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One-shot learning, the ability to learn a new concept from a single instance,

is a distinctive brain function that has garnered substantial interest in

machine learning. While modeling physiological mechanisms poses challenges,

advancements in artificial neural networks have led to performances in specific

tasks that rival human capabilities. Proposing one-shot learning methods

with these advancements, especially those involving simple mechanisms, not

only enhance technological development but also contribute to neuroscience

by proposing functionally valid hypotheses. Among the simplest methods

for one-shot class addition with deep learning image classifiers is “weight

imprinting,” which uses neural activity from a new class image data as

the corresponding new synaptic weights. Despite its simplicity, its relevance

to neuroscience is ambiguous, and it often interferes with original image

classification, which is a significant drawback in practical applications. This

study introduces a novel interpretation where a part of the weight imprinting

process aligns with the Hebbian rule. We show that a single Hebbian-like

process enables pre-trained deep learning image classifiers to perform one-shot

class addition without any modification to the original classifier’s backbone.

Using non-parametric normalization to mimic brain’s fast Hebbian plasticity

significantly reduces the interference observed in previousmethods.Ourmethod

is one of the simplest and most practical for one-shot class addition tasks, and

its reliance on a single fast Hebbian-like process contributes valuable insights to

neuroscience hypotheses.

KEYWORDS

one-shot learning, one-shot class addition, Hebbian theory, fast Hebbian plasticity,

weight imprinting, quantile normalization, non-parametric method

1 Introduction

As well-known, artificial neural networks (ANNs) were initially inspired by biological

neural networks in the animal brain (McCulloch and Pitts, 1943). Subsequently, Deep

Neural Networks (DNNs) have achieved significant success in computer vision (Simonyan

and Zisserman, 2015; He et al., 2016). However, several tasks, which are relatively easy for

humans, remain challenging for current DNNs (Lake et al., 2017). One-shot learning, for

instance, is a notable example of such tasks (Fei-Fei et al., 2006; Lake et al., 2015; Brea and

Gerstner, 2016; Cowley et al., 2022).
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Humans can integrate a new concept into their knowledge

from just a single input image, experiencing little interference

with prior memories. In contrast, DNNs struggle with this task

unless they undergo specific additional optimization. Proposing

a simple one-shot learning mechanism in DNNs could enhance

understanding of the brain and improve practical applications.

Consider, for example, an ImageNet model (Deng et al., 2009;

Russakovsky et al., 2015) that has been pre-trained on 1,000 classes

and then learns a new class “baby” from a single image, without any

additional training optimization or modifications to the original

DNN backbone. If such one-shot class addition is achievable

through a simple brain-based process, it would be beneficial for

both understanding the brain and advancing machine learning

applications, which is the focus of this study.

Extensive research has been conducted on the brain

mechanisms underlying one-shot or fast learning (Piette

et al., 2020). In the brain, new information is typically more

effectively retained when linked to existing knowledge (Tse

et al., 2011; Kesteren et al., 2012), a principle that also applies

to one-shot learning (Achterberg et al., 2022). It is known that

the hippocampus switches between fast learning and general

slow incremental learning (Lee et al., 2015; Weaver, 2015),

and that both the frontal lobe and hippocampus contribute

to fast learning (Preston and Eichenbaum, 2013; Emberly and

Seamans, 2020). It has also been suggested that fast learning

does not necessarily require the hippocampus and is possible

through mechanisms similar to general slow learning (Hebscher

et al., 2019). Although the classical Hebbian framework assumes

repetition of a specific activity pattern (Hebb, 1949), Hebbian

long-term potentiation is known to rapidly occur with a small

number of spikes (Froemke et al., 2006). Such “fast Hebbian

plasticity” is no longer an unrealistic hypothesis but recognized

as a hot topic in neuroscience (Lansner et al., 2023). Therefore,

while the entire brain’s mechanisms are complex and yet unclear, it

appears likely that at least a fast Hebbian process plays a significant

role.

From a machine learning perspective, typical approaches for

one- or few-shot image classification include metric learning,

data augmentation, and meta-learning. Metric learning reduces

distances between similar class data in feature space and increases

it for different classes (Weinberger and Saul, 2009; Snell et al.,

2017; Kaya and Bilge, 2019), akin to the brain’s process of

minimizing interference in new learning, thought to be managed

by the hippocampus (McCloskey and Cohen, 1989; McClelland

et al., 1995). Data augmentation techniques expand training data

through generative methods (Goodfellow et al., 2014; Vinyals et al.,

2016; Schwartz et al., 2018), potentially enabling fast learning by

leveraging previous expectations or binding patterns (Smolensky,

1990; Friston, 2010). Meta-learning, which trains systems in

learning methodologies (Andrychowicz et al., 2016; Finn et al.,

2017; Huisman et al., 2021), has been employed to model the

prefrontal cortex (Wang et al., 2018) and can be enhanced by

incorporating Hebbian learning (Munkhdalai and Trischler, 2018).

However, most methods prioritize high performance and

involve specific optimizations, diverging from simpler models

that might better represent natural processes. Additionally, these

optimizations often require extensive user skills and incur higher

computational costs for tuning parameters and hyperparameters.

Furthermore, many methods focus on learning from scratch or

transfer learning, deviating from how the brain is thought to

perform one-shot learning by utilizing vast existing knowledge.

Considering machine learning tasks from the perspective of

the brain’s one-shot learning, the emphasis should be on adding

new classes to well-trained DNNs rather than learning from

scratch or transfer learning. Studies have shown that well-trained

DNNs are capable of identifying data deviating from the training

distribution, which is known as out-of-distribution detection

(Lakshminarayanan et al., 2017; Fort et al., 2021), suggesting that

an effective representation for unknown images exists in the hidden

multi-dimensional space.

