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Introduction: In studies on consciousness detection for patients with disorders 
of consciousness, difference comparison of EEG responses based on active 
and passive task modes is difficult to sensitively detect patients’ consciousness, 
while a single potential analysis of EEG responses cannot comprehensively and 
accurately determine patients’ consciousness status. Therefore, in this paper, 
we designed a new consciousness detection paradigm based on a multi-stage 
cognitive task that could induce a series of event-related potentials and ERD/ERS 
phenomena reflecting different consciousness contents. A simple and direct task 
of paying attention to breathing was designed, and a comprehensive evaluation 
of consciousness level was conducted using multi-feature joint analysis.

Methods: We recorded the EEG responses of 20 healthy subjects in three 
modes and reported the consciousness-related mean event-related potential 
amplitude, ERD/ERS phenomena, and the classification accuracy, sensitivity, 
and specificity of the EEG responses under different conditions.

Results: The results showed that the EEG responses of the subjects under different 
conditions were significantly different in the time domain and time-frequency 
domain. Compared with the passive mode, the amplitudes of the event-related 
potentials in the breathing mode were further reduced, and the theta-ERS and 
alpha-ERD phenomena in the frontal region were further weakened. The breathing 
mode showed greater distinguishability from the active mode in machine learning-
based classification.

Discussion: By analyzing multiple features of EEG responses in different modes 
and stimuli, it is expected to achieve more sensitive and accurate consciousness 
detection. This study can provide a new idea for the design of consciousness 
detection methods.
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1 Introduction

Patients with severe disorders of consciousness (DOC) are those 
who have impaired perception of their surroundings or themselves 
due to severe brain injury, cerebral hemorrhage or infarction, 
electrocution, cardiac disease, drowning, etc. The consciousness state 
of patients with DOC is classified as unresponsive wakefulness 
syndrome (UWS)/vegetative state (VS) and minimally conscious state 
(MCS) (Giacino et al., 2014).

UWS/VS patients retain basic brainstem reflexes and the sleep–
wake cycle, they are able to open their eyes spontaneously or upon 
stimulation but lack awareness of their environment (Laureys et al., 
2010). MCS patients have weak and discontinuous consciousness and 
own a certain degree of behavioral response (Giacino et al., 2002). The 
current clinical misdiagnosis rate of patients with DOC is as high as 
about 40% (Schnakers et al., 2009). After patients are misdiagnosed, 
the lack of timely and correct treatment may lead to further 
deterioration of the condition and even death. Therefore, accurate 
assessment of consciousness state is essential for clinical rehabilitation 
therapy of patients with DOC (Demertzi et al., 2008).

In order to reduce the clinical misdiagnosis rate, many new 
methods have been proposed for consciousness detection to assess the 
state of consciousness (Gosseries et al., 2014; Marino et al., 2016; 
Kondziella et al., 2020). Among them, electroencephalography (EEG) 
examination based on event-related potentials (ERPs) is increasingly 
used for the diagnosis and assessment of clinical disorders of 
consciousness, which has the advantages of high temporal resolution 
and relatively low cost (Górska and Binder, 2019). In clinical medicine, 
consciousness refers to the brain’s ability to perceive, recognize and 
respond to the surrounding environment and its own state (Sarasso 
et  al., 2014). Cognitive potentials reflect the neurophysiological 
changes in the brain during the cognitive process (Vanhaudenhuyse 
et al., 2008). They are able to assess the content of consciousness, such 
as perception, attention, and memory (Sculthorpe-Petley et al., 2015), 
and thus detect consciousness. However, due to the variability of brain 
injury and the fluctuating level of consciousness in patients with 
DOC, it is often necessary to collect multiple evoked potentials with 
different latencies during cognitive processes in the brain several times 
in order to determine the patient’s level of consciousness (Sergent 
et al., 2017). The conscious state of a healthy person is stable, and the 
EEG responses to external stimuli are highly reproducible. The first 
step in applying consciousness detection methods to patients with 
DOC is to accurately and sensitively detect consciousness in healthy 
persons (Höller et al., 2013a,b; Morlet et al., 2017, 2023). The validity 
of the experimental paradigm and potential components representing 
different consciousness contents needs to be  validated in healthy 
persons (Cruse et al., 2014). Therefore most studies on consciousness 
detection have set up healthy controls (Soddu et al., 2009).

Detecting the presence or absence of ERP components associated 
with consciousness is the basic method of consciousness detection. 
These components are P300, CNV, N400, P600, etc. In the studies of 
consciousness detection based on P300, auditory P300 was induced by 
auditory stimuli such as calling the patient’s name or calling a stranger’s 
name (Kempny et al., 2018), and visual P300 was induced by visual 
stimuli such as presenting a picture of a target digit and a picture of a 
non-target digit (Pan et al., 2014) or haptic P300 was induced by the 
vibration of a stimulator placed at different locations on one’s limb 
(Murovec et al., 2020). In these studies, it was found that the patients 
who possessed the P300 component tended to be among the MCS 

patients. Some of the VS patients with detectable P300 components had 
improved consciousness over time. Contingent negative variation 
(CNV) is a classical cognitive potential that manifests itself as a negative 
potential change in the frontal cortex, reflecting the subject’s anticipation 
of a commanded stimulus (Macar and Vidal, 2004). Studies showed that 
CNV can be observed in the EEG responses of MCS patients and VS 
patients. Still, Patients with CNV tended to notice abnormalities in the 
stimulation pattern, and P300 components were more likely to exist in 
their EEG responses (Rozier et al., 2020). In addition, Schoenle and 
Witzke’s study suggested that N400 could be  used to distinguish 
between non-UWS, near-UWS, and UWS (Schoenle and Witzke, 2004). 
In Wu’s study, they found that the P600 was absent in UWS patients, so 
that in combination with the P600, the distinction between MCS and 
UWS could be achieved. In these ERP-based consciousness detection 
studies, calling the subject’s name and presenting a photograph of the 
subject were often used as auditory stimuli and visual stimuli. This is 
because these self-relevant stimuli can put the subject in a better 
cognitive state and induce more pronounced ERPs (Laureys et al., 2007).

The task modes of the consciousness detection paradigm are divided 
into two main categories based on the demands placed on the subject: the 
active mode and the passive mode (Risetti et al., 2013). The active mode 
requires the subject to focus on a specific stimulus and perform the 
associated mental task, and the passive mode places no demands on the 
subject, who is not required to respond to the stimulus. Using only one 
of these modes, it is often impossible to determine whether a subject’s 
EEG response to a stimulus is automatic or voluntary, and thus the 
patient’s state of consciousness cannot be  accurately determined. 
Comparing EEG responses in the two modes is a more reliable way of 
determining the state of consciousness, for example, conscious people 
have higher P300 amplitudes in the active mode than in the passive 
mode. It is worth noting that the ERP component is not entirely absent 
in the passive mode compared to the active mode, even if the subject is 
not asked to respond to the stimulus after receiving the stimulation 
(Escera et al., 1998). This is because in the passive mode, conscious 
subjects constantly change their attention to targets, and their attention 
will be easily attracted to stimuli such as calling names or presenting 
photographs. ERPs such as the P300 are induced to some extent, which 
will reduce the difference from that in the active mode. Thus, comparing 
the EEG responses of active and passive modes is not an optimal method 
of consciousness detection. In 1989, Polich showed that setting a 
secondary task was able to reduce the amplitudes of ERPs in subjects 
compared to an ignoring condition (Polich, 1989). In a related study on 
consciousness detection, Morlet et al. (2017) proposed to amplify the 
EEG difference between the mental imagery mode and the active mode 
by imagining hanging out at home, thus improving the sensitivity of 
consciousness detection. This method was validated for feasibility on 
healthy persons. On the other hand, patients who possessed consciousness 
without behavioral responses had been shown to be able to perform 
mental imagery tasks, such as playing soccer, golf, etc., to achieve simple 
communication (Owen et al., 2006; Cruse et al., 2011). Still, as mental 
imagery tasks were often complex and challenging, they were only 
applicable to some DOC patients with a high degree of consciousness.

