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The study of brain connectivity has been a cornerstone in understanding

the complexities of neurological and psychiatric disorders. It has provided

invaluable insights into the functional architecture of the brain and how it is

perturbed in disorders. However, a persistent challenge has been achieving

the proper spatial resolution, and developing computational algorithms to

address biological questions at the multi-cellular level, a scale often referred

to as the mesoscale. Historically, neuroimaging studies of brain connectivity

have predominantly focused on the macroscale, providing insights into inter-

regional brain connections but often falling short of resolving the intricacies

of neural circuitry at the cellular or mesoscale level. This limitation has

hindered our ability to fully comprehend the underlying mechanisms of

neurological and psychiatric disorders and to develop targeted interventions.

In light of this issue, our review manuscript seeks to bridge this critical

gap by delving into the domain of mesoscale neuroimaging. We aim

to provide a comprehensive overview of conditions affected by aberrant

neural connections, image acquisition techniques, feature extraction, and

data analysis methods that are specifically tailored to the mesoscale. We

further delineate the potential of brain connectivity research to elucidate

complex biological questions, with a particular focus on schizophrenia

and epilepsy. This review encompasses topics such as dendritic spine

quantification, single neuron morphology, and brain region connectivity.
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We aim to showcase the applicability and significance of mesoscale

neuroimaging techniques in the field of neuroscience, highlighting their

potential for gaining insights into the complexities of neurological and

psychiatric disorders.

KEYWORDS

connectivity, mesoscale, NeuroImage, schizophrenia, epilepsy, computer vision,
segmentation, deep learning

1 Introduction

The human brain is a remarkably intricate network
composed of billions of neurons, encompassing diverse cell
types interconnected through trillions of synapses (Luo et al.,
2008). Different brain regions exhibit distinct microstructural
architectures, functional specializations, interconnectivity, and
often an orderly topographic arrangement. The major task
in connectivity-related research is capturing the hierarchical
multiscale organization of the brain by mapping network
relationships across various spatial dimensions (Sporns, 2013).
It extends beyond structural considerations and encompasses
functionality, denoted by the degree of correlation and covariance
among brain signals, influenced by both experimental parameters
and temporal context (Cabral et al., 2017).

The organization of brain connections plays a pivotal role in
shaping interactions between different brain areas, giving rise to
a multitude of functional networks. Structural data provide the
anatomical framework, while functional data reveal how different
brain regions work together and respond to various stimuli or tasks.
The multimodal correlation of imaging techniques, integrating
both structural and functional neuroimaging methods, allows the
harnessing of their best features, offering a broader approach
and better understanding of brain connectivity (Howard et al.,
2023). This multidimensional approach is essential for advancing
our knowledge of complex neurological and cognitive processes
(Hirsch et al., 2015).

Multiple, albeit subtle, non-physiological shifts in brain
organization likely lead to network disorders which encompass
a wide range of neurological and psychiatric conditions arising
from aberrant neural connections. These include autism spectrum,
schizophrenia, attention-deficit/hyperactivity, epilepsy, depression,
and anxiety disorders (Kaiser, 2013; Contreras-Rodríguez et al.,
2015; Holmes et al., 2023).

Most of the data used to reconstruct brain networks comes
from bidimensional (2D) images. However, the correlation between
a single cell interacting with the whole neuronal tissue in a
tridimensional (3D) manner remains an open problem. This 3D
spatial-scale context holds the key to bridging morphological
mechanisms and functional outcomes to better understand the
complexities of brain connectivity-related disorders. The complex
3D circuits that define brain connectivity comprise a variety
of organizational structures and microarchitectures that can be
arduous to discern (Sporns et al., 2005), presenting a significant
challenge in the field of neuroscience and computational analysis.
Additionally, to preserve the volumetric information of the

network it can be necessary to work with samples as thick as
possible coupling to 3D-imaging techniques, as extensively applied
in image-based neuroresearch and diagnosis (Kim et al., 2021).

The brain connectome sensu (Sporns et al., 2005) takes
on different definitions at various scales, presenting a defying
task in translating morphological and functional measurements
to the symptoms of brain disorders affected by connectivity.
Understanding integrated brain function demands a multitude
of measurements across various scales. Neurophysiological and
neuroimaging methods, along with the use of whole-brain models
to provide fresh insights into its underlying mechanisms (Hallett
et al., 2020). Thus, brain connectivity conventionally encompasses
three scales: nano/microscale, mesoscale, and macroscale (Bohland
et al., 2009), each one with its optimized imaging method
(Figure 1).

At the nano/microscale, lies the ultrastructural information,
that can reveal synaptic morphology, their components and
connections in individual cells, often employing Electron
Microscopy (EM), demanding sample chemical preservation
and physical sectioning. The opposite extreme encompasses
the macroscale, which examines the anatomical and connective
patterns between distinct brain regions, such as long-range
connections, often inferred from fiber tracts, and frequently
revealed by techniques also capable of retrieving functional
aspects, such as Magnetic Resonance Imaging (MRI), Positron
Emission Tomography (PET), Single Photon Emission Computed
Tomography (SPECT). These approaches prove particularly
valuable for non-invasive studies of living tissues (Bennett et al.,
2018).

Between both spatial extremities lies the multi-cellular level
(Mitra, 2014), also known as the mesoscale, which plays a pivotal
role in the investigation of the intricate network of the brain.
Mesoscale spans from the structural and functional properties
of single neurons to local neural circuits and their intrinsic
connectivity (Mitra, 2014; Haueis, 2021).

Most neuroimaging studies on humans and human samples
have primarily used macroscale techniques like PET and functional
magnetic resonance imaging (fMRI) for in vivo imaging, and
microscale techniques such as thin-depth light microscopy for
tissue samples. Although substantial insights into brain networks
and abnormal connectivity have been acquired using these
techniques, they lack the spatial resolution needed to resolve the 3D
conformation of local neuronal connections (Tyson and Margrie,
2022). Consequently, further progress in the understanding
of brain functions within complex neuronal circuits requires
exploration at the mesoscale level (Rah et al., 2015). It depicts
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FIGURE 1

Overview of experimental bioimage tools currently available for studying neural connectivity across a range of spatial scales and biological
questions. At the left, different human brain organization structures are presented under the perspective of spatial scales: from the study of the
dendritic spine (top) to the whole brain (bottom), with a focus on the structures that can be studied using mesoscale imaging. From the top to the
bottom, spatial scales range from 10 nanometers to 10 millimeters. The second section, denoted Biological Inquiries, displays the cellular elements
that contribute and shape neural connectivity across the different scales, followed by a repertoire of image acquisition techniques displayed as
vertical bars in the last section. Purple bars represent techniques suited to structural imaging while the pink bars represent the ones suited for
functional purposes; lastly, the red bars represent techniques that incorporate both. MRI, magnetic resonance imaging; fMRI, functional magnetic
resonance Imaging; SPECT, single photon emission computed tomography; PET, positron emission tomography.

connections, networks, and spatial cellular gradients of distinct
neuronal populations, improving resolution and the analysis of
interactions that form the basis of cognitive and behavioral
processes (Haueis, 2021). Intact/live samples can be used, albeit
sample preparation is necessary according to the specific imaging
technique. Optical microscopies (wide field, laser confocal, light
sheet, and two-photons) allow both high spatial and temporal
resolution, often used to study live cells.

In this landscape, data acquisition and image processing emerge
as a critical domain of local neural circuits, i.e., spatially co-
localized neurons of the same kind or with shared organizational
traits (Bohland et al., 2009). It also generates a huge amount of

data to be processed and may not be as easily quantifiable (Lang
et al., 2012; Chen et al., 2019). Currently, artificial intelligence
algorithms have proved their ability to help researchers in image
processing and analysis: from contrast enhancement/normalization
to segmentation and extraction of morphological features necessary
for structural correlation of connectivity (Durkee et al., 2021).

As stated above, neuroimaging encompasses a diverse array
of techniques for exploring different scales of magnitude and
activities within cells and tissues. Consequently, data analyses are
predominantly linked to the complexities of the images, posing
a challenge for neuroscientists who may not be familiar with the
intricacies of the field. In this review, we aim to explore mesoscale
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brain imaging and processing, arranging the main methodologies
traditionally used to investigate brain functioning throughout its
network. It begins by exploring the state-of-the-art in neurological
and psychiatric disorders research and imaging techniques relevant
to the field; it then addresses image processing strategies suited
to solving these questions. Recent literature was compiled on
various imaging modalities to study neural connections and the
respective computational methods to identify misorganization in
schizophrenia and epilepsy. It also organizes concepts in network
neurological disorders to guide non-expert and advanced readers in
the field of neuroimaging and processing. Finally, to accommodate
the diverse readership in this multidisciplinary field, a Glossary
tailored to the terminology of some key concepts in neurobiology,
imaging, and computational processing is included.

2 Brain connectivity in disorders of
the central nervous system

This section explores a selection of connectivity-related issues
and the bioimaging techniques employed to address them.
Disorders affected by brain connectivity encompass a wide range
of neurological and psychiatric conditions arising from aberrant
neural connections. These include autism spectrum disorder,
schizophrenia, attention-deficit/hyperactivity disorder, epilepsy,
depression, and anxiety disorders (Kaiser, 2013; Contreras-
Rodríguez et al., 2015; Holmes et al., 2023). Although substantial
insights into the network of the brain and abnormal connectivity
in these disorders have been gained using macroscale imaging
techniques such as MRI and PET, further progress in our
understanding requires the exploration at the mesoscale level for
increased resolution. In this section, we examine brain connectivity
in two different disorders, representing examples from psychiatric
and neurological conditions. Our analysis highlights the crucial
role of advanced neuroimaging techniques in uncovering the
complexities of these conditions. We particularly focus on the
potential of mesoscale neuroimaging to further enhance our
understanding of their underlying mechanisms.