Indeed, the weight imprinting method, proposed by Qi et al.

(2018), enables the addition of novel classes to Convolutional

Neural Networks (CNNs) using the final dense layer input of

a new-class image without additional training. This method,

requiring minimal CNN architecture modifications, can achieve

reasonable accuracy in one-shot image classification tasks (for

example, achieving 21% accuracy for novel-class images when

adding 100 new classes to the original 100 in the CUB-200-

2011 dataset). However, the connection between the weight

imprinting method and the brain’s mechanisms remains unclear

and unexplored. Furthermore, from an application standpoint,

Qi’s weight imprinting method can interfere with original

image classifications, potentially causing significant drawbacks in

practical use (see Section 4, which indicates that Qi’s method poses

issues in CNNs but not in vision transformers). Note that Khan

et al. (2021) demonstrated the use of weight imprinting for vision

transformers, without addressing its issues on CNNs.

In this study, we investigated the task of one-shot class addition

in vision, where new classes were added to a pre-trained DNN for

image classification. Our approach included (i) proposing a novel

interpretation in which a part of Qi’s weight imprintingmethod can

be understood as a Hebbian-like process; (ii) demonstrating that

one-shot learning is achievable using only this Hebbian-like process

alone with an accuracy ∼80% of the original classification. We

have termed this streamlined weight imprinting method without

backbone modification as “Direct ONE-shot learning” (DONE).

Specifically, as shown in Figure 1A, DONE directly transforms the

input of the final dense layer (x vector in the figure), which is

obtained from a single image belonging to a new class (e.g., a cat),

into the corresponding weight vector for this new class (wcat, a row

vector in the weight matrix W). This process adds weight vectors

for new classes without altering the backbone DNN or the original

weight matrix Wori. Additionally, we (iii) found that aligning the

single Hebbian-like process more closely with brain mechanisms,

specifically through quantile normalization, mitigates the severe

interference observed in Qi’s method. We then (iv) pinpointed

the cause of interference in Qi’s method, uncovering a notable

distinction between vision transformers and CNNs. Our findings

that typical DNNs can facilitate one-shot learning through a simple

brain-based process contribute to both neuroscience and practical

applications. While it is still uncertain whether this process occurs

in the brain, it offers valuable hypotheses for future neuroscience

research. At least, this study suggests that one-shot learning is no

longer beyond the reach of DNNs.
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FIGURE 1

Scheme of DONE. (A) The neural activity input of the final dense layer (orange x vector in the original model) obtained from new-class data (an image

of a cat) is directly used for the transformation into the new-class vector (orange wcat) in the new weight matrix (W) without any modification to the

backbone model. (B) Example of transformation from x to wcat, with actual distribution data when the backbone DNN is E�cientNet-B0. See text for

detailed explanation.

2 Weight imprintings and Hebbian
interpretation

2.1 Qi’s weight imprinting

Weight imprinting, a class-addition method that emerged

from the context of metric learning (Qi et al., 2018), does not

require any optimization algorithms, making it accessible for users

without specialized machine learning knowledge. Here, we detail

the specific procedure employed in the previous Qi’s method.

Consider the final dense layer of a general classification DNN

model: typically, the output vector y = (y1, · · · , yN) of the

final dense layer indicates the likelihood that an image belongs

to each of the N classes. It is computed from the input vector

x = (x1, · · · , xM), the weight matrix W (N × M), and the bias

vector b = (b1, · · · , bN). For the i-th class (i = 1, 2, · · · ,N), a

scalar yi is calculated using the corresponding weight vector wi =

(wi1, · · · ,wiM) (the i-th row of theW matrix) and the bias scalar bi
as follows:

yi = x · wi + bi = ||x||2 ||wi||2 cos θ + bi, (1)

where the cosine similarity, representing the similarity between

vectors x and wi irrespective of their magnitudes, is a component

of the model’s objective function.

The cosine similarity (in Equation 1) reaches its maximum

value of one when x and wi are perfectly aligned. Therefore, if an

x vector is directly used as the weight vector for a new j-th class wj

(j = N + 1, · · · ), the cosine similarity for the j-th class will be high

when another x vector with a similar orientation is presented.

Qi’s method employs cosine similarity as the sole metric for its

objective function. The procedure involves the following three key

modifications to the backbone DNNmodels:

• Modification 1 : Addition of an L2 normalization layer before

the final dense layer to transform x into a unit vector, i.e.,

||x||2 = 1

• Modification 2 : Normalization of all wi vectors to become

unit vectors, ensuring ||wi||2 = 1 for all i.

• Modification 3 : Elimination of all bias values bi, i.e., b = 0.

Then, the weight imprinting process is defined as follows:

• Weight imprinting : The L2-normalized final-dense-layer

input from a new-class image xnew is used as the weight vector

for the new class wj, i.e., wj = xnew.

Qi’s method is simpler than other one-shot learning

methods that require additional optimization. However, it

still involves some modifications to the backbone DNN, including

changes in the objective function. The appropriateness of

such modifications depends on the specific context. Generally,

avoiding modifications is advisable when not essential, to prevent

unnecessary complications and potential interference with the

original classification, given that the backbone DNN is typically

already well-optimized for a certain function. Most importantly,

in the context of modeling the brain, a simpler approach is often

more desirable. Therefore, avoiding modifications is preferable in

pursuit of a more brain-like model.

