Jiang H, Zheng Z, Sawan M, Wang T and 
Zhu J (2024) Speech decoding using cortical 
and subcortical electrophysiological signals.
Front. Neurosci. 18:1345308.
doi: 10.3389/fnins.2024.1345308

COPYRIGHT

© 2024 Wu, Cai, Ming, Chen, Zhu, Feng, 
Jiang, Zheng, Sawan, Wang and Zhu. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 29 February 2024
DOI 10.3389/fnins.2024.1345308

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1345308﻿&domain=pdf&date_stamp=2024-02-29
https://www.frontiersin.org/articles/10.3389/fnins.2024.1345308/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1345308/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1345308/full
mailto:hemmings@zju.edu.cn
mailto:2011ting_wang@tongji.edu.cn
mailto:dr.zhujunming@zju.edu.cn
https://doi.org/10.3389/fnins.2024.1345308
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1345308


Wu et al. 10.3389/fnins.2024.1345308

Frontiers in Neuroscience 02 frontiersin.org

physical production (Duffau et al., 2003; Ikeda et al., 2014). Studies 
using cortical surface recordings have found that phonetic features are 
organized in specific regions and can be decoded from brain activity 
in posterior prefrontal and premotor areas, indicating a structured 
cortical organization (Anumanchipalli et al., 2019; Wang et al., 2023). 
Despite advancements, fully understanding the mechanism of speech 
planning and production remains a challenge.

Recently, there has been a significant interest in Brain-Computer 
Interfaces (BCIs) that can interpret speech from brain signals, 
potentially aiding those unable to speak (Metzger et al., 2023; Willett 
et al., 2023). Understanding the mechanism of speech generation in 
the brain, including the sequence and location of involved brain 
regions, is crucial for developing a speech neuroprosthesis.

Current methods can decode text representations from neural 
signals during actual speech generation, spanning phonemes, words, full 
sentences, and even keywords. Many of these advancements utilize 
neural signals from cortical regions, including electrocorticography 
(ECoG) and Utah array, to record neural activity with high precision in 
time and space. While there are models explaining speech generation, 
the exact involvement of all brain regions remains unclear. Research now 
suggests that deeper brain areas like the hippocampus and thalamus play 
a role in both language comprehension and speech generation.

Stereotactic EEG (sEEG) is another commonly used surgical 
technique to record intracranial neurophysiological signals, where 
electrodes are implanted through small openings in the skull for 
treatment of refractory epilepsy. Unlike ECoG, which only records in 
cortical regions, sEEG is able to sample various regions, including 
subcortical brain structures, potentially benefiting BCI applications 
utilizing distant and deep brain areas.

Here, we hypothesize that neural signals from subcortical brain 
regions can contribute to speech decoding. To validate our hypothesis 
that subcortical brain regions contribute to speech decoding, we asked 
participants to vocalize all possible pronunciation of characters in 
Mandarin Chinese while both their voices and sEEG data were recorded.

Materials and methods

Two native Mandarin Chinese speaking patients with refractory 
epilepsy underwent sEEG surgeries. Patient 1 had a history of 
refractory epilepsy (generalized tonic–clonic seizure) of 25 years; 
patient 2 had a history of refractory epilepsy (absence seizure) of 
11 years. No abnormality was reported during neuropsychological 
testing. WADA test showed that the left hemisphere is the language-
dominant hemisphere in both patients. To localize seizure foci, sEEG 
electrodes (0.8 mm diameter, 2 mm contact length with 1.5 mm 
intercontact distance; Sinovation (Beijing) Medical Technology Co., 
Ltd.) were implanted in cortical structures including superior 
temporal gyrus, middle temporal gyrus, and inferior temporal gyrus, 
and subcortical structures, including thalamus (ventral nuclear group, 
including ventroanterior and ventrolateral nuclei), hippocampus, 
insular gyrus, parahippocampal gyrus, and amygdala (although the 
parahippocampal gyrus and anterior cingulate cortex are 
archipaleocortex and paleocortex, both structures are situated beneath 
the neocortex, rendering them inaccessible to surface ECoG 
electrodes. Consequently, for the purposes of facilitating comparisons, 
they are designated as subcortical regions in this study; Figure 1). The 
positions of the electrodes were confirmed manually by merging 
postoperative CT with preoperative MR (Supplementary material). As 