2.1 Schizophrenia

Schizophrenia is a multifactorial mental condition that
impacts over 23 million individuals worldwide. It involves
positive symptoms such as delusions and hallucinations, negative
symptoms such as reduced motivation and social withdrawal,
and cognitive impairment. The pathophysiology of schizophrenia
involves molecular and morphological abnormalities within the
nervous system, encompassing faulty brain connectivity, altered
myelination of brain regions and white matter tracts, as well as
abnormal neuronal morphology and defects in neurotransmitter
systems (Schultz and Andreasen, 1999; Kahn et al., 2015).

Recent years have witnessed significant advancements in
imaging studies, shedding light on the neurobiological basis of
schizophrenia. In this section, we delve into the contribution of
imaging studies to our understanding of the connectivity basis
of the disorder.

2.1.1 Structural and functional brain network
abnormalities

Coordinated functioning of multiple brain regions is crucial
for normal brain function, encompassing perception, cognition,
emotions, and mood responses. A significant amount of evidence
points to a dysfunctional local circuitry in schizophrenia in the
prefrontal cortex (PFC) and its connections with other brain
regions, particularly those associated with the limbic system (Lewis
et al., 2005). In the past two decades, numerous studies involving
neuroimaging techniques like fMRI have yielded compelling
findings indicating abnormal activity within the local prefrontal
network and disrupted integration of information processes in the
PFC and other brain regions among individuals with schizophrenia
(Anticevic et al., 2014, 2015; Hunt et al., 2017). Although the
evidence supporting disconnectivity in schizophrenia is robust,
understanding its causes is complex, and there is ongoing debate
regarding its mechanisms and significance concerning clinical
symptoms (Gao W. et al., 2022).

Investigations using fMRI have consistently revealed disrupted
connectivity in individuals with schizophrenia, both during resting-
state conditions and while engaged in specific cognitive tasks
(Garrity et al., 2007; Whitfield-Gabrieli et al., 2009; Sheffield and
Barch, 2016; Erdeniz et al., 2017; Godwin et al., 2017). More
recently, a meta-analysis and an original article reported consistent
changes in local functional connectivity in schizophrenia. It
was found that patients showed significantly higher Regional
Homogeneity (ReHo) in the bilateral medial superior frontal gyrus,
while lower ReHo in the bilateral post-central gyrus, right pre-
central gyrus, and right middle occipital gyrus (Cai et al., 2022);
and differences in the functional connectivity between the salience
network and certain brain regions, including the right inferior
and middle temporal gyrus, left caudate, and right pre-central
gyrus (Huang H. et al., 2022). These findings suggest that there
are consistent aberrant local functional connectivity patterns in
schizophrenia.

The assessment of functional connectivity in schizophrenia
relies predominantly on fMRI scanning data acquired from adult
individuals diagnosed with the disorder. However, due to the
dependence of fMRI on hemodynamic fluctuations associated with
neural activity, it is unsuitable for capturing rapid transitions in
brain functional connectivity configurations with high temporal
resolution (Jamadar et al., 2021). Moreover, the spatial resolution
of this technique is limited to a millimeter scale. As a result, our
comprehension of the cellular mechanisms underlying the aberrant
brain functional connectivity observed in schizophrenia remains
incomplete.

2.1.2 Neurotransmitter systems
Multiple etiological hypotheses have been proposed to

elucidate the abnormal brain connectivity seen in schizophrenia.
The dopaminergic hypothesis posits that abnormal dopaminergic
neurotransmission contributes to the development and
manifestation of schizophrenia (Creese et al., 1976; Toda and
Abi-Dargham, 2007). Several lines of evidence support the
dopaminergic hypothesis such as alterations in dopamine receptor
density and availability in affected individuals revealed by PET
and SPECT imaging (Patel et al., 2010). Specifically, an increased
number of dopamine D2 receptors has been observed in the limbic

Frontiers in Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2024.1340345
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1340345 February 15, 2024 Time: 17:26 # 5

Caznok Silveira et al. 10.3389/fnins.2024.1340345

striatum. Hyperactivity of D2 receptors in the mesolimbic pathway
is thought to contribute to the positive symptoms of schizophrenia
(Howes et al., 2009).

The glutamatergic hypothesis was also proposed as an
additional perspective on the pathophysiology of schizophrenia
(McCutcheon et al., 2020). For instance, decreased glutamate
levels have been found in the anterior cingulate cortex and
prefrontal cortex, regions implicated in cognitive and emotional
processing (Chen et al., 2017). Moreover, PET studies have
shown abnormalities in the expression, binding, and availability
of glutamate receptors in various brain regions of individuals with
schizophrenia (Beck et al., 2021).

It is becoming increasingly evident that the dopaminergic
and glutamatergic hypotheses alone fall short of providing a
comprehensive explanation for the disorder highlighting the
need to consider additional neurochemical systems involved in
schizophrenia, such as the GABAergic system (Jahangir et al.,
2021). fMRI and PET studies have also provided insights into
the altered neural connectivity and network dynamics associated
with GABAergic abnormalities in the disorder (Shukla et al., 2019;
Marques et al., 2021).

2.1.3 Myelin and white matter tracts
Employing MRI, researchers investigated gray/white-matter

contrast in sensory and motor regions of the cortex in
schizophrenia revealing reduced myelin in three bilateral sensory
and motor regions (Jørgensen et al., 2016). Furthermore, a
study employing Diffusion Tensor Imaging (DTI-fMRI) observed
significantly lower fractional anisotropy (FA) values in white
matter tracts of patients with psychosis compared to healthy
controls (Xu et al., 2022). Additionally, the study demonstrated a
positive correlation between decreased white matter tract integrity
and cognitive performance in patients with psychosis. Electron
microscopy of brain tissue from individuals with schizophrenia
revealed ultrastructural signs of apoptosis and necrosis in
oligodendroglial cells within the cortex and the caudate nucleus
with damage to myelin sheath lamellae, and a significant decrease
in the nucleus area and volume density of mitochondria (Uranova
et al., 2001).

2.1.4 Dendritic pathology
Dendritic spines are the primary sites of excitatory synaptic

connections (Papa et al., 1995). As such, alterations to their
morphology directly impact the neuronal circuitry within and
across multiple brain regions, potentially contributing to the
pathogenesis of schizophrenia. Studies on schizophrenia subjects
have revealed reductions in dendritic spine density, dendritic
arborization and plasticity in several cortical and non-cortical
areas (Glantz and Lewis, 2000; Konopaske et al., 2014; MacDonald
et al., 2017). By employing confocal microscopy, researchers
have investigated the formation, maturation, and pruning of
synaptic connections, using in vitro models (Sellgren et al., 2019).
Studies in human stem cell-derived neural models have revealed
increased synapse elimination and significant developmental
and connectivity issues, including the abnormal spread of
proliferating neural progenitor cells from the ventricular zone
to the intermediate and cortical zones (Stachowiak et al., 2017).
Interestingly, maturing neurons were found to be abundantly

developed in the deeper neural structure (analogous to subcortical
regions) but were notably depleted in surface layers (analogous to
the cortical region) of schizophrenia neural organoids.

2.2 Epilepsy

Epilepsy is recognized as a network disorder with multifactorial
causes, representing a multiscale challenge that includes cellular,
network, and systems levels. It encompasses widespread areas
that stretch well beyond the pinpointed site of a seizure,
displaying distinctive patterns that might be specific to each
particular syndrome (Stafstrom and Carmant, 2015). To gain
a comprehensive understanding of the mechanisms underlying
hyperexcitability in epilepsy, it is essential to highlight two
primary epilepsy classifications. The first is focal epilepsy, which
is characterized by seizures originating from a specific focal
onset within one hemisphere of the brain, as determined by
clinical patterns or electroencephalogram (EEG) localization.
Common examples of focal epilepsy encompass conditions like
mesial temporal lobe epilepsy associated or not with hippocampal
sclerosis and malformations of cortical development. The second
classification, generalized epilepsy, is defined by seizures occurring
simultaneously in both hemispheres (Fisher, 2017). In this topic, we
review the literature on abnormal neural networks and harness the
potential of imaging techniques to address critical knowledge gaps
in epilepsy-related brain connectivity.

2.2.1 Structural and functional brain network
abnormalities

In vivo mapping of the regional distribution of network
abnormalities is a crucial way to define precisely the site of
seizure onset. The identification of the site where seizures
start and how they propagate is critical to understanding both
the pathophysiology of epilepsies and developing therapeutic
approaches. Macroscale neuroimaging techniques, such as high-
resolution MRI and fMRI, are the entrance step in providing
insights into the topological organization of brain networks and
connectivity disruptions in epilepsy patients.

Extensive findings have emerged from quantitative
structural MRI investigations employing volumetry, voxel-
based morphometry, cortical thickness mapping, and structural
covariance analysis. In DTI investigations, several parameters can
be obtained to characterize white matter microstructure including
tractography, tensor-derived metrics, and connectivity matrices
(Bartolomei et al., 2005).