In addition, in recent years, many machine-learning based 
consciousness detection methods have been proposed. Pan et  al. 
(2020) designed a variety of brain-computer interfaces for 
consciousness detection, and the accuracy was obtained by classifying 
the EEG responses based on support vector machines (SVM), and 
there was a significant correlation between the accuracy and 
consciousness recovery. Altintop et al. extracted EEG features such as 
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entropy, Hjorth parameter, complexity, etc. and used algorithms such 
as Multilayer Perceptron Neural Networks and Random Forests to 
classify the level of consciousness (Altintop et  al., 2022, 2023). 
Meanwhile, algorithms such as the synthetic minority oversampling 
technique (SMOTE) and the spatio-temporal self-constructing graph 
neural network (ST-SCGNN) also provide solutions to the data 
imbalance and cross-subject classification in consciousness detection 
research (Chawla et  al., 2002; Pan et  al., 2023). Consciousness 
detection through machine learning is a possible approach.

In this study, we aimed to improve the sensitivity and accuracy of 
consciousness detection by exploring appropriate paradigms and 
electrophysiological features. We  proposed a simple and 
straightforward breathing mode, which could be  applied to most 
patients with DOC. Under the breathing mode, the subject’s brain 
reduced the processing of external stimuli, and the related EEG 
responses were significantly weakened or even disappears, which was 
compared with the EEG responses under the active mode to determine 
whether the subject responded to the task actively or not. By this 
method, it was expected that sensitive detection consciousness would 
be  achieved. Meanwhile, compared with the traditional oddball 
unimodal paradigm, we designed a multi-stage cognitive task under 
visual and auditory conditions, which could induce ERP components 
related to different consciousness contents. And through the joint 
analysis of multi-potential features, the accuracy of consciousness 
detection improved. Unlike most studies that focused only on the 
analysis of ERPs and ignored the non-phase-locked information, 
we further analyzed the spectral oscillation distribution features of the 
brain to assist consciousness detection (Harrison and Connolly, 2013). 
Components such as P300 and N400 in ERPs and the event-related 
desynchronization/synchronization(ERD/ERS) phenomena of the 
EEG rhythm, as the neurophysiological features of the brain related to 
consciousness, could reflect consciousness contents such as semantic 
processing, attentional engagement and so on. Based on the paradigm 
designed and proposed electrophysiological features in this paper, 
quantifying EEG differences under different conditions using machine 
learning is expected to be used for consciousness detection.

2 Materials and methods

2.1 Participants

Data were collected from 20 healthy subjects (13 males and 7 
females, mean age of 24.2 ± 1.3 years). Their native language was 
Chinese. Exclusion criteria were hearing deficits, visual deficits, 
neurological or psychiatric history, and taking of sedative treatment. 
The experiment was approved by the Bioethics Committee at Ningbo 
Institute of Materials Technology and Engineering, Chinese Academy 
of Sciences. Before the experiment, all subjects were informed of the 
experimental procedure and signed an informed consent form.

2.2 Experimental procedure

Our experiments contained visual and auditory paradigms in 
which subjects’ EEG was recorded in three task modes (1) active 
mode, focus on the target stimulus and count. (2) Passive mode, 
nothing is required. (3) Breathing mode: pay attention to breathing 
and ignore stimuli. All paradigms contained four types of stimuli: the 

standard stimulus, the deviant stimulus, the correct novel stimulus 
(the target stimulus), and the incorrect novel stimulus. The specific 
flow of the experiment is shown in Figure 1.

In the visual paradigm, the standard stimulus was a photograph of a 
stranger with an unobstructed full face. The deviant stimulus was a 
photograph of a subject with occluded eyes, the correct novel stimulus 
was a photograph of a subject with occlusion removed, and the incorrect 
novel stimulus was a photograph of a non-subject removing occlusion 
and changing the facial feature of the eyes. All photographs were presented 
in white boxes, with borders designed to make subjects more clear where 
the photographs appeared. In the auditory paradigm, the standard 
stimulus was to call out the stranger’s name, the deviant stimulus was to 
call out the first half of the subject’s name, such as “You Yi” for “You 
Yimeng.” The correct novel stimulus was to call out the last word of the 
subject’s name, such as “Meng” for “You Yimeng,” whereas the incorrect 
novel stimulus was to call out an irrelevant alternative word, such as “Hui,” 
“Han,” and so on. Standard stimuli, deviant stimuli, correct novel stimuli, 
and incorrect novel stimuli all lasted for 600 ms, with deviant stimuli 
separated from novel stimuli by 600 ms, and the rest of the stimuli were 
randomly spaced at intervals ranging from 600 to 1,000 ms. Each 
paradigm contained 6 blocks, and each block contained 200 standard 
stimuli, 50 deviant stimuli, 25 correct novel stimuli and 25 incorrect novel 
stimuli. Before the start of each block, subjects were given the appropriate 
instructions, with the active mode prompting “Count the correct photo/
name,” the passive mode prompting “Accept stimuli but do not respond,” 
and the breathing mode prompting “Ignore stimuli and focus on your 
breathing.” Blocks were presented in a particular order, with a 5-min 
break between each block. Auditory stimuli were recorded by a male 
native Chinese speaker with guaranteed duration, and all audio was 
loudness-matched. Picture processing software was used to ensure that 
the photographs in the visual stimuli were of the same size. During EEG 
recording, stimuli were presented via Eprime 2.0. All experimental tasks 
were performed in an electromagnetically shielded room to minimize 
environmental interference.

Based on the above experimental procedure, it was promising to 
induce a series of potentials in different spatial brain regions with 
different latencies to comprehensively assess the subjects’ 
consciousness. Experiments were conducted in the active mode, the 
passive mode, and the breathing mode to verify the differences among 
the different modes and the advantages of the breathing mode over 
the passive mode. The visual paradigm and auditory paradigm were 
also designed to be  able to accommodate clinical subjects with 
auditory or visual impairments due to complications.

2.3 Data acquisition and preprocessing

The EEG data were recorded using a Neuroscan EEG system with 
a sampling rate of 1,000 Hz. The electrode caps were made of 32 Ag/
AgCl electrodes, and the electrode distribution followed the 
international 10/20 system. Two unipolar electrodes were placed on 
the right and left mastoids (M1, M2). Two pairs of bipolar electrodes 
were used to record the vertical and horizontal electrooculography 
(EOG) in order to detect eye movements and blinks.