the majority of the electrodes were located in the right hemisphere, 
electrodes in the left hemisphere were not included in this study. This 
clinical trial was approved by the Ethics Committee of the Zhejiang 
University School of Medicine Second Affiliated Hospital (protocol 
number: I2022145).

During the 2-week window to localize seizure foci, we asked the 
patients to speak out loud when a cue was given while simultaneously 
recording their voice and synchronized intracranial neurophysiological 
signals (Figure  2). A total of 407 characters were recorded over 
repeated trials, covering all possible pronunciations and tones in 
Mandarin Chinese (Supplementary Table S1).

sEEG and acoustic signal processing

A total of 290 (148 + 142) sEEG contacts were implanted, sampled 
at 2 k Hz (Nihon Kohden Corp). We  began signal processing by 
linearly detrending the sEEG signals and performed anti-aliasing 
low-pass filtering at 500 Hz. For extracting valuable insights from the 
sEEG signals, we determined the power in the 1–30 Hz, 30–70 Hz, and 
70–150 Hz frequency range, which is believed to represent ensemble 
spiking and offers specific data about movement and speech functions. 
The amplitude of the 70–150 Hz frequency component was extracted 
with the Hilbert transform and down-sampled to 200 Hz. The 1–30 Hz 
and 30–70 Hz frequency components were extracted with a 6th order 
Butterworth bandpass filter, also down-sampled to 200 Hz and 
parallelly aligned with the 70–150 Hz amplitude. Then the signals were 
z-scored using a 30 s window of running mean and standard deviation 
to normalize data distribution (each contact’s activity was normalized 
to have zero mean and a variance of one). Regarding the acoustic data, 
voicing of each character was semi-automatically segmented, and 
categorized based on vowels, consonants, and tuning. Each consonant 
can be  assigned a corresponding set of articulatory places and 
manners based on international standard (Table  1) (Yonghong Li 
et al., 2015). The articulatory place is the location within the mouth 
where a speech sound is made. In English, there are ten places of 
articulation for consonants: bilabial, labiodental, dental, alveolar, post-
alveolar, palato-alveolar, palatal, velar, glottal, and retroflex. In 
Mandarin Chinese, there are 7 articulatory places, which include: 
bilabials, labiodentals, dentals, alveolars, post-alveolars, palatals and 
velars. The articulatory manner of a sound is how the airstream is 
affected as is goes through vocal tract. In Mandarin Chinese, there are 
8 articulatory manners, which include: plosives (unaspirated and 
aspirated), affricates (unaspirated and aspirated), fricatives (voiceless 
and voiced), nasals and laterals. Power features of synchronized sEEG 
signals were segmented and categorized accordingly.

Speech decoding from sEEG signals using 
recurrent neural network

We used a stacked 3-layer bidirectional long short-term memory 
(bLSTM; 100 hidden units for each cell) recurrent neural network to 
decode articulatory features (articulatory places, manners, and 
tuning) from continuous neural activity (1–30 Hz, 30–70 Hz, and 
70–150 Hz components). The model learned the mapping between 
200 ms sequences of 1–30 Hz, 30–70 Hz, and 70–150 Hz components 
and a corresponding single time point (sampled at 200 Hz) of the 
articulatory features. During testing, a full pronunciation a character 
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of neural activity was processed by the decoder, which processed 
200 ms of data at a time, sliding over the sequence sample by sample, 
until it has returned a sequence of articulatory features that is equal 

length to the neural data. The neural data was padded with an 
additional 100 ms of data before and after the sequence to ensure the 
result was the correct length. The model was trained using the Adam 

FIGURE 1

Reconstructed CT images of sEEG implants in the two patients.