In structural MRI, volumetric analysis frequently reveals
atrophy in limbic structures, such as the hippocampus, entorhinal
cortex, and amygdala, which often correlates with histological
evidence of neuronal loss in excised temporal lobe epilepsy
(TLE) brain tissue (Bartolomei et al., 2005; Bernhardt et al.,
2013). Likewise, post-processing methods in quantitative MRI,
such as voxel-based morphometry and cortical thickness analysis,
have also revealed that TLE is linked to widespread neocortical
irregularities. Covariance analyses of these abnormalities extend
beyond mesial temporal structures to comprise prefrontal,
frontocentral, cingulate, occipitotemporal, and lateral temporal
neocortex (Bernasconi et al., 2004; Bernhardt et al., 2012, 2013).
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ENIGMA-Epilepsy MRI scans showed gray and white matter
changes in different epilepsy types, with more widespread and
bilateral extra-hippocampal gray matter differences in left TLE
(Whelan et al., 2018; Hatton et al., 2020; Sisodiya et al., 2020). Also,
in individuals with TLE, the investigation of preoperative structural
connectivity using DTI-fMRI and its association with post-
operative seizure control outcomes revealed specific preoperative
connectivity patterns that are associated with improved surgical
outcomes (Bonilha et al., 2013).

While there has been substantial progress in understanding
structural connectivity abnormalities at the macroscale, we face
limitations due to our access being restricted to network topology
without achieving a finer neuronal resolution and specificity. In
this regard, the mesoscale provides a more precise comprehension
by pinpointing the particular neural components contributing
to local connectivity. Thus, the gold standard for noticing
abnormal structural connectivity in a mesoscale is anterograde
and retrograde viral neuronal tracing (Lanciego and Wouterlood,
2020). These tracers exhibit high accuracy and sensitivity, especially
when mapping long-range connections, thus contributing to a
comprehensive and detailed understanding of connectivity across
various brain areas (Saleeba et al., 2019). Their invasive nature
restricts the use to animal models. Du et al. (2017) employed
a rat model induced by pilocarpine and utilized rabies tracing
techniques to discern intricate morphological details of projections
within the dynamic hippocampal circuit. This study revealed that
newly formed dentate granule cells (DGCs) in adults, triggered by
seizures, receive excitatory signals from pyramidal cells in the cornu
Ammonis (CA3) and repeated excitatory inputs from other DGCs.

In fMRI, Englot et al. (2016) explored local and distant
synchronization of resting-state fMRI signals in TLE and focal
epilepsy patients. They observed altered connectivity within and
between various brain regions, highlighting the impact of epilepsy
on network organization. Likewise, analysis of resting state in focal
cortical dysplasia (FCD) identified distinct patterns of functional
connectivity with the hypo-connected patterns in cases with FCD
type IIB, whereas the hyperconnected lesions were predominantly
associated with type IIA (Hong et al., 2019).

2.2.2 Abnormal neuron morphology
Alterations in the size and shape of neuronal cell bodies

have been detected across diverse brain regions, encompassing the
hippocampus, neocortex, and other regions linked to abnormal
neural connectivity (Stouffer et al., 2016). The connection between
these morphological alterations and epileptogenesis has already
been confirmed (Abdijadid et al., 2015). These deviations in
neuronal cell body structure can influence the interconnection and
communication between neurons, potentially influencing the onset
and advancement of epilepsy (Hsieh et al., 2016; Wu et al., 2022).
More precisely, these alterations in local and global connectivity
can impact the manifestation of seizures, determining whether
abnormal connectivity and hyperexcitability result in focal or
generalized seizures (Sheybani et al., 2018; Represa, 2019).

In focal epilepsies, malformations of cortical development
are associated as the primary substrate in which the
presence of morphologically abnormal neurons significantly
affects neural connectivity (Mainen and Sejnowski, 1996;
Richards and Van Hooser, 2018). The existence of atypical neurons
could influence the subsequent stages of development that regulate

cortical synaptic connectivity (Subramanian et al., 2020). Avansini
et al. (2022) observed an enhanced level of network connectivity
(termed effective connectivity) along with increased neuronal
excitability in human neural organoids derived from pluripotent
stem cells of patients with FCD. The aberrant connectivity seen
in FCD appears to be influenced by neuronal morphological
abnormalities, particularly the presence of dysmorphic neurons.
Using 3D confocal microscopy, the researchers detected enlarged
cell bodies and increased dendritic complexity, potentially
contributing to a more interconnected neural circuitry and the
formation of an epileptogenic network in FCD.

Using high-resolution synchrotron x-ray microtomography
and Golgi-Cox staining, Fonseca et al. noticed an altered
distribution of neurons and a reduction of cell number in
the hippocampus in a status epilepticus mouse model. These
approaches allowed the assessment of the 3D cytoarchitecture,
neuron density, and morphology (Fonseca et al., 2018).

2.2.3 Abnormal neuronal localization
The integration of dendrites and synapses into functional

networks is heavily affected by how neocortical neurons
are positioned during development (Martineau et al., 2018).
Malpositioned neurons in the cortex cytoarchitecture are called
heterotopic neurons (Ishii et al., 2015). These neurons alone
may play a role but do not seem to be sufficient to trigger
seizures (Aghakhani et al., 2005). The aberrant organization
of cortical cytoarchitecture potentially leads to aberrant
connections within these developing neuronal networks.
Additionally, the recruitment of distinct microcircuits from
different cortical locations could alter synchronicity, leading to
abnormal neural oscillations (Dubeau et al., 1995; Abdijadid et al.,
2015).

Neuronal disorganization and clusters of heterotopic neurons
are primarily observed in human specimens from cortical
migration malformations such as periventricular heterotopia
(Ekşioğlu et al., 1996) and FCD type I (Coras et al., 2021)
using light microscopy with immunohistochemical and DiI
tracing techniques. Additionally, in animal epilepsy models
(Mello et al., 1993), there have been observations of heterotopic
granule cells in the dentate gyrus, resembling those found
in human epilepsy. Heterotopic granule cells establish new
connections and potentially impact synaptic reorganization (Babb,
1991).

2.2.4 Dendritic pathology
The presence of dendritic spine pathologies and abnormal

dendritic arborization have been suggested to be implicated in
epilepsy worsening, increasing neuronal hyperexcitability in the
circuits, and contributing to cognitive deficits, synaptic remodeling,
and aberrant plasticity (Fiala et al., 2002).

Dendritic spines are mostly observed in excitatory synapses
and neurons respond to epileptogenic changes in the circuitry
by modifying the structure of their dendritic trees. Alterations
in the distribution, quantity, and morphology of dendritic spines
have been proposed to have a direct impact on seizures and
epileptogenesis (Jiang et al., 1998; Jean et al., 2023). However,
it remains unclear whether these changes are the cause or are
a consequence of seizure recurrence (Wong and Guo, 2013).
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Dendritic pathology in epilepsy can be broadly categorized into two
main fields, as described below:

Neuronal dendritic arborization: Morphological changes of
dendrites can affect neuronal excitability. Abnormalities in
dendritic length, shape, and branching patterns have been
described in epilepsies associated with either hippocampal sclerosis,
or tumors, or microdysgenesis (von Campe et al., 1997), and
also associated with the presence of varicose swelling of the
dendrites of granular dentate neurons of the hippocampus
(Blümcke et al., 1999).

Dendritic spine pathology: The initial observation of dendritic
spine loss occurred in hippocampal pyramidal neurons and dentate
granule cells among individuals with TLE (Scheibel et al., 1974),
providing a plausible mechanism to elucidate the learning and
memory challenges experienced by these patients (Chen et al.,
2010). In Lennox-Gastaut syndrome, a childhood epileptic disorder
linked to intellectual disability, pyramidal neurons from brain
biopsy were observed to possess a reduced number of spines
using EM (Renier et al., 1988). In human cerebral cortices derived
from FCD patients, a reduction of dendritic spines, and sporadic
filopodia-like protrusions emerging from the soma in dysmorphic
neurons were noticed using Golgi impregnation and confocal
microscopy (Rossini et al., 2023).

Employing Golgi-Cox staining, optionally combined with
immunohistochemistry, as well as DiI tracing, and utilizing
both confocal microscopy and EM techniques, provides a
comprehensive method for assessing the morphology and structure
of dendritic arborization, as well as the density and morphology of
neuronal dendritic spines in epilepsy.

2.3 Exploring connectivity in central
nervous system disorders via mesoscale
imaging for deeper insights

Functional and structural imaging studies have consistently
identified aberrant connectivity as a fundamental feature in the
pathogenesis of various brain disorders. These investigations
have primarily involved live human subjects and focused on a
macroscale level, employing techniques such as MRI/fMRI and
PET/SPECT, which deliver the overall spatial context of a large
field of views, albeit at lower resolution. As seen in Table 1,
which compiles brain connectivity studies in schizophrenia and
epilepsy from the literature, there has historically been an over-
representation of use of macroscale techniques to try to answer
biological questions. While these studies have provided valuable
insights into the presence of aberrant connectivity, they have
fallen short in uncovering its precise etiological underpinnings
in different brain disorders. Mesoscale imaging provides a means
to address the potential untapped source of information for
novel insights pertaining to brain connectivity, as observed
in this context.

To gain more understanding of the etiology of these
disorders, the integration of morphological and functional 3D
data at mesoscale resolution is imperative. Multimodal imaging
techniques, including confocal microscopy, light-sheet microscopy,
EM, and x-ray tomography, present promising opportunities
to obtain a more comprehensive perspective on alterations in

neural connectivity. Nevertheless, it is essential to recognize the
impracticality of performing live imaging at a mesoscale level
in human subjects. In this scenario, robust in vitro models,
such as 2D neuronal cultures and 3D neural organoid cultures,
play a critical role in investigating the complexities of human
aberrant connectivity within a controlled environment in a model
that more closely resembles human brain development. These
combined efforts have the potential to enhance our comprehension
of the origins and establishment of aberrant connectivity, and
may ultimately contribute to the development of innovative
therapeutic approaches.