The EEG data were processed offline using EEGLAB (Delorme 
and Makeig, 2004). The raw data were band-pass filtered from 0.1 to 
20 Hz with a trap filter at 50 Hz and re-referenced based on the average 
of M1 and M2. After this, counting from the moment when the 
stimulus was given, the EEG data from 200 ms before this moment to 

https://doi.org/10.3389/fnins.2024.1341986
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


You et al. 10.3389/fnins.2024.1341986

Frontiers in Neuroscience 04 frontiersin.org

1,000 ms after this moment were considered as the data segment for 
this stimulus. Baseline corrections were made using the first 200 ms of 
data. Eye movements with other artifacts were removed using 
independent component correlation algorithm (Makeig et al., 1997), 
in which trials with voltages exceeding ±75 uV were excluded.

2.4 ERP analysis

For each subject’s EEG responses to different types of stimuli, 
we intercepted the EEG data with a duration of 1,200 ms for averaging. 
As consciousness is closely related to the frontoparietal lobe of the 
brain, we chose two specific regions of interest (ROI) for the study of 
EEG characteristics under stimulation: the parietal region (ROI1: P7, 
P3, PZ, P4, P8), and the frontal region (ROI2: FP1, FP2, F7, F3, FZ, 
F4, F8). Based on the mean ERP waveform and mean brain 
topography, we defined P300 amplitude as the average amplitude of 
ROI1 under deviant stimuli within the time of 250–400 ms, CNV 
amplitude as the average amplitude of ROI2 under deviant stimuli 
within the time of 800–1,000 ms. N400 amplitude was the difference 
between the mean amplitude of ROI1 under incorrect novel stimuli 
and correct novel stimuli in 380–420 ms. P600 amplitude was the 
difference between the mean amplitude of ROI2 under incorrect novel 
stimuli and correct novel stimuli in 650–750 ms.

2.5 ERD/ERS analysis

Time-frequency decomposition was performed using the short-
time Fourier transform to obtain the power spectrum of the EEG 

signals compared to the baseline. Event-related spectral perturbation 
(ERSP) analysis was performed under a fixed 200 ms Hanning window 
(Grandchamp and Delorme, 2011). For each stimulus, data were taken 
200 ms before the stimulus moment and 1,000 ms after the stimulus at 
a frequency of 0.1–20 Hz for calculation. The calculation method is 
as follows:

 
P t f F t f, ,( ) = ( ) 2

For each trial, the baseline was set from −200 to 0 ms. Baseline 
correction was achieved by the subtraction method in the time-
frequency domain:

 
P t f P t f R fbl , , -( ) = ( ) ( )

Where R f( ) is the average power spectral density of the baseline 
interval at each frequency. P t fbl ,( ) <0 is considered to represent 
ERD, and P t fbl ,( ) >0 is considered to represent ERS.

We chose to analyze the time-frequency characteristics of the FZ 
electrodes, the average ERD/ERS power values in the theta (4–7 Hz) 
200–400 ms after stimulation and in the alpha (8–13 Hz) 400–1,000 ms 
after stimulation were selected for analysis.

2.6 Classification

In order to quantify the degree of differences in EEG response 
across modes and stimuli, we used SVM to calculate the accuracies of 

FIGURE 1

Stimulus paradigm. Under the visual and auditory paradigms, corresponding standard stimuli, deviant stimuli, correct novelty stimli, and incorrect 
novelty stimuli were presented. Under each sensory stimulus, the active mode, the passive mode, and the breathing mode each occupied two blocks, 
and the subject was given a request at the beginning of each block. Here, the subject’s name was “You Yimeng” and the stranger’s name was “Zhu 
Xuefeng.” Instructions and stimuli were presented through a monitor and headphones.
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EEG responses classification between standard and deviant stimuli or 
between correct novelty stimuli and incorrect novelty stimuli in 
different modes, as well as the accuracies of EEG responses 
classification under a specific type of stimulus between active and 
passive modes or between active and breathing modes (Zhao et al., 
2022). SVM implemented in Matlab software through fitcsvm 
function, the kernel function of SVM is linear, and the parameter 
‘OptimizeHyperparameters’ is set to ‘auto’ to optimize the 
hyperparameters. Meanwhile, we  used the SMOTE to solve the 
problem of data imbalance in standard and deviant stimulus 
classification. The EEG data were downsampled to 100 Hz. 
We extracted 1,000 ms of EEG data from all leads after stimulation and 
concatenated them as features. In the EEG classification under 
standard and deviant stimuli, deviant stimuli were labeled as +1 and 
standard stimuli were labeled as −1. In the EEG classification under 
novel stimuli, correct novel stimuli were labeled as +1, and incorrect 
novel stimuli were labeled as −1. In the EEG classification under 
active and other modes, active modes were labeled as +1, and other 
modes were labeled as −1. We calculated and averaged the 20 subjects’ 
classification accuracy, sensitivity, and specificity.

When the number of trials averaged was one, half of all the 
samples are randomly taken as the training set and the other half as 
the test set to train the model and calculate the classification accuracy. 
The operation was repeated 10 times to obtain the average 
classification accuracy. In addition, we also used the EEG data after a 
certain number of trials averaged as the test set to calculate the 
classification accuracy, and recorded the change of classification 
accuracy during the number of trials averaged from one to five.

2.7 Statistical analysis

First, a priori analysis of the required sample size was performed 
using G-Power. The sample size of 20 for two-tailed paired t-tests was 
estimated for an alpha error probability of 0.05, a power of 0.8, and an 
effect size of 0.67. The sample size of 60 for one-way analysis of variance 
(ANOVA) was estimated for an alpha error probability of 0.05, a power 
of 0.8, and an effect size of 0.42. The sample size for each group was 20.

Statistical analysis software SPSS 25 was used for further analysis. 
The results are expressed as mean ± SE. We used paired t-tests to test 
for significant differences in the following data: (1) potential amplitudes 
under standard and deviant stimuli; (2) Potential amplitudes under 
correct and incorrect novel stimuli; (3) The accuracies of active mode 
EEG in distinguishing from passive mode as well as from breathing 
mode. For the following data we used a one-way ANOVA to test the 
effect of mode: (1) Event-related potential potential amplitude in the 
three modes; (2) ERD/ERS power in the three modes; (3) Classification 
accuracy in the three modes. In post hoc analyses, pairwise comparisons 
were performed using the Bonferroni method. Among them, a value 
of p<0.05 was considered statistically significant.

3 Results

3.1 ERP results

As shown in Table  1, the mean amplitudes of EEG responses 
under deviant and standard stimuli were statistically analyzed in the 

visual and auditory paradigms. It was found that the deviant stimulus 
in the visual paradigm could induce stronger positive ERP 
components than the standard stimulus in active and passive modes, 
and the deviant stimulus in the auditory paradigm induced stronger 
positive ERP components than the standard stimulus in active mode. 
As shown in Figure 2, a significant P300 component appeared in the 
EEG responses to deviant stimuli in these modes. In addition, 
we found that in the active mode of the auditory paradigm, the deviant 
stimulus evoked a more significant negative ERP component at 
800–1,000 ms than the standard stimulus. In the active mode of the 
visual paradigm, a negative ERP was also present, but it was not 
statistically significant. This negative ERP component was not 
observed in the passive and breathing modes of both paradigms. This 
implies that the CNV potential is significantly characterized only in 
the active mode.