Furthermore, Qi’s method does not address the statistical

discrepancies between x andwj, which limits the range of applicable

backbone DNNs (for more details, see Section 4). While various

studies have developed Qi’s method further, making it more

complex and adaptable (Dhillon et al., 2019; Li et al., 2021; Passalis

et al., 2021; Cristovao et al., 2022; Zhu et al., 2022), to the best of

our knowledge, none have sought to simplify it or effectively tackle

the transformation problem from x to wj.

2.2 Interpretation of weight imprinting via
Hebbian theory

A specific process within weight imprinting can be interpreted

as a change in synaptic weight according to Hebbian theory. As

shown in Figure 1A, in weight imprinting, we can consider that the

new weight vector wcat initially emerges from a state of zero, and

thus, it is equivalent to its change, i.e., wcat = E0+ 1wcat = 1wcat.

Hebbian theory pertains to the changes in synaptic weight,

1wcat, and posits that a synaptic weight is strengthened when both

presynaptic and postsynaptic neurons are active simultaneously.
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When a single image of a new class (cat) is presented as visual input,

certain presynaptic neurons x become active. Simultaneously, the

postsynaptic neuron corresponding to the cat becomes active (e.g.,

ycat = 1), while the postsynaptic neurons for all the i-th original

classes remain inactive (yi = 0), given the training image is

identified as a cat. According to the general form of the Hebbian

rule (Dayan and Abbott, 2001), the change in the weight vector

is expressed as 1wcat ∝ x · ycat, resulting in wcat = 1wcat ∝

x. Conversely, 1wi = 0 for the other classes since yi = 0.

Therefore, the synaptic connections between the active presynaptic

neurons and the postsynaptic neuron corresponding to the cat are

strengthened, in line with Hebbian theory.

While Hebbian learning may not occur instantaneously in the

classical framework of animal brains (Hebb, 1949), it has been

shown to actually occur with a small number of spikes (Froemke

et al., 2006). In the context of one-shot learning in the brain, it is

realistic to assume that multiple spikes could occur in a one-shot

event rather than just a single spike. Therefore, incorporating such

fast Hebbian processes in one-shot learning scenarios may align

with reality.

2.3 Our weight imprinting: direct one-shot
learning

Qi’s method, which can be interpreted as incorporating a

Hebbian-like process as described above, focuses solely on cosine

similarity. This focus results in changes to the weights of the

original backbone DNN and the elimination of its bias. In contrast,

we propose a method named DONE, which incorporates only a

single Hebbian-like process, by emulating a brain neural process.

In Figure 1A, considering the distinct dimensions/scales of

neural activity and synaptic weight in both real brains (as physical

constraints of neurons) and ANNs, directly using x as the new wcat

is not realistic. Therefore, converting the statistical properties of

neural activity into those of synaptic weight is necessary: wcat =

Fx→w(x · ycat). The statistical properties of the new wcat vector

should align with those of synaptic weights, i.e., the original

weight matrixWori. Thus, the transformation function Fx→w must

incorporate the information of Wori, leading to wcat = F(x,Wori).

This approach computationally represents the inherent physical

constraints of synapses, regardless of the brain’s awareness of such

information aboutWori.

The procedure of DONE, as shown in Figure 1, consists solely

of adding a new-class weight vectorwj and a bias scalar bj as follows:

wj = F(xnew,Wori), (2)

bj = b̃ori, (3)

where F(xnew,Wori) normalizes the final-dense-layer input from

the new-class image xnew using the information of original weights

(Wori) as the reference distribution. Since information about the

bias value for the new class bj is not obtained from the input, the

median of the original bias vector b̃ori is adopted as the bias value.

Then, it is done.

For the normalization in DONE (in Equation 2), we employed

four types of functions to ensure that: (I) the mean values (i.e.,

the 1st central moment) of both the new and original weights are

identical, (II) the variance values (the 2nd central moment) are

identical, (III) both the mean and variance values are identical, and

(IV) all statistical properties are identical. These four variations are

referred to as DONE(I) through DONE(IV).

In considering the brain, a function that results in new weights

having statistical properties more similar to those of the original

weights is likely to be more realistic. This is because such a

function better represents the physical characteristics of synaptic

connections. Therefore, the type (IV) function should be the most

suitable in this respect.

For applications, it is uncertain whether only the 1st and/or

2nd central moments are sufficient, especially in situations where

the 3rd or higher central moments might differ. One of the most

straightforward solutions for any situation is to non-parametrically

ensure all statistical properties are identical. As explained in the

next subsection, the type (IV) function can be implemented using

quantile normalization, a non-parametric method. Thus, the type

(IV) is one of the methods that does not require any special

assumptions for its application and suitable for a wide range of

scenarios.

Therefore, in this study, we employed DONE(IV) as the

standardmethod, and unless otherwise specified, the term “DONE”

refers exclusively to DONE(IV). In line with the non-parametric

approach utilized for the normalization function, we used the

median value as the central tendency for the original bias vector

(in Equation 3).

2.4 Quantile normalization to better reflect
real neural mechanisms

Neural activity and synaptic weight differ in dimensions and

scales, and their relationships are typically non-linear in both real

brains and ANNs. For instance, Figure 1B—(i) and (ii) illustrate the

frequency distributions of neural activity in x and synaptic weight

in wi, respectively, showing distinct shapes in an actual DNN. This

discrepancy indicates that the general form of the Hebbian process,

which is often restricted to linear interactions, cannot adequately

capture these non-linear relationships.