In recent years, significant advancements have been achieved in
the field of mesoscale multimodal imaging, enabling the integration
of diverse techniques for comprehensive analysis. Notably, it is
now possible to merge a myriad of imaging modalities, resulting
in the complete 3D morphological reconstruction of individual
neurons while simultaneously acquiring invaluable functional
data in view to study global connectivity (Keller and Ahrens,
2015; Kuan et al., 2020; Santuy et al., 2020; Muñoz-Castañeda
et al., 2021; Walsh et al., 2021; Bosch et al., 2022; Pisano
et al., 2022). Among these techniques are Genetically Encoded
Calcium Indicators (GECIs) (Miyawaki et al., 1997; Nakai et al.,
2001), with the recently developed CaMPARI (calcium-modulated
photoactivatable ratiometric integrator) emerging as a notable
standout in mesoscale imaging (Fosque et al., 2015). CaMPARI
distinguishes itself by its unique feature of irreversibly labeling
photoconverted neurons, extending the observation of active
networks beyond the initial snapshot of activity. This capability has
been leveraged to capture task-dependent activity patterns across
brain regions and visualize hippocampal synaptic plasticity in freely
moving animals (Berndt et al., 2023; Das et al., 2023). Notably, the
practicality of CaMPARI is enhanced by its capability for multiple
uses in longitudinal in vivo studies (Das et al., 2023). Furthermore,
the single-cell precision of CaMPARI facilitates the exploration
of interconnected microcircuits, allowing for the evaluation of
disruptions in excitatory and inhibitory (E/I) signaling (Martin
and Plavicki, 2020), a crucial factor in connectivity influencing
conditions such as schizophrenia and epilepsy. This remarkable
progress reflects the convergence of innovative technologies and
methodologies, leading to a deeper understanding of neural
structures and their structural and functional connections at the
mesoscale level.

In this context, there are several gaps in understanding
disorders affected by brain connectivity that could be addressed by
leveraging mesoscale-related approaches. In schizophrenia, delayed
PFC maturation, specifically GABAergic interneurons, contributes
to cognitive and social deficits in adolescence (Lewis, 1997;
Caballero and Tseng, 2016; Delevich et al., 2018). Investigating
prefrontal circuitry formation and the impact of excitatory inputs
from subcortical regions on interneurons vs. pyramidal neurons
in the PFC is crucial. CaMPARI, for example, could offer valuable
means to investigate these dynamics. Integrating 3D models with
mesoscale imaging (e.g., confocal or live cell imaging and functional
calcium imaging) can address these questions, revealing dynamic
processes and synaptic development in the neuronal circuitry.

Likewise, in epilepsy research, we may inquire about the
processes involved in the conversion of a focal seizure into a
generalized event encompassing several cortical areas by addressing
questions such as: What factors drive this electrical propagation? Is
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TABLE 1 Compilation of brain connectivity studies in schizophrenia and epilepsy: synthesis across different scales, data acquisition modalities, and
image processing strategies.

Biological
question

Scale Data
acquisition

Output Image processing References

Structural and functional
brain network
abnormalities

Macroscale MRI Functional connectivity Seg.: in house MATLAB tools Anticevic et al.
(2015)

Functional connectivity Macroscale MRI Task-based functional
connectivity

Seg.: registration to neuroanatomical atlas Garrity et al. (2007)

Functional connectivity Macroscale MRI Task-based functional
connectivity

Prep.,1 seg.: registration to
neuroanatomical atlas coordinates

Whitfield-Gabrieli
et al. (2009)

Functional connectivity Macroscale MRI Functional connectivity Prep.,1 seg.: registration to
neuroanatomical atlas coordinates

Erdeniz et al. (2017)

Functional connectivity Macroscale MRI Intra- and inter-network
task-based functional
connectivity

Prep.,1 seg.: cortical parcellation of
functional connectivity boundaries maps

Godwin et al. (2017)

Functional connectivity Macroscale MRI Functional connectivity Prep.,1 seg.: voxel-wise
meta-analysis–SDM-PSI software

Cai et al. (2022)

Functional connectivity Macroscale MRI Functional connectivity Prep.,1 seg.: independent component
analysis–CONN toolbox

Huang H. et al.
(2022)

Neurotransmitter
systems

Macroscale PET 18F-DOPA uptake Prep.,1 seg: semi-automatic, probabilistic
registration to neuroanatomical atlas

Howes et al. (2009)

Neurotransmitter
systems

Macroscale MRI Glu and GABA levels Metabolite quantification. Voxel seg: not
detailed

Chen et al. (2017)

Neurotransmitter
systems

Macroscale PET NMDAR ligand tracer
volume distribution

Prep.,1 seg.: neuroanatomical atlas
registration

Beck et al. (2021)

Neurotransmitter
systems

Macroscale MRI Glu and GABA levels and
functional connectivity

Prep.,1 seg.: automatic metabolite
quantification; functional connectivity in
MRS voxel

Shukla et al. (2019)

Neurotransmitter
systems

Macroscale PET GABAAR ligand tracer
volume distribution

Prep.,1 seg.: neuroanatomical atlas
registration

Marques et al. (2021)

Myelin and white matter
tracts

Macroscale MRI GM/WM contrast Seg.: surface-based mapping–FreeSurfer
5.3.0

Jørgensen et al.
(2016)

Myelin and white matter
tracts

Micro/Nanoscale EM Myelin sheath lamellae
damage

Seg.: manual analysis–Kontron
Mop–Videoplan image analyzer

Uranova et al. (2001)

Dendritic spine
quantification

Micro/Nanoscale LM Mean diameter, total
length, location and
number of dendritic spines

Manual tracing Glantz and Lewis
(2000)

Dendritic spine
quantification

Micro/Nanoscale BM Spine density and dendrite
length

Manual tracing Konopaske et al.
(2014)

Dendritic spine
quantification

Micro/Nanoscale CM Spine density, number, and
area

Manual tracing MacDonald et al.
(2017)

Functional connectivity Macroscale FM Cell density and FIM Seg.: stereology–Visiopharm software,
semi-automatic FIM: Zen 2.0 Blue Imaging
software

Stachowiak et al.
(2017)

Structural and functional
brain network
abnormalities

Macroscale MRI Volumes Prep.,1 Seg: surface-based mapping Bernhardt et al.
(2013)

Structural and functional
brain network
abnormalities

Macroscale MRI Volumes Seg: histology-based volumetry Bartolomei et al.
(2005)

Structural and functional
brain network
abnormalities

Macroscale MRI Volumes Prep.,1 seg: voxel-based volumetry Bernasconi et al.
(2004)

Structural and functional
brain network
abnormalities

Macroscale MRI Volumes and cortical
thickness

Prep.,1 seg: semi-automatic, surface-based Bernhardt et al.
(2012)

(Continued)
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TABLE 1 (Continued)

Biological
question

Scale Data
acquisition

Output Image processing References

Structural and functional
brain network
abnormalities

Macroscale MRI Volumes and cortical
thickness

Seg: surface-based mapping–FreeSurfer
v5.3.0

Whelan et al. (2018)

Structural and functional
brain network
abnormalities

Macroscale MRI FA, MD, AD and RD Prep.,1 seg: tensor estimation and
tractography

Hatton et al. (2020)

Structural and functional
brain network
abnormalities

Macroscale MRI Structural connectivity Prep.,1 seg.: diffusion tensor calculation
and structural connectivity–FDT toolbox

Bonilha et al. (2013)

Structural and functional
brain network
abnormalities

Mesoscale CM Colocalization of
immunoreactivity

Manual counting: Adobe Photoshop CS6 Du et al. (2017)

Structural and functional
brain network
abnormalities

Macroscale MRI Functional connectivity Prep.,1 seg: manual and automatic
segmentation–AAL

Hong et al. (2019)

Abnormal neuron
morphology

Mesoscale FM, CM, MRI Cell density, ex-vivo FA Prep.: Image reconstruction–Imaris. Cell
seg.: auto-thresholding–ImageJ. DTI seg.:
not detailed.

Hsieh et al. (2016)

Abnormal neuron
morphology

Mesoscale CM Cell density, Sholl analysis,
dendritic spine
morphology

Prep.: gray-scale conversion, Seg.: Manual
cell counting, optical density, Sholl analysis:
ImageJ. Dendritic spine: Imaris
FilamentTracer module

Wu et al. (2022)

Abnormal neuron
morphology

Mesoscale CM Cell morphology and
density

Seg.: semi-automatic
quantification–Analyze Particles on ImageJ
and Imaris

Avansini et al. (2022)

Abnormal neuron
morphology

Mesoscale Synchrotron
x-ray CT

Cell morphology and
density

Prep.: noise reduction. Seg.: threshold,
morphological filters and manual
correction–Avizo software

Fonseca et al. (2018)

Abnormal neuronal
localization

Multiscale:Meso
(CM) and
Micro: EM

CM, EM Cell and dendritic spine
density and morphology

Prep.: image and neuron
reconstruction–Neurolucida. Seg.:
automatic morphometry–L-measure.
Dendritic spines: manual tracing on
SynPAnal. Puncta analysis: ImageJ

Martineau et al.
(2018)

Abnormal neuron
morphology

Multiscale:
macro (RM)
and meso (LM)

MRI, LM Type and number of
lesions

Qualitative visual analysis Dubeau et al. (1995)

Abnormal neuronal
localization

Mesoscale LM Cell morphology Qualitative analysis Ekşioğlu et al. (1996)

Abnormal neuronal
localization

Microscale LM Cell density Manual cell counting Mello et al. (1993)

Abnormal neuronal
localization

Microscale LM, EM Densitometry, cell
morphology

Manual densitometry–Ziess IBAS image
analysis system

Babb (1991)