FIGURE 2

Schematic diagram of experimental design to record vocal and electrophysiological signals simultaneously.
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optimizer to minimize mean-squared error (initialized with learning 
rate = 0.001, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8). Models were 
stopped from training after the validation loss no longer decreased. 
Dropout rate was set to 50%. Training and testing data (325.82 ratio) 
were randomly split based off of recording sessions (training and test 
sets collected from different recording sessions; repeated 1,000 
times). Data was shuffled to the order of the electrodes that were fed 
into the decoder. Models were coded using Python’s version 1.9 
of Tensorflow.

Results

Decoding consonants based on 
articulatory place and articulatory manner 
classification using sEEG signals from 
single region

We used sEEG 1–30 Hz, 30–70 Hz, and 70–150 Hz frequency band 
power of electrophysiological signals from individual brain regions to 
classify articulatory place and articulatory manner. The pure chance 
level for articulatory place and articulatory manner classification was 
0.143 (1/7) and 0.125 (1/8), respectively. Our results indicated that 
70–150 Hz frequency band power showed the best classification 
capability for both articulatory place and manner prediction across 
brain regions in general, which was in line with previous reports 
(Moses et al., 2021). For articulatory place classification, the superior 
temporal gyrus showed the best performance, with an accuracy of 
86.5% (Figure 3A). For articulatory manner classification, the superior 
temporal gyrus and the thalamus had the best results, classifying 
successfully 51.5 and 51.7% of the articulatory manner, respectively 
(Figure 3B).

Decoding tones using sEEG signals from 
single region

Similar to articulatory place and manner decoding, we  used 
1–30 Hz, 30–70 Hz, and 70–150 Hz frequency band power of sEEG 
electrophysiological signals from individual brain regions to classify 
tone. The pure chance level for tone classification was 0.25 (1/4). Our 
results indicated that 70–150 Hz frequency band power still possessed 

the best classification capability for tone prediction across brain 
regions in general, and the thalamus showed the best performance, 
with an accuracy of 58.3% (Figure 3C).

Decoding consonants and tones using 
sEEG signals from cortical and subcortical 
regions combined

We then used combined electrophysiological signals, one 
channel from cortical and one channel from subcortical brain 
regions, to decode consonants and tones. For articulatory place 
classification, we  found that sEEG signals from the superior 
temporal gyrus were able to produce best classification results, 
with or without sEEG signals from subcortical regions (Figure 4A). 
Combining input signals from inferior temporal gyrus with 
hippocampus improved prediction, but still lower than what 
superior temporal gyrus was able to predict by itself (Figure 4B). 
For articulatory manner classification, sEEG signals from the 
superior temporal gyrus combined with signals from the thalamus 
were able to make best prediction (Figures  4C,D). For tone 
classification, sEEG signals from the thalamus profoundly 
improved classification results when combined with signals from 
the inferior, middle, and superior temporal gyri, still producing 
the best results when combined with the superior temporal gyrus 
(Figures 4E,F).

Discussion

Our work demonstrates the feasibility and value of 
electrophysiological signals recorded in both cortical and subcortical 
regions for speech decoding. Our findings are particularly significant 
for the design of speech neuroprostheses, as they suggest that 
incorporating signals from both cortical and subcortical structures 
could enhance the performance of these devices. The center for 
language processing is generally believed to be in the cortical area 
around the sylvian fissure of the left hemisphere called the perisylvian 
area. Past studies focus on harvesting signals from this area for speech 
decoding, while other studies have indicated the involvement of 
subcortical structures, such as the hippocampus and the thalamus, 
during speech processing (Duff and Brown-Schmidt, 2012; Hebb and 

TABLE 1 Place-voice-manner consonant chart for Mandarin Chinese.