As shown in Table 2, the mean amplitudes of EEG responses to 
correct and incorrect novel stimuli were statistically analyzed in both 
the visual and auditory paradigms. It was found that the incorrect 
novel stimulus induced more negative potential components at 
380–420 ms than the correct novel stimulus in all modes except the 
passive mode. As shown in Figure 2, a clear N400 can be observed in 
the difference waves in these modes. In the active mode of the visual 
paradigm, the incorrect novel stimulus evoked a larger positive ERP 
component at the 650–750 ms time period, which was not observed 
in the other modes. Thus, we observed a significant P600 component 
in the difference wave only in the active mode of the visual paradigm.

In order to determine the effect of the factor of mode on the 
amplitude of these potentials, the amplitudes of P300, CNV, N400, and 
P600 were tested using a one-way analysis of variance (ANOVA), and 
the results are shown in Table  3. It was found that in the visual 
paradigm P300 amplitude, CNV amplitude, and P600 amplitude 
differed significantly between modes. In the auditory paradigm P300 
amplitude, CNV amplitude, and N400 amplitude were found to 
be  significantly different between modes. Except for the CNV 
amplitude in the visual paradigm, in all other cases, the breathing 
mode was able to differ more from the active mode compared to the 
passive mode.

Through the analysis, it was known that in the active mode, there 
were significant differences in the EEG responses evoked by different 
types of stimuli and significant ERP components could be observed. 
Secondly, in the passive mode, there were differences in the part of the 
EEG responses evoked by different types of stimuli. In the breathing 
mode, the differences in the EEG responses evoked by different types 
of stimuli were smaller. Meanwhile, the differences in the amplitude 
of each ERP component were compared between active and passive 
modes, as well as the active and breathing modes. It was found that 
the difference in ERP amplitudes between breathing and active modes 
was greater than the difference in ERP amplitudes between active and 
passive modes.

3.2 ERD/ERS results

Frontal zone electrode FZ was selected for time-frequency analysis. 
As one of the four brain regions, the frontal lobe has functions such as 
attention regulation, task decision-making, and emotion regulation, 
which are closely linked to consciousness. Through Figure 3, we can 
observe the differences in ERD/ERS phenomena under different stimuli. 
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In order to analyze the differences in EEG spectral power between 
passive and active modes, as well as breathing and active modes, the 
average power of EEG in the theta frequency band, 200–400 ms, and in 
the alpha frequency band, 400–1,000 ms, under different stimuli were 

statistically analyzed, and the results of the time-frequency analysis are 
shown in Table 4 and Figure 4.

As a result of the one-way ANOVA, we found that in most cases 
there were significant differences in ERD/ERS between the different 

TABLE 1 Paired t-test results of ERP amplitude under deviant and standard stimuli.

Paradim Mode Post-stimulation 250–400  ms time period Post-stimulation 800–1,000  ms time period

Deviant 
stimulus 

amplitude (μV)

Standard 
stimulus 

amplitude (μV)

p-value Deviant 
stimulus 

amplitude (μV)

Standard 
stimulus 

amplitude (μV)

p-value

Visual

Active 4.63 ± 0.60 2.32 ± 0.46 p < 0.001 −1.72 ± 0.67 −0.35 ± 0.36 p = 0.060

Passive 3.84 ± 0.84 1.61 ± 0.42 p = 0.001 0.83 ± 0.38 −0.12 ± 0.25 p = 0.033

Breathing 1.31 ± 0.43 1.06 ± 0.35 p = 0.380 −0.11 ± 0.31 0.03 ± 0.20 p = 0.692

Auditory

Active 1.35 ± 0.27 0.57 ± 0.20 p = 0.013 −3.82 ± 0.47 −1.07 ± 0.23 p < 0.001

Passive 0.95 ± 0.44 0.32 ± 0.20 p = 0.163 −1.76 ± 0.92 −1.23 ± 0.26 p = 0.525

Breathing 0.03 ± 0.39 0.04 ± 0.15 p = 0.979 −0.98 ± 0.90 −0.96 ± 0.20 p = 0.983

p-values < 0.05 are bolded.

FIGURE 2

Mean ERP waveforms and brain topographic maps in visual and auditory paradigms for 20 subjects. Panel (A) shows the subjects’ EEG responses to 
standard stimuli and deviant stimuli. The light gray (250–400 ms) and dark gray regions (800–1,000  ms) represent the intervals used for brain 
topographic mapping and statistical analysis. Panel (B) shows the subjects’ EEG responses to correct novel stimuli (red) and incorrect novel stimuli 
(blue), as well as the difference waveforms between the two (black). The light gray (380–420  ms) and dark gray regions (650–750  ms) represent the 
intervals used for brain topographic mapping and statistical analysis.
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modes. After a post-hoc analysis, it can be  seen that there is no 
significant difference between the active and passive modes in all 
cases, except for the theta-ERS of the active and passive modes under 
the correct novel stimuli of the auditory paradigm. On the other hand, 
the breathing mode showed more variability from the active mode 
under a larger number of stimuli. It was also found that there were 
more time-frequency domain differences between modes under the 
correct novel stimuli compared to other stimuli, not only in theta-ERS 
but also in alpha-ERD.

In summary, there are different degrees of ERD/ERS phenomena 
in the time-frequency domain of EEG under different stimuli in the 
active mode, and because these phenomena differ slightly from those 
in the passive mode, we  cannot judge the subject’s consciousness 
participation based on these features only. And when we detect the 
difference in time-frequency domain features between active and 
breathing modes, we  can hopefully judge the existence of the 
subject’s consciousness.

3.3 Classification results

The study classified the EEG of each subject under different types 
of stimuli in active, passive, and breathing modes by SVM, and 
calculated the accuracy, sensitivity, and specificity. The specific results 
are shown in Table 5. The accuracy of distinguishing the EEG response 
under deviant stimuli from standard stimuli in the active mode 
reached 75.5 ± 2.5% in the visual paradigm (sensitivity: 90.9 ± 0.8%, 
specificity: 60.1 ± 4.1%), and 66.5 ± 1.5% in the auditory paradigm 
(sensitivity: 87.5 ± 0.7%, specificity 45.5 ± 2.4%). It can be concluded 
that these two types of EEGs in the active mode are distinguishable 
and the characteristic differences are significant. The accuracy of 
distinguishing the two types of EEGs in the passive and breathing 
modes was lower than that in the active mode, where there was a large 
difference in the classification accuracy between the breathing mode 
and the active mode. The accuracy was only 55.6% in the breathing 
mode of the visual paradigm and 59.8% in the breathing mode of the 
auditory paradigm. Second, in the active mode, the accuracy of 
distinguishing EEG responses under correct novel stimuli from 
incorrect novel stimuli reached 62.0 ± 2.2% (sensitivity: 60.1 ± 2.7%, 
specificity: 63.8 ± 2.0%) in the visual paradigm and 61.7 ± 1.5% 
(sensitivity: 62.5 ± 1.8%, specificity 60.9 ± 1.6%) in the auditory 
paradigm. In a one-way analysis of accuracy, it was found that 
accuracy in passive and breathing modes was significantly lower than 

that in active mode, where there was still a large difference between 
breathing and active modes. Besides, the difference in sensitivity and 
specificity was displayed in Figure 5.