18F-DOPA, 18F-Fluoro-L-Phenylalanine tracer; AAL, automatic anatomic labeling; AD, MD, RD, axial, mean, and radial diffusivity, respectively; BM, brightfield microscopy; CM, confocal
microscopy; CONN, functional connectivity toolbox; CT, computed tomography; DAPI, 4′ ,6-diamidino-2-phenylindole; DMN, default mode network; DTI, diffusion tensor imaging; EM,
electron microscopy; FA, fractional anisotropy; FDT, FMRIB’s Library’s Diffusion Toolbox; FM, fluorescence microscopy; FIM, Fluorescence Intensity Measurements; GABA/GABAAR: γ-
aminobutyric acid/GABA α-subunit receptor; Glu, glutamate; GM, gray matter; LM, light microscopy; MRI, magnetic resonance imaging; NMDAR, N-Methyl-D-aspartate receptor; ROI,
region-of-interest; PET, positron emission tomography; Seg., segmentation; Prep., preprocessing; PSI, seed-based d Mapping with Permutation of Subject Images toolkit; T1WI, T1-weighted
image; WM, white matter. 1Reported preprocessing steps for neuroimaging: slice-timing, attenuation, and motion corrections, registration to T1WI, normalization to neuroanatomical atlas,
field-map correction, and smoothing (for functional MRI); intensity correction, registration to neuroanatomic atlas, smoothing; eddy current and susceptibility artifacts correction (diffusion
MRI); realignment, motion correction, PET registration to T1WI, normalization to neuroanatomical atlas (for PET).

it the result of abnormal neurite branching patterns or an unusual
number of dendritic spines? Moreover, it remains imperative to
determine the specific neural cell type responsible for orchestrating
the shift from a localized circuit, synchronizing neighboring cells,
to the initiation of a generalized ictal event. Thus, studying brain
network development and organization in the mesoscale will allow
us to understand seizure formation and spread.

3 Image processing: quantifying
connectivity

Image processing tools are essential for quantifying data and
revealing the intricate relationships between brain networks and
aberrant connectivity. Image processing techniques can extract
qualitative and quantitative measurements from a variety of
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neuroimaging modalities, including MRI, two-photon, confocal,
super-resolution, microscopy, and EM. Initial steps involve the
identification of which information the research needs to extract
from the data (e.g., tiny structures), followed by the selection of
algorithms and their fine-tuning on a particular data (e.g., noise
filtering, contrast enhancement). After establishing an adequate
workflow, the outcome must be validated by expert neurobiologists.
During this stage of image processing, human input on several
levels inevitably leads to undesired bias or even difficulties
in identifying subtle information such as fine morphological
structures. Adding to this equation, the amount of raw data is
sometimes not feasible to be fully accomplished manually, and this
is especially true for mesoscale generated data. In this scenario,
the development of automated or semi-automated computerized
processing is paramount to achieving an efficient large-scale data
processing. In general, a typical processing workflow consists of
three fundamental steps: image preprocessing, image analysis, and
quantification (Figure 2). However, it is important to note that
specific modifications on the pipeline are required based on the
type of image used and the particular neural structure under
investigation. While a general image analysis pipeline can find
utility in various scenarios, it is important to recognize that each
biological question has a unique demand, and this requires the
development of dedicated processing pipelines.

In the following section, we will explore the most suitable
image acquisition and processing techniques for tackling key issues
associated with conditions affected by abnormal brain connectivity.
These issues encompass inter-regions brain connectivity, axonal
and soma density, single neuron morphology, and dendritic spine
quantification and morphology. Our approach will commence with
the macroscopic analysis of brain regional images and end with
the micro-scale assessment of dendritic spine quantification and
morphology. We will not address image contrast enhancement
and noise reduction preprocessing strategies as they have
several computational implementations in each of the acquisition
techniques and it could divert our focus from the main goal of this
section: understanding the crucial role of segmentation and data
analysis in comprehending connectivity. For an in-depth review of
image denoising, the interested reader is referred to Kollem et al.
(2019), Kaur et al. (2021), and Huang C. et al. (2022). There is a
plethora of manual image analysis tools but in this review we will
focus on automatic or semi-automatic quantification.

3.1 Quantifying inter-regional brain
connectomics

Anatomically, the brain is compartmentalized into distinct
regions, each with designated functions that collectively contribute
to a range of high-order cognitive processes. Inter-regional brain
connectomics consists of mapping and studying the complex
networks between different regions (Behrens and Sporns, 2012).
By analyzing these connections, using either macro, meso, or
multiscale imaging strategies, it is possible to gain insights into how
different regions cooperate or compete (Behrens and Sporns, 2012),
and how disruptions in these networks may lead to neurological or
psychiatric disorders. The macroscale approach focuses on imaging
techniques that encompass the entire brain, ideally in vivo, with a

FIGURE 2

Overview of the bioimage analysis workflow. The pipeline generally
comprises three fundamental steps: image preprocessing (I), image
analysis (II), and quantification (III). In the preprocessing step, raw
image quality is enhanced to facilitate subsequent analysis or
visualization. Image analysis involves identifying and delineating
specific regions or objects of interest, which is essential for
extracting quantitative data from bioimages. The quantification step
involves extracting meaningful quantitative measurements and
deriving insights from the acquired images.

selection of modalities such as MRI for structural covariance, fMRI,
diffusion weighted image (DWI–including DTI and tractography),
and PET. Structural connectivity, primarily addressed through
DWI/DTI and tractography, when combined with fMRI, can also
reveal structural connectivity (Axer and Amunts, 2022).

In the context of computational processing for macroscale
images, artificial intelligence methods for image analysis are
widely utilized in diagnosis contexts to understand neurological
and psychological disorders (Zhang et al., 2020). For meso
and micro scales, image analysis techniques currently available
to extract neural connectivity lie within the segmentation and

Frontiers in Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2024.1340345
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1340345 February 15, 2024 Time: 17:26 # 11

Caznok Silveira et al. 10.3389/fnins.2024.1340345

neuron individualization. Pixel/voxel classification, frequently
called Region of Interest (ROI) delimitation, is the first step to a
multitude of tasks. Once an ROI is defined, it becomes possible
to trace morphological markers in longitudinal or comparative
studies. Furthermore, it aids in the precise delineation of abnormal
regions, guiding surgeons in tasks such as tumor extraction
or identifying the epileptogenic zone by PET/fMRI images. In
longitudinal developmental studies, segmenting regions like the
prefrontal cortex over time provides valuable insights into the
maturation of connectivity networks associated with cognitive
development (Liu et al., 2023). ROI segmentation is also a crucial
step for morphological quantification assessment as it enables
researchers to access region volume or identify morphological
differences in patients compared to control individuals in MRI.

Within psychiatric imaging, schizophrenia research has
consistently revealed two prominent observations: increased
cerebroventricular size and reductions in cerebral gray matter
volume (Ananth et al., 2002; Shapleske et al., 2002). Automatic
ROI segmentation and morphometric quantification of gray
matter volume in MRI images decrease human biases and help to
evaluate different groups in comparative or longitudinal studies
(Fornito et al., 2017; Nemoto et al., 2020). While traditional image
processing techniques such as thresholding-based segmentation,
watershed labeling, neuroanatomical-atlas-based segmentation, or
semi-manual masking [using tools like FreeSurfer (Fischl, 2012) or
BET (Smith, 2002) are available, the medical context often requires
greater accuracy even on images with unclear borders or blurred
definition (Wang et al., 2023)]. In this context, several machine
learning techniques have been successfully used in analysis of
complex datasets, including k-means clustering, Support Vector
Machines (SVM), Random Forest, Adaptive Boosting (AdaBoost),
eXtreme Gradient Boosting (XGBoost) and Deep Learning
strategies like Convolutional Neural Networks (CNN), Generative
Adversarial Networks (GAN), Recurrent Neural Networks (RNN)
(Wang et al., 2014; Zhang Z. et al., 2021; Verma et al., 2023).

In the field of epilepsy, image segmentation or ROI delimitation
primarily aims to locate the epileptogenic zone and define pre-
operative surgical areas. While this kind of analysis is commonly
applied to MRI-T1 and fMRI images (Segato et al., 2020), its
applicability extends to PET, DTI, and DWI scans (Sollee et al.,
2022). For instance, in the study conducted by Lee et al. (2020),
the authors used deep-learning CNN to pinpoint specific regions
for surgical resection in DWI and tractography images of pediatric
patients. Additionally, (Zhang Q. et al., 2021) constructed a pair-
of-cube (PoC)-based Siamese CNN using two identical 18-layer
ResNet to identify epileptic focus in F-fluorodeoxyglucose (F-
FDG) PET images. After localization, the metabolic abnormality
level of the predicted focus was automatically determined using
the asymmetric index (AI). In another instance (Li K. et al.,
2019; Vakharia et al., 2019) conducted detailed segmentation
of critical areas, including the ventricular system, brainstem,
amygdalohippocampal complex, parahippocampal gyrus, and sulci,
from MRI-T1 9 images. Subsequently, they employed Random
Forest algorithms to preplan laser trajectories of respective
surgeries of epileptic zones with less adverse events associated with
epilepsy surgery. For a comprehensive exploration of how deep
learning techniques can be used in epilepsy, we recommend Sollee
et al. (2022) review.

3.2 Multiscale imaging: bridging micro to
macroscale

Macroscale inter-regional insights are directly associated with
microscale synaptic organization and arborization (Wei et al.,
2019). The overall cortico-cortical connectivity observed at the
macroscale in BigBrain profiles is strongly correlated to microscale
laminar cytoarchitectonic patterns (Wei et al., 2019). Essentially,
cortical regions exhibiting higher similarity in microscale patterns
are more likely to be interconnected (Wei et al., 2019).