We implemented the non-linear relationship using quantile

normalization (Amaratunga and Cabrera, 2001; Bolstad et al.,

2003), ensuring that the frequency distribution of the new weight

vector wj aligns with that of the multiset of typical elements

of the original wi vectors (Wtypical), as shown in Figure 1B—

(iii). Quantile normalization, a straightforward and standard

technique in bioinformatics, effectively facilitates this non-linear

scale transformation.

In quantile normalization, each element value in the resulting

vector wj is matched with the corresponding value in the reference

multiset Wtypical. Specifically, we start by transforming the value

of the most active (1st) neuron in xnew to the highest (1st) weight

value in Wtypical. This process is then repeated sequentially for

the 2nd, 3rd, · · · , and M-th most active neurons. As a result,

while the ranking of each neuron in xnew is preserved, the value

assigned to each rank becomes identical to that in Wtypical. The

resultant vector produced through this process iswj. Consequently,
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all statistical properties of the elements in wj become identical to

those inWtypical, i.e., their frequency distributions are the same.

For Wtypical, to represent the concept of physical constraints

in synaptic connections, we utilized all N × M elements of the

flattened Wori. These elements were divided into M groups based

on their ranking, and then, the median value of each group of N

elements was calculated to form an M-element multiset Wtypical.

For instance, in a DNN model like ViT-B/32 (N = 1, 000, M =

768), the highest value in Wtypical is the median of the top 1st to

1,000th elements among the 768,000 elements of Wori, while the

lowest value is the median of the 767,001st to 768,000th elements

(refer to Supplementary Figure S1 for a comparison with another

method to construct the reference multiset).

Note that the use of quantile normalization in this process

deviates from the traditional Hebbian form. While the term

“Hebbian” is useful for easily conveying its relationship to brain

processes, the key aspect is not strictly its adherence to a Hebbian

process but rather its representation of a process similar to that

of the brain. The Hebbian principle, broadly encapsulating the

concept that simultaneous activation of neurons strengthens their

synaptic connection, as in a phrase like “neurons that fire together

wire together” (Hebb, 1949), is often restricted to a linear form

in computational neuroscience for precise definition (Dayan and

Abbott, 2001).

According to the precise definition, DONE(I) to DONE(III)

are based on a single Hebbian process. Strictly speaking,

DONE(IV) does not conform to a traditional Hebbian

process. However, we consider DONE(IV) as a Hebbian-like

process, which incorporates quantile normalization in line

with Hebbian theory for rapid processing. This approach is

likely more aligned with reality than the traditional form of

the Hebbian process, particularly in the context of modeling a

fast Hebbian process through weight imprinting. Regardless,

as shown below, one-shot learning without modifying the

backbone is feasible using either a single Hebbian or Hebbian-like

process.

2.5 Limitations, applications, and negative
impacts of DONE

An inherent limitation of DONE is that it requires an

ANN model with a dense layer for classification, as previously

mentioned. Despite this, DONE is versatile and can be utilized

in a wide range of applications involving DNN classifiers,

including out-of-distribution detection (Yang et al., 2021).

However, there are various potential negative societal impacts

associated with such broad applications. For example, immoral

classification or discrimination may occur when classifying

human-related data, such as facial images, voices, and personal

features. It is important to note that while DONE is a

weight imprinting method, it does not involve modifications

to the backbone models, unlike Qi’s method. Furthermore,

the new-class weight vectors created by DONE might be less

distinguishable from the original weight vectors based on their

statistical characteristics, potentially increasing the risk of secretive

modifications.

3 Materials and methods

3.1 Backbone DNN models

In this study, we utilized several backbone models, including

ViT-B/32 (Dosovitskiy et al., 2020) with “vit-keras” (Morales, 2020),

EfficientNet-B0 (Tan and Le, 2019) with “EfficientNet Keras (and

TensorFlow Keras)” (Iakubovskii, 2019), InceptionV1 (Szegedy

et al., 2015) [as used in (Qi et al., 2018)] with “Trained image

classification models for Keras” (Andrews, 2017), ResNet-12 (He

et al., 2016) with “tf2cv” (Semery, 2018), ResNet-50 (He et al.,

2016), MobileNetV2 (Sandler et al., 2018), and VGG-16 (Simonyan

and Zisserman, 2015) with TensorFlow (Abadi et al., 2015). All

these models were pre-trained on ImageNet.

3.2 Image datasets

We used CIFAR-100 and CIFAR-10 (Krizhevsky and Hinton,

2009) for additional class data with TensorFlow (Abadi et al.,

2015). For transfer learning, we used CIFAR-FS (Bertinetto et al.,

2018) with Torchmeta (Deleu et al., 2019). The performance of

the models was tested using ImageNet (ILSVRC2012) images

(Deng et al., 2009; Russakovsky et al., 2015). We utilized 67

categorizations (Eshed, 2020) of ImageNet 1000 classes for a coarse

10 categorization, as shown in Figure 5A.

4 Results and discussion

4.1 One-class addition by one-shot
learning

Initially, in line with our motivation, we evaluated the

performance of our method, DONE, when adding a single image

from a new class to a DNN model pre-trained with ImageNet’s

1,000 classes. It is important to note that in this study, “DONE”

specifically refers to “DONE(IV) using quantile normalization,”

unless stated otherwise. For backbone DNN models, we primarily

employed ViT-B/32 and EfficientNet-B0 as representatives of

vision transformer and CNN, respectively. As new additional

classes, eight distinct classes, “baby,” “woman,” “man,” “caterpillar,”

“cloud,” “forest,” “maple_tree,” and “sunflower,” were selected from

CIFAR-100, which are not present in ImageNet (as shown in

Figure 2A). The weight parameters for each additional class, wj,

were generated from a single image, thus expanding the model to

1,001 classes. To enable stochastic evaluations, 100 different models

were constructed, each using a different training image for every

additional class.