The study classified the EEG responses of deviant stimuli, and 
novel stimuli in different modes and calculated the accuracy, 
sensitivity, and specificity. In Table 6, we can observe that under the 
visual paradigm, the classification accuracy of EEG responses in 
distinguishing the active and breathing modes is significantly higher 
than the classification accuracy of EEGs in distinguishing the active 
and passive modes. This implies that the EEG in active and breathing 
modes have better distinguishability. In the auditory paradigm, the 
active and respiratory modes had significantly better discriminability 
for all stimuli except for the incorrect novel stimuli. Besides, the 
difference in sensitivity and specificity was displayed in Figure  6. 
Overall, for conscious subjects, the SVM classifier was able to 
effectively discriminate between EEG responses in active and 
breathing modes.

For the active and breathing paradigms, we used increasing the 
number of trials averaged and calculated the accuracy again, as shown 
in Table  7. By increasing the number of trials averaged, the 
classification accuracy of different stimuli in the active mode was 
increased, while the accuracy in the breathing paradigm did not 
change much. Meanwhile for distinguishing the EEG responses under 
the same stimulus in different modes, increasing the number of trial 
averages was also able to improve the classification accuracy, even 
reaching 90% in the visual paradigm. It is certain that by increasing 
the number of trials averaged, some of the non-locking noise in the 
EEG is attenuated and the potential features are more obvious, which 
is beneficial to the classification of the EEG. However, for the breathing 
mode or for all modes in subjects without consciousness, increasing 
the number of trial averages is not effective in improving the accuracy.

Three expected metrics for evaluating consciousness were 
identified through classification: (1) the accuracy of classifying EEG 
responses to different stimuli in the active mode. (2) The accuracy of 
classifying EEG responses distinguishing between the active and 
breathing modes for each type of stimulus. (3) The change in accuracy 
when increasing the average number of trials.

4 Discussion

In order to explore sensitive and accurate methods of 
consciousness detection which can be applied to clinical patients with 

TABLE 2 Results of paired t-tests for ERP amplitude with correct and incorrect novel stimuli.

Paradim Mode Post-stimulation 380–420  ms time period Post-stimulation 650–750  ms time period

Correct novel 
stimulus 

amplitude(μV)

Incorrect novel 
stimulus 

amplitude(μV)

p-value Correct novel 
stimulus 

amplitude (μV)

Incorrect novel 
stimulus 

amplitude(μV)

p-value

Visual

Active 8.63 ± 1.00 6.25 ± 0.85 p < 0.001 −0.32 ± 0.88 2.86 ± 1.07 p < 0.001

Passive 3.78 ± 1.01 3.04 ± 0.73 p = 0.283 0.60 ± 0.66 1.51 ± 0.96 p = 0.106

Breathing 1.57 ± 0.56 0.35 ± 0.65 p = 0.012 0.24 ± 0.42 −0.06 ± 0.57 p = 0.533

Auditory

Active 5.43 ± 0.56 0.52 ± 0.36 p < 0.001 1.02 ± 0.69 1.92 ± 0.53 p = 0.240

Passive 0.60 ± 0.62 −0.96 ± 0.39 p = 0.093 0.61 ± 0.77 0.10 ± 0.60 p = 0.658

Breathing 1.08 ± 0.47 −0.63 ± 0.49 p < 0.001 0.45 ± 0.64 0.21 ± 0.66 p = 0.748

p-values < 0.05 are bolded.
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DOC, We designed a new paradigm based on a multi-stage cognitive 
task capable of inducing a series of ERPs responding to different 
contents of consciousness as well as ERD/ERS phenomena. The EEG 
responses of 20 subjects under the paradigm were analyzed, and the 
time-domain and time-frequency-domain characteristics of the EEG 
responses evoked by standard stimuli, deviant stimuli, and novel 
stimuli in the active mode, the passive mode, and the breathing mode 
were compared. The extent of differences in EEG response under 
different conditions was quantified using the machine 
learning method.

We found that the novel paradigm was able to induce a series of 
ERPs or ERD/ERS changes, which reflect consciousness contents such 
as semantic processing and attentional engagement. In the active 
mode of visual and auditory stimulation, the brain was more activated, 
manifested as higher ERP amplitudes or more pronounced ERD/ERS 
phenomena. In the breathing mode, the level of brain activation was 
lower, and there were more significant differences in time and 
frequency domain between the breathing mode and the active mode 
compared to the passive mode. Combining machine learning to 
quantify the differences in EEG response under different conditions 
will enable sensitive and accurate consciousness detection in healthy 
subjects. It will lay the foundation for future application to 
consciousness detection in clinical patients with DOC.

4.1 The EEG characteristics that prove the 
existence of consciousness

P300 is considered to be an ERP component that is closely related 
to brain cognitive function and is one of the most commonly used 
components for consciousness detection (Annen et al., 2020). In the 
active mode of our designed consciousness detection paradigm, 
we  observed a significant P300 component in the subjects’ EEG 
responses. In the passive mode, the P300 amplitude of the subjects was 
reduced, while it was further reduced in the breathing mode. Most 
studies showed that P300 tended to be detectable in healthy persons 
and MCS patients, while it was not found in most UWS patients. In 
addition, it has also been shown that compared to the passive mode 
of receiving stimuli, MCS patients tended to have a more excellent 
P300 component under the active mode of counting, whereas it was 
not observed in UWS patients (Hauger et al., 2015). However, in our 
study, we found that the P300 component is also present in passive 

mode, which would lead to misdiagnosis of some conscious patients 
who complete active and passive tasks as required.

CNV is associated with anticipation of upcoming stimuli. In the 
paradigm we designed, the appearance of deviant stimuli triggers the 
brain’s anticipation of novel stimuli. A significant CNV component 
was detected in the active mode of the auditory paradigm. In the 
auditory paradigm, we  found a significant difference in CNV 
amplitude between the active and breathing modes. It has been found 
that CNV could be observed in EEG response of some patients with 
DOC and healthy subjects, and those patients with impaired 
consciousness who had CNV were more likely to detect abnormalities 
in stimulus patterns and are more likely to be conscious. The presence 
of CNV may mark the preservation of brain functions essential for 
consciousness in the forebrain (Sergent et al., 2017), implying partial 
preservation of functions in the anterior cingulate cortex and the 
prefrontal cortex, the two critical regions that carry out conscious 
processing. Therefore, focusing on the differences in the amplitude of 
the CNV under different conditions has essential implications for 
consciousness detection.

In the novel stimuli, we mainly focused on N400 and P600. N400 
and P600, as endogenous components of ERP, usually appear in the 
case of speech and pictures contrary to expectation and respond to the 
brain’s cognitive processing of information (Erlbeck et al., 2017). In 
our study, there were significant N400 and P600 components in the 
active mode of the visual paradigm. There was a significant difference 
in P600 amplitude between the active mode and the breathing mode. 
There was a significant N400  in the active mode of the auditory 
paradigm, which was significantly different from the breathing mode. 
It has been found that N400 is observed in healthy persons (Rohaut 
et al., 2015), some MCS and VS patients, while P600 is present only in 
healthy persons and MCS patients. This is due to the fact that semantic 
processing in the brain is divided into two stages (Rohaut and 
Naccache, 2017). The N400 component represents the early, localized 
(verbal semantic network), unconscious stage of semantic processing. 
The late P600 component, which persists under the whole-brain 
scope, represents the stage of consciously acquiring semantic 
information and processing it. In these studies, common word pairs 
were presented to the subjects as stimuli, and depending on the actual 
experience of the subjects, not all of them were effectively evoked by 
the N400, P600, and a more effective stimulus was needed.