Additionally, multiscale approaches, which integrate data from
various imaging modalities, hold the potential to interlink micro
and macro scales. For example, the BigMac dataset, developed
by Howard et al. (2023), combines in vivo MRI images with
post-mortem microscopy data and ultra-high angular resolution
diffusion imaging and enables the mapping of microscale cellular
structures to macroscale features. This comprehensive approach
allows researchers to study brain connections at both macro and
micro levels, bridging the gap between them.

However, Haueis (2021) cautioned against oversimplifying
the micro-to-macro correlation by merely averaging microscale
details. Failing to account for the intermediate mesoscale
structure and organization in this practice may lead to analytical
errors. Haueis further emphasized the critical role of mesoscale
circuit organization in accurately depicting the structure-function
relationship, particularly in the context of cortical gradient
modeling. This is a compelling piece of evidence that bridging
micro-to-macro scale connectivity should pass through mesoscale
circuit understanding.

3.3 Mesoscale imaging

The trade-off between image resolution and sample size in 3D
is a well-known limitation. The higher spatial resolution comes at
the cost of a smaller field of view (FOV). Nonetheless, mesoscale
brain imaging strategies combine cellular-level resolution and
an extended spatial range. The primary approach employed in
mesoscale imaging involves the use of wide-field or laser-scanning
confocal microscopies, heavily impacted by the thickness of the
sample. Recent methodologies such as light-sheet and two-photon
partially overcome this limitation by going deeper inside intact
tissues, while preserving high spatial resolution (Cazemier et al.,
2016; Tyson and Margrie, 2022). For example, Li et al. (2010)
used an automatic micro-optical sectioning tomography (MOST)
to obtain a mesoscale atlas of the mouse brain. This strategy
integrates a microtome, light microscope, and image recorder, and
allows for simultaneous imaging and sectioning (Li et al., 2010).
Another possible approach was the use of post-mortem axonal
projections enhanced by green fluorescent protein (EGFP)-labeling
(Oh et al., 2014). They imaged many small patches of brain tissue
with two-photon microscopy to form a big image with cellular-level
resolution (Oh et al., 2014). Imaging at this scale in larger FOV took
18.5 h of scanning and resulted in a 750 GB raw dataset. Likewise,
(Wang et al., 2019) developed the VISoR system, a sophisticated
adaptation of light sheet microscopy, to obtain 3D mouse brain
images with neurite resolution within 1.5 h.
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Another time-optimizing approach for mesoscale involves the
use of synchrotron X-ray imaging. Especially in 3D computed
tomography is becoming popular since the higher energies of x-rays
allow deeper penetration and very high resolution. Although it can
take a few hours to measure a sample in benchtop equipment,
synchrotron sources emerge as a solution for fast measurements
and even higher spatial and temporal resolutions, which also
allow a combination of several tomograms to reconstitute large
FOV (Fonseca et al., 2018; Rodrigues et al., 2021; Claro et al.,
2023). Image processing pipelines are usually developed for a
specific imaging acquisition technique. A comprehensive summary
of primary mesoscale image processing methods for the main image
acquisition modalities can be found in Figure 3.

3.3.1 Processing at the mesoscale level: insights
into neurite and soma regional density

Extensively imaging and tracing axons throughout the brain
provides a mesoscale view of regional connectivity, offering insights
into soma and neurite density as well as assessing total cell
reductions and identifying cell death in specific brain regions
(Bazinet et al., 2023). Although mesoscale imaging strategies
can unveil a series of histological structures, they present their
computational challenges.

The first challenge encountered in the mesoscale is usually the
stitching of large quantities of high-resolution microscopy images.
Image stitching refers to the process of aligning and overlaying
two or more images of the same object taken from different,
consecutive, and overlapping FOV. Through image registration
processing (Sarvaiya et al., 2009), corresponding features or
structures in these images are spatially aligned, making it possible
to combine them into a single and panoramic image. In the
case of brain microscopy, this involves merging multiple images,
sometimes acquired at varying scales, into a comprehensive, high-
resolution representation of the brain. Registering can mean either
tile stitching multiple consecutive FOVs, without overlapping or
positioning microscopic images into a larger dataset using fiducial
markers, or a common reference frame to localize them into
the brain. In both cases, it is expected that mesoscale imaging
strategies generate the largest amount of raw data. BigStitcher is a
method of stitching consecutive FOVs into a single high-resolution
image (Hörl et al., 2019). To manage such large amounts of
data, the BigSticher software computes shifts between overlapping
image tiles by using a phase correlation method in downsampled
images, which optimizes the computational time necessary for
image stitching (Hörl et al., 2019). Moreover, DeepSlice is a
CNN specifically trained on a substantial histological dataset to
automatically align coronal mouse brain two-photon microscopy
images with the Allen Common Coordinate Framework (CCF)
(Carey et al., 2023).

The following step is to detect neuronal cell bodies in the
entire image and quantify soma density across brain regions.
The size of mesoscale data makes manual handling impractical
and prone to biases; hence, automatic or semi-automatic tools
are more suitable for its processing (Bjerke et al., 2023). Soma
detection can be made either by traditional image enhancement
filters followed by intensity thresholds, such as in ClearMap
(Renier et al., 2016) and MIRACL (Goubran et al., 2019), or by
advanced machine learning techniques for pixel classification as

deep learning approaches (Tyson and Margrie, 2022). Intensity
thresholding approaches also work well with DAPI-stained nuclei
images (Kim et al., 2015), and modifications of thresholding can be
done to address large-scale GFP images even with a large variability
in contrast (Frasconi et al., 2014). These modifications consist of
first using mean shift clustering to detect soma centers followed by
image deconvolution and finally manifold learning for filtering false
positives (Frasconi et al., 2014). However, intensity thresholding
and morphological approaches fail especially with densely packed
images and that is precisely where deep learning can be used.
For example, (Hu et al., 2021) combined 3D U-shaped full CNN
with multi-task learning to perform soma segmentation in Nissl
stained images. This strategy is done in small patches and would
take a long time to train in teravoxel mesoscale images. As a faster
approach, (Wei et al., 2023) used a lightweight MCC-Net to reduce
computational complexity in soma detection. Then, in the second
stage, they employed SFS-Net for precise soma localization in
mouse brain images, utilizing advanced segmentation techniques.
Experimental results confirmed the excellent performance of the
method and its capacity to provide valuable information for
neuron reconstruction (Wei et al., 2023). The user-friendly software
CellPose (Stringer et al., 2021) also has a DeepLearning module
that has been used to count pyramidal neurons in histopathological
images (Oltmer et al., 2023). An alternative option is to employ
Suite2p software (Pachitariu et al., 2017), which offers AutoROI cell
segmentation designed for simultaneous analysis of functional and
morphological two-photon calcium images. The compilation of the
main soma quantification methods for mesoscale connectivity is
presented in Table 2.

The next step to a mesoscale connectivity view is to detect,
trace, and quantify neurites across the brain. In the study conducted
by Allen Mouse Brain Connectivity Atlas (Oh et al., 2014), axonal
detection at the mesoscale level starts with a very similar process
to single neuron morphology mesh tracing. Signal detection
algorithms, such as filament tracing, can be used as an initial
segmentation. The authors then rescale image intensity and remove
noise using filters and morphological techniques. Candidate signal
objects were identified based on adaptive edge/line detection and
morphological attributes such as length and area. Additionally,
high-intensity pixels near these objects were considered. In a post-
segmentation step, objects considered artifacts were removed. It
is important to note that passing fibers and terminals were not
differentiated. The outcome is a high-resolution mask classifying
each 0.35 µm × 0.35 µm pixel as a signal or background
(Oh et al., 2014).

Also in the mesoscale, TRAILMAP uses a modification of a
3D UNet to extract axonal projections from uncleared brain tissue
in light-sheet microscopy (Friedmann et al., 2020). This method
focuses on segmenting axons from the background in a generalized
way that can be applied to all brain regions. Unlike filament tracing
methods, it does not address neurite branching numbers or spatial
positions. The purpose is mainly to address axonal fiber density and
compare it across brain regions (Tyson and Margrie, 2022).

Another possibility is to use the MIRACL pipeline and toolbox.
MIRACL is based on a multimodal approach that integrates
CLARITY data at the microscopic level with macroscopic in vivo
and ex vivo imaging data, including structural, diffusion, and
quantitative MRI, all aligned to the Allen atlas reference frame
"ARA." This integration facilitates various analyses, including the
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FIGURE 3

Overview of mesoscale bioimage processing methods. Image acquisition techniques are represented by big circles: Light Microscopy (orange),
Serial Section Electron Microscopy (blue), and Synchrotron X-ray (pink). Image processing steps are depicted by ellipses, and algorithms of analysis
are represented by boxes. Labels I, II, and III denote the fundamental steps of mesoscale image analysis: preprocessing, segmentation, and data
analysis, respectively. Algorithms tools are referenced in Table 2 (I) and Table 3 (1). FOV, field of view; FFN, flood-filling network; CNN,
convolutional neural network; EM, electron microscopy; PCA, principal component analysis.

TABLE 2 Main soma quantification methods for mesoscale connectivity.

Soma quantification
method

Sample
preparation/microscopy

Principle

Kim et al. (2015) DAPI stained nuclei Intensity threshold

Frasconi et al. (2014) GFP transgenic mice Adaptation of intensity threshold: mean shift clustering to detect soma centers,
supervised semantic deconvolution by means of neural networks for image
enhancement and manifold learning for filtering false positives

ClearMap YFP Nuclei detection with background subtraction, filters, morphological operations,
and 3D peak detection, followed by watershed segmentation and volume-based
filtering to identify cells.