Articulatory 
place

Plosive Affricate Fricative Nasal Lateral

Unaspirated Aspirated Unaspirated Aspirated Voiceless Voiced Voiced Voiced

Bilabial b[p] p[pɦ] m[m]

Labiodental f[f]

Dental z[ts] c[tsɦ] s[s]

Alveolar d[t] t[tɦ] n[n] l[l]

Post-alveolar zh[tʂ] ch[tʂɦ] sh[ʂ] r[ʐ]

Palatal j[tɕ] q[tɕɦ] x[ɕ]

Velar g[k] k[kɦ] h[x]
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Ojemann, 2013; Klostermann et al., 2013; Covington and Duff, 2016; 
Piai et al., 2016).

In our study, the perisylvian area, i.e., superior temporal gyrus 
remains highly relevant for speech decoding. We are able to use signals 
from the superior temporal gyrus to classify articulatory place and 
articulatory manner, which will help predict consonants, as well as 
tone classification. Signals from subcortical areas seem less relevant 
for articulatory place prediction, when superior temporal gyrus is 
used. But for articulatory area and tone predictions, signals from the 
thalamus substantially improve accuracy when combined with signals 
from the superior temporal gyrus. Interestingly, the prediction 
accuracy for articulatory place is the highest, while its chance level is 
the lowest, compared to articulatory manner and tone. We do not have 
a clear explanation for this, but we  believe it reflects the neural 

representation of the signals captured. Another interesting finding is 
that thalamic neural signals are best for tone prediction, which may 
serve as an important piece of information for research in the field of 
evolutionary linguistics.

Currently there are several groups investigating the use of 
sEEG signals for speech decoding. Angrick et al. (2021) show that 
sEEG and cortical-only ECoG yield similar results for speech 
decoding. Soroush et al. (2022) study signals from grey and white 
matter for speech activity detection. The same group also report 
significant contributions from deep brain structures for speech 
decoding (Soroush et al., 2023). Thomas et al. (2023) use sEEG 
approach but only include cortical regions in their study, and 
report neural correlates in multiple cortical regions for both 
articulatory and phonetic components. Ramos-Escobar et  al. 

FIGURE 3

Classification accuracy for articulatory place (A), articulatory manner (B), and tone (C) using electrophysiological signals from cortical vs. subcortical 
brain regions. Dotted red lines indicate chance levels. (A) sEEG features from the superior temporal gyrus generate the best prediction results for 
articulatory place. (B) sEEG features from the superior temporal gyrus and the thalamus generate the best prediction results at similar levels for 
articulatory manner. (C) sEEG features from the thalamus generate the best prediction results for tone. Power in the 70–150  Hz frequency band is best 
feature for prediction vs. powers in the 1–30  Hz and 30–70  Hz frequency bands. ITP, inferior temporal gyrus; MTP, middle temporal gyrus; STP, superior 
temporal gyrus; Th, thalamus; IG, insular gyrus; Amy, amygdala; PhG, parahippocampal gyrus; Hipp, hippocampus.
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FIGURE 4