Figure 2B shows the letter-value plots of accuracy for each

additional class (chance level 1/1, 001). The mean of the median

top-1 accuracy of the eight classes using DONE was 56.5 and

92.1% for ViT-B/32 and EfficientNet-B0, respectively (black line).

When the mean accuracy was compared with the accuracy of the

ImageNet validation test by the original 1000-class model (orange

line: 65 and 69%), the mean with ViT-B/32 showed no significant

difference, and the mean of EfficientNet-B0 was significantly

greater (one-sample t-test; two-sided with α = 0.05, in all statistical
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FIGURE 2

One-class addition by one-shot learning. (A) Representative images of the newly-added CIFAR-100 classes (Due to copyright issues, the original

images in this figure have been removed. Images available from the corresponding author upon request). Each image was chosen as a representative

because the model that learned the image showed the highest, median, and lowest accuracy in each class in (B)–(i). (B) Letter-value plots of top-1

accuracy of the one-class-added models obtained by one-shot learning with DONE in classification of new-class images. The median top-1

accuracy of the new-class classification (black circles), top-1 accuracy in original-class classification (orange circles), and the fraction of the

interference with the original-class classification by the newly-added class (blue triangles) are plotted for DONE (closed) and Qi’s method (open).

Black and orange lines show the mean of the eight closed circles. (C) The relationship between x and w vectors when an image of “Ruddy turnstone”

is input and it is miss-classified as “Sunflower” only in the case of Qi’s method with E�cientNet-B0. The frequency distributions of elements of each

vector are also shown outside the plot frames.

tests in this study). The higher accuracy than the original classes in

EfficientNet-B0 is strange, and it is considered that EfficientNet-

B0 tends to classify any image belonging to the new class (see

below). Thus, the strangely high accuracy does not indicate good

performance but rather reflects a potential drawback in interfering

with the original image classification.

An obvious fact in one-shot learning is that a bad training image

produces a bad performance, for example, the lowest accuracy was

6% in ViT-B/32 when the training image was a baby image, as

shown at the bottom left in Figure 2A. However, in practice, a user

is supposed to use a representative image for training. Therefore,

we believe that the low performance owing to a bad training image

is not a significant issue.

We investigated the interference of class addition on the

classification performance of the original 1,000 classes. We

evaluated the original 1000-class model and eight 1,001-class

models that showed the median accuracy using all 50,000 ImageNet

validation images (Figure 2B). The difference between the accuracy

of the original 1000-class model (orange line) and the mean

accuracy of the eight 1,001-class models (orange closed circles)

was <1% (0.004 and 0.664% for ViT-B/32 and EfficientNet-B0,

respectively).

Figure 2B also shows the fraction of ImageNet validation

images in which the output top-1 answer of the added model

was the new class (thus incorrect) in 50,000 images (blue closed

triangles; right axis). This interference fraction was low in ViT-

B/32, and for example, only two images out of 50,000 were classified

as “baby.” When we checked the two images, both images indeed

contained a baby, although its class in ImageNet was “Bathtub.”

Therefore, the observed interference in ViT-B/32 was not a mistake

but just the result of another classification. EfficientNet-B0 showed

a significantly greater fraction of interference than ViT-B/32

(Wilcoxon signed-rank test), but we also confirmed that a similar

phenomenon occurred, for example, 198 of the 204 ImageNet-

validation images classified as “baby” in EfficientNet-B0 contained

humans or dolls.

We also compared DONE with Qi’s method. Open circles and

triangles show the results obtained using Qi’s method instead of

DONE in the same tests described above. When the backbone

model was EfficientNet-B0, the strangely high accuracy (paired

sample t-test) and interference fraction (Wilcoxon signed-rank

test) were significantly greater by Qi’s method than by DONE.

In addition, a significant outlier of decreased accuracy in the

ImageNet validation test was observed (orange open circle for
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“Sunflower”; Smirnov–Grubbs test). However, these differences

were not significant for ViT-B/32.

To investigate the cause of the difference between DONE

and Qi’s method, especially regarding the greater interference

by Qi’s method in EfficientNet-B0, we plotted wSunflower and

wRuddy_turnstone against x obtained from an image of “Ruddy

turnstone” (Figure 2C). Note that all the vectors here are L2-

normalized for comparison, and thus, DONE and Qi’s methods

have a common wRuddy_turnstone and x. In the case of ViT-B/32, the

shapes of the frequency distributions of all these vectors are similar,

and wSunflower values of DONE and Qi’s method are similar.

On the other hand, in EfficientNet-B0, the shapes of the

frequency distributions are more different between wRuddy_turnstone

and x than ViT-B/32, and thus, the shapes of frequency

distributions are more different between wRuddy_turnstone and

wSunflower by Qi’s method than by DONE. Then, by Qi’s method,

x is more similar to wSunflower than wRuddy_turnstone because it is not

neural match, but the statistical properties are similar, that is, Qi’s

method with EfficientNet-B0 tends to classify every image into a

new class. This is the basis of the problem owing to the neglect of

the differences in statistical properties between neural activity and

synaptic weight. Therefore, the difference between DONE and Qi’s

method appears in the interference when the statistical properties

of x and wi vectors in the backbone DNN are different (thus, the

results in ViT-B/32 are similar between DONE and Qi’s method).