MIRACL Pipeline YFP + DTI registering Segmentation workflow in ImageJ, utilizing optimized pre-processing,
morphological analysis algorithms, and a parallelized feature extraction
algorithm for 3D cellular features.

CellPose (Stringer et al., 2021;
Oltmer et al., 2023)

Light microscopy, HE stained
histopathological images

A simulated diffusion process generates spatial gradients pointing toward the
center of a cell, and a neural network trained on these gradients, along with pixel
categorization, forms a gradient vector field used to predict masks by constructing
a dynamical system with fixed points.

Suite2p (Pachitariu et al., 2017) Two-photon calcium images Greedy segmentation of nearby pixels

Hu et al. (2021) Nissl stained Modified 3D fully connected Unet

Wei et al. (2023) fMOST Lightweight neural network for quick soma detection in low resolution, followed
by a network with multi-scale context and a module for precise soma localization.

DAPI, 4′ ,6-diamidino-2-phenylindole; GFP, green fluorescent protein; YFP, yellow fluorescent protein; DTI, diffusion tensor imaging; fMOST, fluorescence micro-optical sectioning
tomography; 3D, three-dimensional; HE, Hematoxylin and eosin stain.

examination of histological features across network graphs and
fiber tracts, as well as connectivity analyses based on projection
terminals. Additionally, MIRACL supports group-level statistics,
multimodal correlations, and comparisons of connectivity maps
across different scales (Goubran et al., 2019).

3.3.2 Single neuron morphology
The morphology of a neuron can have a big impact on its

connectivity with other local neuronal circuits. Neurons with a
complex dendritic branching pattern tend to have a larger surface
area and a denser synaptic field, allowing them to have more
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TABLE 3 Main filament tracing and neuron individualization methods for mesoscale connectivity.

Method Microscopy Overview Sparse/dense References

APP2 Confocal Image enhancement step followed by seed point
detection on local maxima and FFM

Originally created for single
neuron use. But can be used on
sparse images

Xiao and Peng (2013)

NeuronCrawler Confocal Similar to APP2 but improved to large images Originally created for single
neuron use

Zhou et al. (2015)

CAAT fMOST 3D CNN predicts object probability, followed by an
adaptive voxel scooping approach on the probability
map,

Dense and large scale neuron
tracing

Huang et al. (2021)

NTNR Ultra-scale optical
microscopy

A hybrid model. CNN backbone merged with a
Transformer encoder-decoder architecture

Dense Wang et al. (2022)

G-Cut Confocal Requires prior tracing and soma identification. Somas
are used as seeds and adaptation of Djikstra’s algorithm
based on morphological priors is used to segment
neuron instances

Dense Li R. et al. (2019)

Neuro-GPS-Tree Many modalities Uses local and global cues to automatically classify
neurites and reconstruct large-scale neuronal
populations with dense neurites

Dense Quan et al. (2016)

FFM, fast marching method; fMOST, fluorescence micro optical sectioning tomography. Adapted from Magliaro et al. (2019).

candidate synapses (van Pelt and van Ooyen, 2013). According to
Peter’s rule, the colocalization of dendritic and axonal arbors are
reasonable predictors of connectivity among neuron types (Rees
et al., 2017). Nevertheless, a greater number of potential synapses
does not always mean a greater number of functional synapses
(Rees et al., 2017). Axo-dendritic overlapping is a necessary but
not sufficient condition to ensure a synaptic connection. Light
microscopy is the ideal imaging technique to study both neuronal
morphology (using cytoplasmic markers) and synaptic connectivity
(using puncta colocalization) (Wang et al., 2020). In contrast,
neuron morphology has recently been described to predict non-
random connectivity in local networks and circuits (Udvary et al.,
2022). The authors state that the specificity in neural wiring is
influenced by morphological factors such as similarities in neurite
projections, packing density, and the diversity of cell types in the
neuropil (Udvary et al., 2022). High values in these factors lead to
recurring patterns in the network, while lower values result in a
more feedforward network structure (Udvary et al., 2022).

To address single neuron morphology using imaging
techniques we must first extract from the image which pixels
belong to each neuron. This process is called instance segmentation
or neuron instance individualization (You et al., 2019). The main
techniques used to measure multiple neurons are light microscopy
(including confocal, two-photon, STED, and light-sheet) and
serial-section EM.

3.3.2.1 Single neuron morphology using light microscopy

Traditionally in light microscopy (confocal, light sheet, and
STED), neuron instance individualization starts with filament
tracing methods (Xiao and Peng, 2013; Feng et al., 2015; Liu et al.,
2016; Quan et al., 2016; Shih et al., 2021). These methods work
as an initial segmentation and are responsible for differentiating
the neural mass foreground from the noisy scattered background
(Magliaro et al., 2019). They transform an image into a graph
of connected points. Filament tracing pipelines consist mainly of
four steps: (i) an image pre-processing step to improve signal-to-
noise ratio enhancing filaments and smoothing background; (ii) a

seed point detection step followed by (iii) “energy minimization
algorithms” such as Fast Marching Method (FMM) (Sethian, 1996)
and Dijkstra algorithm (Dijkstra, 1959); and (iv) a pruning step
to reduce redundant traces and improve overall segmentation
(Liu Y. et al., 2022).

In the pre-processing step, the main goal is to significantly
enhance the signal-to-noise ratio. In confocal imaging techniques,
the pre-processing involves PSF (point spread function)
deconvolution, feature-enhancing filters (Frangi et al., 1998),
or deep learning techniques that enhance neurons based on a
predicted morphology (Yang et al., 2021a). Then, seed point
detection usually includes the detection of somata searching for
the brightest point on the image (Xiao and Peng, 2013). After
that, energy minimization algorithms find the shortest path
between a starting point and all other points in a graph, using
a cost function usually based on image intensity or transformed
distance of a filament. The final step is filament pruning and
morphological corrections (Liu Y. et al., 2022). These traditional
tracing methods are very robust and widely used in neuron
imaging. Nonetheless, most algorithms are not optimized for large
volumetric images (giga or tera voxels) and images with densely
packed cells. If the traced image contains multiple neurons this will
result in a mesh containing all cells and will require further neuron
individualization.

Nonetheless, filament tracing has improved a lot since the
2008’s DIADEM golden age. The Big Neuron Project and Mouse
Light Project have reconstructed over 1000 neurons and are
constructing a database. Neuron Crawler (Zhou et al., 2015) has
begun solving the big data problem and, Deep Learning methods
have been helping to improve the tracing framework (Dai et al.,
2019; Tan et al., 2020; Huang et al., 2021; Yang et al., 2021b; Liu
C. et al., 2022; Wang et al., 2022). Table 3 summarizes the main
filament tracing methods used in the mesoscale connectivity.

Once the neuronal mesh is accurately traced by filament
tracing strategies, the next step is to individualize each neuron.
Algorithms such as G-Cut (Li R. et al., 2019) and NeuroGPS-Tree
(Quan et al., 2016) use the soma identity and position, and from

Frontiers in Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2024.1340345
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1340345 February 15, 2024 Time: 17:26 # 15

Caznok Silveira et al. 10.3389/fnins.2024.1340345

previously learned morphological parameters trace the most
probable neuron given the soma and the traced neuronal mesh.

3.3.2.2 Single neuron morphology using electron
microscopy

Electron Microscopy can also uncover single neuron
morphology and local connectomics with nanometric synapse
level resolution. Using EM to reconstruct neuron wiring and
connectivity involves multiple steps: high-throughput data
acquisition, image registration, image segmentation, proofreading,
and tracking (Beyer et al., 2022). Unlike confocal or light sheet
microscopy, 3D EM neuron reconstruction requires physical
sectioning of the sample. The samples are cut into about 30 nm
thick samples and individually imaged. A 1 mm3 brain sample
requires about 5000 slices, 2.1 petabytes of raw microscopy data,
and 326 days to finish data acquisition (Shapson-Coe et al.,
2021). Similarly, (Winding et al., 2023) imaged 3016 neurons and
548,000 synapses in a Drosophila larval brain. The resulting image
contained 4841 z-slices and processing it took manual annotation
of multiple users and a specialized annotation tool for big images
(CATMAID) (Winding et al., 2023).

After each image has been acquired the next step is to stitch
adjacent 2D images and correctly stack (register) them to form
a 3D volume. During 3D thin-sliced EM image acquisition, the
most fundamental step for proper 3D reconstruction is image
registration. Aligning microscopy slices can be challenging since
they are not perfectly aligned and often have different quality and
acquisition parameters (Beyer et al., 2022). The main 2D stitching
includes plugins such as TeraSticher (Bria and Iannello, 2012) and
3D registration can be done with the ImageJ plugin TrackEM2
(Cardona et al., 2012). Once the image volume is completed,
the next step is to individualize and segment each neuron. Due
to the highly textured nature of EM images, segmentation is
typically accomplished using deep learning techniques (Shapson-
Coe et al., 2021), using a flood-filling network (FFN). Most of the
EM segmentation algorithms rely on detecting cell membranes to
separate neurons, and even small errors in this detection could split
or merge neurons, significantly impacting the reconstructed neural
circuit (Krasowski et al., 2018). In this context, combining neuro-
morphological priors with local membrane information can be a
viable resource to reduce errors in the neuronal individualization
process (Krasowski et al., 2018; Hong et al., 2023).