Classification accuracy and improvement ratio for articulatory place (A,B), articulatory manner (C,D), and tone (E,F) when cortical electrophysiological 
signals were combined with subcortical electrophysiological signals. (A,B) sEEG features from the superior temporal gyrus are best at predicting 
articulatory place, with or without sEEG input from subcortical regions. sEEG features from the inferior temporal gyrus may benefit from sEEG input 
from subcortical regions during articulatory place prediction, but its absolute accuracy remains lower than sEEG features from the superior temporal 
gyrus alone. (C,D) sEEG features from the superior temporal gyrus combined with sEEG features from the thalamus produce the best prediction results 
for articulatory manner, higher than the prediction accuracy generated from sEEG features from these two structures alone. (E,F) sEEG features from 
the superior temporal gyrus combined with sEEG features from the thalamus produce the best prediction results for tone, but it remains lower than the 
prediction accuracy generated from sEEG features from the thalamus alone. ITP, inferior temporal gyrus; MTP, middle temporal gyrus; STP, superior 
temporal gyrus; Th, thalamus; IG, insular gyrus; Amy, amygdala; PhG, parahippocampal gyrus; Hipp, hippocampus.
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(2022) report evidence of hippocampal involvement in the speech 
segmentation process. Cometa et  al. (2023) discovered 
involvement from both cortical and subcortical in syntactic 
processing, including from the non-dominant hemisphere. 
Verwoert et al. (2022) published an open access sEEG dataset of 
10 participants reading Dutch words. Afif et  al. (2010) also 
reported speech arrest after stimulating the insula electrically, 
implicating speech production in subcortical areas.

There are also studies using noninvasive modalities 
[electroencephalogram (EEG) or magnetoencephalography 
(MEG)] to investigate their value for speech decoding. Sereshkeh 
et al. focused on decoding yes/no responses to binary questions 
using EEG. They utilized a 64-channel EEG system and applied a 
regularized neural network for classification, achieving notable 
accuracy (Sereshkeh et al., 2017). Min et al. used vowel sounds as 
EEG prompts and employed sparse regression models for feature 
selection, along with extreme learning machines (ELM) for 
classification. This approach yielded significant results in 
classifying the vowel-based imagined speech (Min et al., 2016). 
Nguyen et al. introduced a novel approach using channel cross-
covariance matrices in Riemannian manifold for feature 
representation. They demonstrated improved classification 
accuracy by combining temporal and wavelet domain features 
(Nguyen et  al., 2018). Jahangiri and Sepulveda focused on 
classifying four phonetically dissimilar syllables using EEG. They 
utilized Gabor wavelets for feature extraction and achieved 
significant differentiation between the syllables (Jahangiri and 
Sepulveda, 2018). Koizumi et  al. involved the use of Japanese 
words as prompts and extracted band powers from EEG channels. 
They reported higher classification accuracy, particularly when 
using features extracted from the high gamma band (Koizumi 
et al., 2018). Dash et al. reported decoding results from spoken 
and imaged phrases using MEG signals. They found that CNNs 
were highly effective decoders, with an average decoding accuracy 
of up to 93% for the imagined and 96% for the spoken phrases 
(Dash et al., 2020). Beach et al. found that the neural representation 
of isolated speech sounds includes concurrent phonemic and 
subphonemic information. This was determined through their 
study using MEG during tasks that required participants to either 
passively listen to or actively categorize speech sounds. The study 
revealed that linear classifiers could decode the perception of 
different speech sounds, and the categorization process did not 
require the loss of subphonemic detail (Beach et al., 2021).

Our study has limitations. The sample size, comprising only two 
Mandarin Chinese-speaking individuals, limits the generalizability of 
our findings. Additionally, the study’s focus on right hemisphere 
regions could miss critical information processed in the left 
hemisphere, traditionally associated with language. Furthermore, the 
clinical condition of our participants (refractory epilepsy) and the 
resulting altered neurophysiology could affect the generalizability of 
our findings to the broader population.

Looking forward, our research opens several avenues for 
further investigation. Larger-scale studies involving diverse 
languages and larger participant cohorts could validate and extend 
our findings. Moreover, longitudinal studies could examine the 
stability of sEEG signal decoding over time, which is crucial for the 
practical application of BCIs in chronic conditions. Finally, 
integrating our findings with machine learning advancements 

could lead to more sophisticated and accurate speech 
neuroprosthesis designs, ultimately enhancing the quality of life 
for individuals with speech impairments.

In conclusion, our study represents a significant step towards 
understanding and harnessing the full potential of brain signals for 
speech decoding. The implications for assistive technologies are 
profound, offering a chance for restoring communication abilities to 
those who have lost them.
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