4.2 Multi-class addition and K-shot
learning

DONE was able to add a new class as above, but it might just

be because the models recognized the new-class images as out-of-

distribution data, that is, something else. Therefore, it is necessary

to add multiple new similar classes and check their classification. In

addition, it is necessary to confirm whether the accuracy increases

by increasing the number of training images because in practical

uses, users will prepare not just one training image but multiple

training images for each class.

Specifically, we used one image from each of the eight classes

and added eight new classes to the original 1,000 classes using

DONE for one-shot learning. We evaluated this 1008-class model

using 100 CIFAR test images for each of the eight classes and

10,000 ImageNet validation images. Figure 3A shows the results

of the output of the representative model constructed by one-shot

learning, in which one image that showed the median accuracy

in Figure 2B was used as a standard training image for each class.

In both backbone DNNs, the fraction of output of the correct

class was the highest among the 1,008 classes, and the mean top-

1 accuracies of the eight classes were 51.8 and 61.1% in ViT-B/32

and EfficientNet-B0, respectively. Therefore, DONE was also able

to classify newly added similar classes together with the original

classes in both DNNs.

Next, we increased the number of training images for the K-

shot learning. In the case of 10-shot learning (Figure 3B), each of

the 10 images was input to obtain each x, and the mean vector of

the 10 x vectors was converted into wj, according to Qi’s method.

For this representative 10-shot model, we used 10 images whose

index in CIFAR-100 was from the front to the 10th in each class.

We also tested 100-shot learning in the same manner (Figure 3C).

We found that such a simple averaging operation steadily improved

accuracy (Figure 3D summarizes the mean accuracy).

When we used Qi’s method, compared with the case of

DONE, ImageNet images were significantly more often categorized

to the new classes as interference when the backbone model

was EfficientNet-B0 (paired sample t-test), whereas there was no

significant difference in themean accuracy betweenDONE andQi’s

method with both backbone DNNs (Figure 3D). In any case, both

DONE and Qi’s methods were able to perform one-shot learning

that was not simply out-of-distribution detection, with a similar

degree of accuracy. However, in interference, there appears to be

differences both in weight imprinting methods and backbone DNN

models.

4.3 Comparative analysis of various
backbone DNNs and weight imprinting
methods

We compared the accuracy and interference of the one-

shot multi-class addition task using various well-known backbone

DNN models and weight imprinting methods. The task was

the same as that shown in Figure 3, and the chance level

was 1/1, 008.

Figure 4A shows the results of the one-shot learning. In

accuracy, there was no statistically significant difference between all

weight imprinting methods (Dwass-Steel-Critchlow-Fligner test).

As a representative, with DONE(IV), the accuracy was 44, 59,

47, and 55% for ViT-B/32, EfficientNet-B0, VGG-16, and ResNet-

50, respectively. These values, averaged over the four DNNs, were

∼80% of the accuracy of ImageNet validation test by the original

1000-class model (65, 69, 60, and 62% for ViT-B/32, EfficientNet-

B0, VGG-16, and ResNet-50, respectively).

Regarding interference, the profiles for the four backbone

DNNs were different depending on the weight imprinting

methods. There was no statistically significant difference between

DONE(III) and DONE(IV) and between DONE(II) and Qi’s

method, and there were significant differences between all the other

combinations (Dwass-Steel-Critchlow-Fligner test). The difference

between DONE(I), (II), and (III) showed that the normalization

with both the mean and variance, i.e., 1st and 2nd central moments,

was required to avoid the large interference. The similarity between

DONE(III) and DONE(IV) suggested that the normalization with

3rd or higher central moments did not provide a significant effect

on the interference, at least in this case. The results of 10-shot

learning showed a similar trend as 1-shot learning, but the accuracy

values were greater (Figure 4B).

For practical applications, DONE(III) and DONE(IV) each

have opposite advantages. Since the normalization of DONE(III) is

linear, the new wj distribution retains the shape of the distribution

of x. This method would not require any special assumptions as

it utilizes the distribution of x directly. Conversely, in DONE(IV),

the normalization is non-linear, and the new wj distribution non-

parametrically retains the shape of the original Wori distributions.

This method also does not require special assumptions, as it
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FIGURE 3

Multi-class addition and K-shot learning. (A–C) show the results of the 1008-class model constructed by 1, 10, and 100-shot learning, respectively.

The horizontal and vertical axes represent the class of the input images and the output class, respectively, with class numbers as shown in Figure 2A.

The class [im] comprises the 1,000 classes of ImageNet. (D) Summary of the mean accuracy and the interference with original-class classification by

DONE (blue symbols) and Qi’s method (orange symbols). Error bars represent the standard deviation of the eight classes.

FIGURE 4

Comparative analysis of various backbone DNNs and weight imprinting methods in 1-shot and 10-shot 8 class addition tasks. (A) 1-shot class

addition. For each of the eight classes, one training image was randomly selected. This procedure was replicated 10 times, and the mean value is

displayed in a bar graph. Error bars represent the 95% confidence intervals. (B) 10-shot class addition. This test was conducted similarly to the

one-shot class addition task, with 10 images per class used for training.

employs the original distribution of Wori non-parametrically.

Therefore, in actual applications, whether to use DONE(III) or

DONE(IV) depends on whether the distribution of x or Wori is

more suitable for the new wj vector, respectively.