In contrast to these single-potential studies, our study designed a 
method of consciousness detection that includes multiple cognitive 

TABLE 3 Results of one-way ANOVA and post-hoc analysis of ERP amplitude.

Paradim ERP One-way ANOVA Post-hoc analysis: active 
and passive modes

Post-hoc analysis: active 
and breathing modes

Visual

P300 F(2, 57) = 7.17, p = 0.002, η2 = 0.20 p = 1.000 p = 0.002

CNV F(2, 57) = 7.27, p = 0.002, η2 = 0.20 p = 0.001 p = 0.063

N400 F(2, 57) = 2.46, p = 0.094, η2 = 0.08 p = 0.099 p = 0.470

P600 F(2, 57) = 11.70, p < 0.001, η2 = 0.29 p = 0.009 p < 0.001

Auditory

P300 F(2, 57) = 3.28, p = 0.045, η2 = 0.10 p = 1.000 p = 0.047

CNV F(2, 57) = 3.41, p = 0.040, η2 = 0.10 p = 0.222 p = 0.042

N400 F(2, 57) = 8.64, p = 0.001, η2 = 0.23 p = 0.002 p = 0.002

P600 F(2, 57) = 0.64, p = 0.532, η2 = 0.02 p = 0.869 p = 1.000

P1 represents the results of the post-hoc analysis of the active and passive modes, P2 represents the results of the post-hoc analysis of the active and breathing modes. p-values < 0.05 are bolded.
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stages, which can efficiently evoke EEG characteristics related to 
consciousness, which will provide more analyzable characteristics for 
future application in patients. In addition, the subjects’ stimuli used in 
the study were more effective in evoking potentials than common 
stimuli such as tones and common word pairs.

Since the distribution of spectral oscillations in the brain plays an 
important role in cognitive processing with conscious involvement 
(Yordanova et al., 2020), we did not limit our analysis to the temporal 
domain and characterized the temporal-frequency domain. In the 
theta rhythm, which is related to the encoding and retrieval of events 
in memory (Jensen and Tesche, 2002), as shown by the results of our 
experiments, subjects with consciousness show different levels of 
activation during information and memory processing due to 
differences in stimulus type and task mode. In the alpha rhythm, 
which responds to the degree of neuronal processing activity(Yang 
et al., 2020), we observed a more pronounced alpha phenomenon in 
the active mode, implying that more brain resources were devoted to 
the active mode. These time-domain features along with time-
frequency domain features are what we  need to focus on in 
consciousness detection.

4.2 Active and breathing modes

The active and passive modes are the most frequently used in 
studies of consciousness detection. In the passive mode, subjects are 
often not required to respond, and because brain activity is different 
in patients with different states of consciousness, it is possible to 
determine the level of consciousness through features such as entropy, 
power spectrum, and complexity (Altintop et  al., 2022, 2023). 
However it is not sufficient to use the passive mode alone, in fact, even 
if the brain in the passive mode is able to process a given stimulus 

continuously, it is not possible to distinguish whether this is a 
voluntary or automatic cognitive process, and therefore whether this 
is a conscious or unconscious brain processing (Schnakers et  al., 
2008). Thus, a comparison of the EEG responses in the two modes is 
necessary. The active mode requires subjects to respond to a specific 
stimulus, and comparing the EEG responses in these two modes 
enables us to understand whether the brain processes the stimulus 
consciously or unconsciously. At this point a new problem arises, if 
the difference between the active and passive paradigms is not large 
enough (Morlet et al., 2017), then we cannot well judge whether the 
brain’s response is consciously involved or not. In this study, breathing 
mode was introduced instead of passive mode. Breathing mode is a 
simple way to reduce the processing of external stimuli by the brain, 
thereby decreasing the event-related potential amplitude or the degree 
of brain functional connectivity (Atchley et al., 2016; Zhang et al., 
2019). The results of this study show that the breathing mode showed 
significant differences from the active mode, allowing us to detect 
consciousness more sensitively.

4.3 Consciousness detection based on 
machine learning

In this study, we further used classification accuracy to quantify 
the degree of difference in EEG response between stimuli and between 
modes in the visual and auditory paradigms based on analysis of 
multi-potential features.

The study preliminarily designed a machine-learning-based 
consciousness detection process based on three metrics: the accuracy 
of classifying EEG responses to different stimuli in the active mode, 
the accuracy of classifying EEG responses distinguishing between the 
active and breathing modes for each type of stimulus, and the change 

FIGURE 3

Mean ERSP time-frequency maps of FZ electrodes for 20 subjects in visual and auditory paradigms. Panel (A) shows the EEG spectral changes evoked 
by deviant stimuli, standard stimuli, and novel stimuli in different modes in the visual paradigm. Panel (B) shows the EEG spectral changes evoked by 
deviant stimuli, standard stimuli, and novel stimuli in different modes in the auditory paradigm.
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FIGURE 4

Mean power values of 20 subjects in the theta and alpha frequency bands under different stimuli. Panel (A) shows the magnitude of ERD/ERS power 
under the standard stimulus. Panel (B) shows the ERD/ERS power magnitude under the deviant stimulus. Panel (C) shows the ERD/ERS power 
magnitude under the correct novel stimulus. Panel (D) shows the ERD/ERS power magnitude under the incorrect novel stimulus. In this figure, 
‘*’ denotes p   <  0.05, ‘**’ denotes p  <  0.01, ‘***’ denotes p  < 0.001.

TABLE 4 Results of one-way ANOVA and post-hoc analyses of ERS/ERD power.

Paradim ERS/ERD Stimulation One-way ANOVA P1 P2

Visual

theta-ERS

Standard stimulus F(2, 57) = 0.98, p = 0.381, η2 = 0.03 p = 0.755 p = 1.000

Deviant stimulus F(2, 57) = 6.23, p = 0.003, η2 = 0.18 p = 0.483 p = 0.003

Correct novel stimulus F(2, 57) = 4.36, p = 0.017, η2 = 0.13 p = 0.052 p = 0.031

incorrect novel stimulus F(2, 57) = 9.46, p < 0.001, η2 = 0.25 p = 1.000 p < 0.001

alpha-ERD

Standard stimulus F(2, 57) = 4.27, p = 0.018, η2 = 0.13 p = 0.781 p = 0.016

Deviant stimulus F(2, 57) = 3.62, p = 0.033, η2 = 0.11 p = 0.255 p = 0.031

Correct novel stimulus F(2, 57) = 1.46, p = 0.241, η2 = 0.05 p = 1.000 p = 0.287

incorrect novel stimulus F(2, 57) = 0.67, p = 0.517, η2 = 0.02 p = 1.000 p = 0.809