The interference observed with Qi’s method was substantial

enough to pose a severe problem in practical applications. For

example, in ResNet-50, most (75%) of the original-class ImageNet

images were misclassified into new classes. This severe interference

might explain why the previous weight imprinting method has not

been widely adopted, despite its promising properties for one-shot

class addition. DONE(III) and DONE(IV) significantly reduced

interference to less than one-tenth (7.4 and 6.0%, respectively).

It is understandable that there was no significant difference

between DONE(II) and Qi’s method. Qi’s method uses L2

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2024.1344114
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Hosoda et al. 10.3389/fnins.2024.1344114

FIGURE 5

Principal component analysis of weight vectors. This figure shows PCA of each wi and wj vector in the one-shot 1008-class models as shown in

Figure 3A. Di�erent colors represent a coarse 10 categorization of the original classes for wi. Additionally, 100 wj vectors, obtained by inputting 100

di�erent ImageNet images, are also shown to illustrate the distribution of new-class vectors. The DNN models and weight imprinting methods used

were: (A) ViT-B/32 and DONE, (B) E�cientNet-B0 and DONE, (C) E�cientNet-B0 and Qi’s method.

normalization for both x and all w vectors. Thus, all new wj vectors

and original wi vectors have the identical 2nd moments. DONE(II)

normalizes new wj vectors so that the 2nd central moments are the

same as the original Wori matrix. Therefore, both methods have

normalized the scale but not the average value.

Focusing on the metric of cosine similarity, it is understandable

that normalization of the average value should be ignored.

However, in the case of weight imprinting, normalization of the

average value is important, as well as the scales. For example,

consider an extreme case where all values of the x vector are

positive, and the values of w vectors include positive and negative

values with the mean value of zero. If we adopt the x vector as a

new wj vector without normalizing the average value, all values of

this newwj vector become positive. All values of Hadamard product

x ◦ wj become positive, and the dot product x · wj and the cosine

similarity, when L2 normalized, would tend to become a larger

value for the new class than the other original classes. As a result,

without normalization with the average value, the interference with

the original classes by the new class tends to be large when the

average values are different between x and wi vectors.

The cause of this interference is considered to be the difference

in the shapes of the frequency distributions of x and wi. As

far as we tested (Supplementary Figure S2), in all two vision

transformers and six CNNs, wi had a bell-shaped distribution with

an average value of approximately zero. On the other hand, for

x, two vision transformers had also bell-shaped distributions with

average values of approximately zero, while all six CNNs had right-

tailed distributions. In particular, among the three CNNs tested in

Figure 4, EfficientNet-B0 had negative values in x vectors with a

small positive average value, but the values of x vectors in VGG-

16 and ResNet-50 were all greater than or equal to zero, which was

consistent with the above explanation.

Although it is not clear why only the distribution of x in vision

transformers is bell-shaped, vision transformers are known to

uniformly acquire information from the entire input through patch

division and self-attention, integrating extensive input information

and maintaining more uniform representations across all layers

(Dosovitskiy et al., 2020; Naseer et al., 2021; Raghu et al., 2021).

These characteristics are different from CNNs, where specific

neurons tend to respond strongly to specific local patterns due

to convolution, leading to more robust features against inputs in

vision transformers (Cordonnier et al., 2020; Fort et al., 2021). Such

difference between locality and extensive coverage would be related

to the difference between right-tailed and bell-shaped distributions

of x.

The bell-shaped distributions of the neural activity x in vision

transformers do not deviate from the situation in the brain. In

ANNs, values representing neural activity are often zero or positive

numbers to represent the spikes. It would be a natural assumption

that the frequency distribution is right-tailed for the neural activity.

However, at least x here is the value of the final-dense-layer

input of DNNs. The final-dense-layer input can be considered to

correspond to the higher visual cortex in the brain (Tsunoda et al.,

2001; Yamins et al., 2014). Therefore, rather than the activity of

each neuron, it is considered to represent the activity of a cluster

made up of multiple neurons. Therefore, from the central limit

theorem, it is not inconsistent with the situation in the brain that

the distribution is expressed more like a normal distribution than a

right-tailed distribution.

4.4 Principal component analysis of weight
vectors

Qi’s method showed greater interference in the classification

of original-class images than DONE when the backbone DNN

was EfficientNet-B0. Moreover, even with DONE, EfficientNet-

B0 showed greater interference than ViT-B/32 and strangely high

accuracy in the 1,001-class model, even though DONE did not

change the weights for the original classes and transformed the

new-class weights so that the statistical properties were the same
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as those of the original-class weights. Therefore, there should be at

least two reasons for the results observed with EfficientNet-B0.

To investigate these reasons, we analyzed the W matrix (wi

and wj vectors) of the one-shot 1008-class models, as shown in

Figure 3A (and the corresponding models by Qi’s method), using

principal component analysis (PCA; Figure 5).

In ViT-B/32 with DONE (Figure 5A, Qi’s methods showed

similar results, see Supplementary Figure S3); newly added wj

vectors (black circles, with the ID number of newly-added eight

classes) were comparable to those of the original classes wi (colored

circles). For example, wj vector of a new class “caterpillar (3

in Figure 5A)” was near wi of original “invertebrate” classes. In

addition, even when we obtained wj by inputting ImageNet images

(red crosses; validation ID from the front to the 100th), the

ImageNet wj vectors were distributed within a similar range.

In EfficientNet-B0 with DONE (Figure 5B), most of the newly-

added 8-class wj (black circles) were out of the distribution

(meaning out of minimal bounding ellipsoid) of wi of the original

1,000 classes. On the other hand, most of the ImageNet wj (red

crosses) were inside the distribution of wi. Similar results were

obtained with DONE(III) (Supplementary Figure S3). Therefore, in

the case of DONE, the main reason for the observed interference

and the strangely high accuracy in EfficientNet-B0 compared

with ViT-B/32 is considered to be the difference between the

characteristics of image data in ImageNet and CIFAR datasets.