Auditory

theta-ERS

Standard stimulus F(2, 57) = 3.10, p = 0.052, η2 = 0.10 p = 0.152 p = 1.000

Deviant stimulus F(2, 57) = 1.61, p = 0.209, η2 = 0.05 p = 1.000 p = 0.287

Correct novel stimulus F(2, 57) = 10.35, p < 0.001, η2 = 0.26 p = 0.001 p < 0.001

incorrect novel stimulus F(2, 57) = 2.15, p = 0.126, η2 = 0.07 p = 0.136 p = 0.581

alpha-ERD

Standard stimulus F(2, 57) = 1.11, p = 0.338, η2 = 0.04 p = 0.474 p = 1.000

Deviant stimulus F(2, 57) = 3.83, p = 0.028, η2 = 0.12 p = 0.567 p = 0.468

Correct novel stimulus F(2, 57) = 4.27, p = 0.019, η2 = 0.13 p = 0.133 p = 0.019

incorrect novel stimulus F(2, 57) = 2.62, p = 0.081, η2 = 0.08 p = 0.092 p = 0.475

P1 represents the results of the post-hoc analysis of the active and passive modes, P2 represents the results of the post-hoc analysis of the active and breathing modes. p-values < 0.05 are bolded.
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in accuracy when increasing the average number of trials. The overall 
consciousness detection process was divided into two rounds of data 
collection training and two rounds of data collection testing, as shown 
in Figure  7. We  illustrate the advantageousness and the specific 
procedure of our proposed method by comparing it with the process 
of consciousness detection proposed by Kuebler and Kotchoubey 
(2007). They classified patients with disorders of consciousness into 
three categories by means of step 2 passive stimulation and step 3 
passive stimulation with in instruction (active mode):

 1. Subjects without the presence of the P300/N400  in passive 
mode, which were considered by them to be unconscious. In 
fact, this ignores some of the subjects with potentials present 
in the active mode (Hauger et al., 2015). In our approach, the 
first concern is the classification accuracy of the different 
stimuli in active mode. When the accuracy is not higher than 
the randomized level, the number of trials averaged is increased 
to reduce the interference of noise on the EEG and to reconfirm 
that their EEG responses in the active mode are distinguishable 
(Ortner et  al., 2017). When the classification accuracy of 
different stimuli in active mode is higher than the random 
level, the patient will proceed to the next step of 
consciousness detection.

 2. Subjects with P300/N400  in the passive mode, but not 
significantly different from the active mode, are considered to 

be  potentially conscious. However, the reason for the 
non-significant difference may not be that the subject failed to 
complete the active task, but rather that the difference between 
the passive and active modes is inherently small. In our 
approach, we  determined whether there were differences 
between the modes by analyzing the accuracy of EEG responses 
distinguishing between the active and breathing modes for 
each type of stimulus as well as the change in accuracy when 
increasing the average number of trials, which would be more 
promising to be able to detect the presence of consciousness.

 3. Subjects who had a P300/N400 in the passive mode, which was 
significantly different from the active mode, were considered 
to be  conscious. In our approach, such subjects will 
demonstrate higher levels of the accuracy of classifying EEG 
responses to different stimuli in the active mode and the 
accuracy of distinguishing EEG responses between active and 
breathing modes for each type of stimulus than randomized 
levels, as well as an increase in accuracy as the average number 
of trials increases.

With our method of consciousness detection, the consciousness 
of more patients who are actually in the MCS state is expected to 
be detected, thus enabling timely and correct treatment to be given to 
the patients. In the future, the feasibility of this method will be verified 
on patients with impaired consciousness.

TABLE 5 Classification results of EEG with different types of stimuli.

Paradigm Classification 
samples

Performance Active Passive Breathing One-way ANOVA P1 P2

Visual

Standard and 

deviant stimuli

Accuracy 75.5 ± 2.5% 63.8 ± 2.9% 55.6 ± 2.8%
F(2, 57) = 13.49, p < 0.001, 

η2 = 0.32
p = 0.011 p < 0.001

Sensitivity 90.9 ± 0.8% 85.6 ± 1.2% 82.1 ± 1.4%
F(2, 57) = 14.17, p < 0.001, 

η2 = 0.33
p = 0.006 p < 0.001

Specificity 60.1 ± 4.1% 42.0 ± 4.6% 29.0 ± 4.3%
F(2, 57) = 12.78, p < 0.001, 

η2 = 0.31
p = 0.015 p < 0.001

Correct and 

incorrect novel 

stimuli

Accuracy 62.0 ± 2.2% 51.9 ± 6.7% 51.2 ± 3.3%
F(2, 57) = 14.31, p < 0.001, 

η2 = 0.33
p < 0.001 p < 0.001

Sensitivity 60.1 ± 2.7% 53.4 ± 2.2% 51.0 ± 1.5%
F(2, 57) = 4.61, p = 0.014, 

η2 = 0.14
p = 0.110 p = 0.014

Specificity 63.8 ± 2.0% 50.4 ± 1.9% 51.5 ± 1.4%
F(2, 57) = 17.22, p < 0.001, 

η2 = 0.38
p < 0.001 p < 0.001

Auditory

Standard and 

deviant stimuli

Accuracy 66.5 ± 1.5% 62.7 ± 1.4% 59.8 ± 1.5%
F(2, 57) = 5.24, p = 0.008, 

η2 = 0.16
p = 0.232 p = 0.006

Sensitivity 87.5 ± 0.7% 86.3 ± 0.6% 85.1 ± 0.8%
F(2, 57) = 2.58, p = 0.084, 

η2 = 0.08
p = 0.943 p = 0.081

Specificity 45.5 ± 2.4% 39.1 ± 2.3% 34.4 ± 2.3%
F(2, 57) = 5.47, p = 0.007, 

η2 = 0.16
p = 0.182 p = 0.005

Correct and 

incorrect novel 

stimuli

Accuracy 61.7 ± 1.5% 57.0 ± 1.4% 53.9 ± 1.0%
F(2, 57) = 8.92, p < 0.001, 

η2 = 0.24
p = 0.042 p < 0.001

Sensitivity 62.5 ± 1.8% 56.4 ± 2.1% 53.7 ± 1.5%
F(2, 57) = 6.04, p = 0.004, 

η2 = 0.17
p = 0.063 p = 0.483

Specificity 60.9 ± 1.6% 57.6 ± 1.8% 54.0 ± 1.3%
F(2, 57) = 4.72, p = 0.013, 

η2 = 0.14
p = 0.431 p = 0.010

P1 represents the results of the post-hoc analysis of the active and passive modes, P2 represents the results of the post-hoc analysis of the active and breathing modes. p-values < 0.05 are bolded.
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FIGURE 5

EEG response classification performance under different types of stimuli. Panel (A) shows the accuracy, sensitivity, and specificity of distinguishing 
standard and deviant stimuli, correct novelty and incorrect novelty stimuli in three modes under the visual paradigm. Panel (B) shows the accuracy, 
sensitivity, and specificity of distinguishing standard and deviant stimuli, correct novelty and incorrect novelty stimuli in the three modes under the 
auditory paradigm. In this figure, ‘*’ denotes p  <  0.05, ‘**’ denotes p  <  0.01, ‘***’ denotes p  < 0.001.

TABLE 6 Classification results of EEG in different modes.

Paradigm Stimulation Performance Active and 
passive modes

Active and 
breathing modes

Paired t-test 
results

Visual

Deviant stimulus

Accuracy 70.5 ± 2.3% 77.5 ± 1.9% p = 0.003, t = −3.47

Sensitivity 71.3 ± 2.3% 77.7 ± 1.7% p = 0.006, t = −3.08

Specificity 69.8 ± 2.9% 77.3 ± 2.6% p = 0.006, t = −3.06

Correct novel stimulus

Accuracy 68.7 ± 2.1% 75.5 ± 1.9% p = 0.010, t = −2.85

Sensitivity 67.0 ± 3.1% 74.4 ± 2.6% p = 0.012, t = −2.76

Specificity 70.5 ± 2.6% 76.5 ± 2.3% p = 0.059, t = −2.00

Incorrect novel stimulus

Accuracy 68.6 ± 2.4% 77.1 ± 1.6% p = 0.001, t = −3.87

Sensitivity 68.6 ± 2.9% 79.8 ± 1.8% p < 0.001, t = −4.02

Specificity 68.6 ± 2.8% 74.5 ± 2.6% p = 0.064, t = −1.96

Auditory

Deviant stimulus

Accuracy 55.2 ± 1.1% 59.5 ± 1.2% p < 0.001, t = −4.08

Sensitivity 57.3 ± 1.9% 61.9 ± 2.1% p = 0.025, t = −2.44

Specificity 53.1 ± 1.6% 57.2 ± 1.2% p = 0.058, t = −2.02

Correct novel stimulus

Accuracy 59.8 ± 1.4% 63.2 ± 1.8% p = 0.019, t = −2.55

Sensitivity 60.8 ± 2.6% 67.2 ± 2.5% p = 0.003, t = −2.36

Specificity 58.8 ± 2.0% 59.2 ± 2.2% p = 0.868, t = −0.17

Incorrect novel stimulus

Accuracy 55.3 ± 1.1% 58.0 ± 1.4% p = 0.089, t = −1.79

Sensitivity 56.5 ± 2.0% 57.1 ± 2.5% p = 0.820, t = −0.23

Specificity 54.1 ± 2.4% 58.9 ± 1.9% p = 0.126, t = −1.60

p-values < 0.05 are bolded.
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TABLE 7 Changes in the accuracy of increasing the number of trials averaged.

Paradigm Mode Stimulation Num_
avg  =  1

Num_
avg  =  2

Num_
avg  =  3

Num_
avg  =  4

Num_
avg  =  5

Change in 
accuracy

Visual

Active
Standard and deviant stimuli 75.5% 79.3% 80.9% 81.9% 82.6% 7.1%

Correct and incorrect novel stimuli 62.0% 65.2% 67.0% 68.2% 70.0% 8.0%

Breathing
Standard and deviant stimuli 55.6% 56.2% 56.7% 57.1% 57.1% 1.5%

Correct and incorrect novel stimuli 51.2% 51.8% 51.0% 52.3% 50.8% −0.4%

Active and 

breathing

Deviant stimulus 77.5% 83.6% 87.2% 89.1% 90.9% 13.4%

Correct novel stimulus 75.5% 80.7% 83.7% 86.8% 88.2% 12.7%

Incorrect novel stimulus 77.1% 83.8% 86.9% 89.0% 90.4% 13.3%

Auditory

Active
Standard and deviant stimuli 66.5% 69.4% 70.4% 71.1% 71.3% 4.8%

Correct and incorrect novel stimuli 61.7% 64.8% 68.1% 69.1% 69.7% 8.0%

Breathing
Standard and deviant stimuli 59.8% 60.8% 61.0% 61.0% 60.9% 1.1%

Correct and incorrect novel stimuli 53.9% 55.7% 56.0% 57.0% 58.0% 4.1%

Active and 

breathing

Deviant stimulus 59.5% 62.9% 65.2% 66.6% 68.2% 8.7%

Correct novel stimulus 63.2% 66.2% 68.1% 70.2% 70.9% 7.7%

Incorrect novel stimulus 58.0% 60.1% 60.9% 61.0% 62.5% 4.5%

Num_Avg is the number of trials averaged. Accuracy change values greater than 5% are bolded.

4.4 Limitations

In this study, we  designed a novel consciousness detection 
paradigm and demonstrated the superiority of the breathing mode, 

and preliminarily proposed a machine learning-based consciousness 
detection method. There are certain shortcomings that need to 
be further corrected. First, this study did not collect data from clinical 
patients and included only 20 conscious, healthy subjects. 

FIGURE 6

EEG response classification performance in different modes. Panel (A) shows the classification accuracy, sensitivity and specificity of the EEG 
responses in different modes under the visual paradigm. Panel (B) shows the classification accuracy, sensitivity and specificity of the EEG responses in 
different modes under the auditory paradigm. In this figure, ‘*’ denotes p  <  0.05, ‘**’ denotes p  <  0.01, ‘***’ denotes p  <  0.001.
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We determined the presence or absence of consciousness through a 
combination of higher cognitive functions related to consciousness, 
and a positive result after the detection of consciousness tends to 
indicate the presence of consciousness in subjects with a series of 
higher cognitive processing abilities. However, a negative result does 
not necessarily mean that the subject is not conscious. Subjects who 
are conscious but lack higher cognitive processing abilities, such as 
attention and memory, may also yield negative results. Therefore, in 
further studies, we need to include DOC patients to further analyze 
the EEG response in the absence of consciousness, making the 
negative results effectively represent the absence of consciousness 
rather than the absence of higher cognitive abilities. Second, the 
currently proposed consciousness detection method requires two 
rounds of training sample collection, and patients with impaired 
consciousness may suffer from fatigue and poor experience. To solve 
this problem, optimizing the paradigm design or designing a cross-
subject model are feasible approaches. Third, the use of EEG sample 
features in this paper does not take into account nonlinear features 
such as entropy and functional connectivity, resulting in the loss of 
some useful information. Meanwhile, some more advanced machine 
learning methods such as neural networks can be  subsequently 
applied in our consciousness detection to improve the accuracy of 
consciousness detection.

In conclusion, in the future, we will collect experimental data 
from patients and continue to optimize our consciousness detection 
method based on the actual situation of our patients. At the same time, 
we will use some new machine learning techniques to improve the 

accuracy of our consciousness detection method. We believe that our 
proposed consciousness detection method that combines active and 
breathing modes will contribute to the research in the field of 
consciousness detection.

5 Conclusion

In this paper, we proposed a novel consciousness detection 
paradigm and a kind of multi-feature joint analysis method. In the 
consciousness detection paradigm, we  designed a multi-stage 
cognitive task to induce ERPs and ERD/ERS phenomena 
representing different consciousness contents, such as P300, N400, 
CNV, and P600. A breathing mode was established to increase the 
sensitivity of consciousness detection that we  verified to 
be superior to the passive mode. Based on this paradigm, we used 
a multi-feature joint analysis approach to comprehensively assess 
the brain’s level of consciousness and the accuracy of consciousness 
detection can be increased. The degree of EEG differences between 
conditions was quantified by machine learning. The experimental 
results suggested that multi-feature joint analysis of EEG responses 
in active and breathing modes was a more sensitive and accurate 
method of consciousness detection for healthy people. Future 
studies will continue to conduct experiments on patients with 
impaired consciousness to verify the reliability of our method. It is 
expected to provide accurate and sensitive consciousness detection 
for patients with DOC to reduce the probability of misdiagnosis. 

FIGURE 7

Consciousness detection process. Panel (A) shows Kuebler’s consciousness detection process (Kuebler and Kotchoubey, 2007). Panel (B) shows the 
consciousness detection process proposed in this study.
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This will be  of great significance for subsequent clinical 
rehabilitation treatment of patients.
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