These results are consistent with known facts that ViT-B/32

is considered to be better at predictive uncertainty estimation

(Guo et al., 2017; Minderer et al., 2021), more robust to input

perturbations (Bhojanapalli et al., 2021), and more suitable for

out-of-distribution detections (Fort et al., 2021) than CNNs.

In EfficientNet-B0 with Qi’s method (Figure 5C), most of the 8-

class wj (black circles) and ImageNet wj (red crosses) were out of

the distribution of wi of the original 1,000 classes. The difference

in the distributions between the original wi and ImageNet wj was

considered to indicate the difference in the mean values of x and wi

vectors in EfficientNet-B0.

In the case of 100-shot learning (the terminal points of the gray

arrows, as shown in Figure 5), wj moved away from the cluster

of the original wi in all three cases, although their performance

was better than that of the 1-shot learning. Therefore, 100-shot wj

vectors were considered to work somehow in a different way from

the original wi vectors.

4.5 Few-shot learning in transfer learning
context

In terms of practical application, DONE is a method for

few-shot class addition tasks, not for few-shot transfer learning.

However, transfer learning with DONE is convenient for the

evaluation of DNNs because the performance is uniquely

determined by the backbone DNN without any randomness. We

examined the 5-way (five classes) 1-shot task of CIFAR-FS, which

is a type of standard task in 1-shot classification. Specifically, we

used each single image in five out of 100 classes of CIFAR-100 to

construct a model and evaluated the model using 15 images in each

class. The combination of the five classes (and the corresponding

training images) was randomly changed 100 times (Figure 6A).

In addition, 5-way 5-shot tasks were tested in a similar manner

(Figure 6B).

We found that ViT-B/32 significantly outperformed the other

DNNs under all conditions (Dwass-Steel-Critchlow-Fligner test).

In class addition tasks, there are at least two important performance

indexes, accuracy and interference, but in transfer learning, only

accuracy is evaluated. In this sense, it might be suitable for directly

comparing the performance of backbone DNNs models.

There was not much difference between the DONE and Qi’s

methods, but DONE was significantly better than Qi’s method

with a CNN model (InceptionV1) and was never significantly

worse. The reason for this small difference is not clear, but since

the differences between two methods here are only in the weight

distribution, the bell shape might be better than the right-tailed

for the weight distribution. This is consistent with the fact that the

weight distribution was bell-shaped in all DNNs, including vision

transformers and CNNs (Supplementary Figure S2).

Figure 6 also clearly shows how much other state-of-the-art 1-

shot learning methods, with additional optimization (methods in

the study by Bendou et al., 2022; Zhang et al., 2022), outperform

DONE, as the baseline without optimization, in the same test with

a common backbone DNN (ResNet-12). Basically, the performance

of DONE should be at the bottom in transfer learning, and transfer

learning is not a practical application task for DONE (the accuracy

was similar to SDG, stochastic gradient descent, one of the simplest

optimizers; Supplementary Figure S4). However, it may be used as

a baseline for few-shot learning methods in transfer learning or

learning from scratch, i.e., to quantify howmuch better thanDONE

because DONE does not include any randomness.

5 Conclusion

In this study, we investigated a brain-inspired method for

one-shot class addition tasks in vision to understand the brain’s

1-shot learning and develop a practical application method. We

introduced a novel Hebbian interpretation for weight imprinting

methods and demonstrated that a single fast Hebbian/Hebbian-

like process can enable pre-trained DNNs to perform 1-shot

class addition without any modification to the backbone DNNs.

The accuracy of the newly added eight classes was ∼80%

of the accuracy of the original 1,000 classes in a 1008-way

classification task, on average of using well-known DNNs: ViT-

B/32, EfficientNet-B0, VGG-16, and ResNet-50. Our weight

imprinting method, DONE(III) with linear normalization for

1st and 2nd central moments and DONE(IV) with non-linear

non-parametric quantile normalization, significantly decreased

the severe interference observed in the previous Qi’s method.

For example, Qi’s method misclassified 75% of original-class

images into newly added classes with ResNet-50, DONE(III),

and DONE(IV) that reduced the interference to less than one-

tenth. The primary cause of the interference was identified as

the difference in the statistical characteristics between neural

activity and synaptic weight, which was evident in CNNs but

not in vision transformers. The advantages of DONE as a

practical application method over Qi’s weight imprinting method

are (i) a simpler procedure, (ii) no backbone modification, and
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FIGURE 6

Five-way 1-shot (A) and 5-shot (B) classification accuracy on CIFAR-FS with various backbone DNNs. Error bars indicate the standard error. Asterisks

indicate significant di�erences between DONE and Qi’s method (Dwass-Steel-Critchlow-Fligner test).

(iii) minimal interference with original classification. Moreover,

DONE as a weight imprinting method offers (iv) no need

for optimization, parameters, hyperparameters, or randomness,

making it replicable for any user. As the performance of DONE

is entirely dependent on the backbone DNNs, and with the

ongoing development of DNNs, the range of tasks achievable with

DONE in practice will continue to grow. Furthermore, in the

current situation where fast Hebbian plasticity is a hot topic in

neuroscience, demonstrating that a single fast Hebbian/Hebbian-

like process can enable 1-shot learning in DNNs in this study

which would be a significant contribution to understanding brain

1-shot learning.
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