3.3.3 Morphology quantification of individual
neurons

The first and most important parameter to quantify single
neuron morphology is the radial profile of neuron dendrite
spanning tree, also known as the Sholl Intersection Profile (SIP)
(Bird and Cuntz, 2019). The complete Sholl analysis includes
measuring the total length of the dendrite, the axon domain
maximum and minimum from the soma, and the angular
distribution of dendritic segments that deviate from a direct path to
the soma. According to the authors (Bird and Cuntz, 2019), a larger
dendrite extension length implies a larger region where synapses
can occur, peaks in the SIPs are related to regions where synapses
have a higher probability to occur and valleys in the SIPs are regions
to where synapses have a lower probability to occur. The angular
distribution is related to a neuron’s centripetal bias and implies a

neuron that minimizes wiring to ensure an efficient propagation of
electrical impulses.

Alternative ways to measure neuronal shape include parameters
such as the total length of neurites, the minimal occupied volume,
the distribution of branch lengths as represented in histograms, and
the frequency of distances between successive bifurcations along
the neural trajectory. These measurements are obtained through
the open-source software L-measure, as outlined in the work of
Scorcioni et al. (2008).

A further challenge is to classify neuron types using only their
morphological assets without any molecular markers (Polavaram
et al., 2014) used L-measure to extract morphological features
of neurons in the NeuroMorpho database. They subsequently
applied principal component analysis (PCA) as a statistical tool
to identify key morphological parameters capable of effectively
classifying dendritic structures across diverse metadata categories.
Their findings highlight the importance of specific measures
like branching density, size, tortuosity, bifurcation angles, arbor
flatness, and topological asymmetry in capturing meaningful
features of dendritic trees. Similarly, Khalil et al. (2021) extracted
L-measure metrics and modified Sholl descriptors from the
NeuroMorpho database and used PCA and KNN clustering to
classify neuronal types.

Deep learning revolutionized feature extraction and image
classification and has been used to classify neurons. For example,
GraphDINO used a Transformer-based Graph Neural Network
to create 3D spatial embedding representations of neuronal
graphs and later classified them into neuronal types (Weis
et al., 2021). The authors adapted positional encoding and
introduced a novel attention mechanism called AC-Attention to
fit neuronal graphs and achieved results comparable to expert-
manual classification without prior knowledge about neuronal
structural features and outperforms previous methods in predicting
expert labels on quantitative benchmarks (Weis et al., 2021).
Similarly, MorphoGNN is a novel approach for embedding single
neuron morphologies using graph neural networks (GNN) and
learns spatial relationships between nodes in reconstructed neuron
fibers by considering their nearest neighbors on each layer.
This process generates a reduced-dimensional representation of
individual neurons using an end-to-end model that incorporates
densely connected Densely Connected Convolutional layers and a
dual pooling operator (Zhu et al., 2023).

3.4 Dendritic spine quantification and
morphology

Dendritic spines are small protrusions from dendrites that
constitute the center of excitatory synaptic interaction among
central neurons (Papa et al., 1995). They are crucial structures for
interneuronal communication and play a crucial role in learning
and memory. Neuronal spines can range in size from tiny, barely
visible protrusions to larger and more complex structures. This
variety suggests that neuronal spines have a wide range of functions
and are essential for neural plasticity and cognitive and sensory
functions (Rochefort and Konnerth, 2012; Ekaterina et al., 2023).

The analytical approach is often used to study dendritic spines,
including their density and respective morphological features
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(Chang et al., 2017). Light microscopy and EM can image dendritic
spines and monitor their dynamic alterations in response to neural
network activity (Arellano et al., 2007). In this section, we have
chosen to emphasize image processing tools obtained by light
microscopy.

Traditionally, dendritic spine images are obtained through
Golgi staining and wide-field microscopy. 3D studies of such
structures can benefit from confocal reflection imaging, although
manual dendrite tracing is still in place. Popular software like
Imaris (Govindan et al., 2021), or NeuroLucida (Dickstein et al.,
2016), followed by the utilization of semi-automatic measurement
tools such as software like SPINEJ (Levet et al., 2020) and
NeuronStudio (Rodriguez et al., 2008) have a broad use. To
employ deep learning for automated methods, it requires extensive
datasets comprising meticulously segmented, high-quality images,
known as “ground truth images”(Vidaurre-Gallart et al., 2022).
However, it’s important to note that even with such datasets,
there may still be limitations to achieving precise reconstructions
(Vidaurre-Gallart et al., 2022).

The image processing routine for analyzing dendritic spines
involves a five-step pipeline: (i) data pre-processing as described
before, (ii) spine location detection, (iii) segmentation to isolate
them, (iv) quantification of morphological characteristics, and
(v) classification or clustering based on their morphology
(Li et al., 2023).

The primary objective in the spine detection phase is the precise
identification of individual entities’ locations within the 3D image
(Rodriguez et al., 2008). This process begins delineating dendrite
boundaries, utilizing information extracted from the dendrite 3D
mesh (Mukai et al., 2011; Okabe, 2020). There are four main spine
detection automatic approaches. The most prevalent method is
skeletonization, which involves the removal of consecutive layers
of pixels from the dendritic boundary (Okabe, 2020). To detect
spines using skeletons, it is necessary to binarize the original images
correctly and extract all spines that are still connected to dendritic
shafts. If any spines become disconnected during the binarization
process, they need to be reattached through further processing
(Rusakov and Stewart, 1995). The Rayburst sampling (Rodriguez
et al., 2006, 2008), gradient-based methods (Zhang et al., 2010), and
analysis of 3D surfaces (Li and Deng, 2012) represent alternative
automated approaches for spine detection.

For spike detection, it is necessary to establish the boundary
that separates the spines from the dendritic shafts, using iterative
methods (Okabe, 2020). One way to perform automatic spine
segmentation using light microscopy involves a calculation of the
distance to the surface of the neuritic shaft for each voxel outside
the shaft (Rodriguez et al., 2008; Singh et al., 2017).

After segmentation, a variety of spine morphological
measurements and posterior spine classification can be
automatized. Parameters of the 3D structure of spines
encompassing spine length, head diameter, neck length, volume,
curvature, basal radius, maximum and minimum radius, and
head-to-neck ratio (Rodriguez et al., 2006; Janoos et al., 2009).
After 3D neuronal morphometry, various principles for spine
classification have been proposed and the commonly employed
method involves categorizing spines into four main groups
stubby, thin, filopodia, and mushroom-shaped (Hering and
Sheng, 2001). While traditional phenotypic classification often
relies on manual inspection, machine learning approaches, aided

by labeled training datasets, have demonstrated comparable
accuracy to human operators (Basu et al., 2018), most
of them using semi-supervised learning (Shi et al., 2009,
2014). Computational analysis of 3D spine morphology has
the potential to unveil novel spine characteristics by fusing
clustering methods to automatically group spines with similar
structures. Luengo-Sanchez et al. (2018) proposed a probabilistic
approach that categorized the spine in clusters based on a
selected set of morphology features, with a Gaussian finite
mixture model.

The rise of the high-resolution light microscopy image era has
led to an expansion of techniques for automated spine detection,
segmentation, and measurement. For a comprehensive overview,
we recommend a thorough review presented by Okabe (2020).

4 Challenges and perspectives

In the examination of mesoscale connectivity within the
context of connectivity-related brain disorders, we highlighted
the following challenges: (i) refinement of human models; (ii)
enhancement of imaging acquisition; and (iii) optimization of
computational processing.

Human neural organoids are revolutionizing the study of
neural development and diseases in a controlled in vitro setting,
overcoming the limitations of traditional animal models. These
organoids recapitulate the complexities of neural development,
offering insights into health and diseases (Avansini et al., 2022).
The in vitro system allows for drug testing, intervention studies,
and close observation of potential side effects. Organoid models
support experiments and correlative microscopy in multimodal
platforms, enabling comprehensive characterizations of entire
samples in vivo. This approach represents a significant stride
in neurobiology and drug development. Neural tracing using
viral vectors and X-ray markers offers precise tools to investigate
neural connections and circuitry, enhancing imaging capabilities
for detailed visualization and mapping of neural structures.
This combination facilitates a deeper understanding of neural
development.

From the perspective of image acquisition, EM provides
unparalleled spatial resolution at the sub-micron to nanoscale, but
it comes with challenges, including difficulties in measuring
samples several micrometers thick due to the destructive
nature of sample preparation for transmission images and
limitations on molecular markers. Photon-based microscopies
offer an alternative, capable of imaging multiple cell layers with
single-cell identification resolution. Visible light microscopies
simultaneously label numerous molecular markers, but a
new physical phenomenon limits resolution due to the larger
wavelength of light. Super-resolution microscopies (e.g., STED,
SIM, PALM/STORM) overcome this limitation and are now widely
available in bioimaging facilities, paving the way for enhanced
imaging beyond traditional light microscopy constraints.

Expansion microscopy techniques have recently proven
effective in reconstructing neuronal connections by employing a
water-swellable polymer to expand tissue samples, overcoming
optical microscopy limitations (Chen et al., 2015; Gallagher and
Zhao, 2021; Lillvis et al., 2022; Kraft et al., 2023). This approach
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preserves sample integrity while providing detailed insights into
cellular and sub-cellular details, including cell projections and
connections.

A complementary approach involves increasing photon energy
(i.e., shortening the wavelength), with X-rays being a prominent
choice due to their deep penetration and high resolution.
Although not practical for most benchtop equipment, synchrotron
radiation techniques have demonstrated feasibility in neuronal
connectomics, offering effective contrast for both unstained
(phase propagation) and contrast-enhanced (absorption) samples
(Kuan et al., 2020; Rodrigues et al., 2021; Claro et al., 2023).
Scanning X-ray fluorescence can map cellular and subcellular
chemical elements, potentially providing a biochemical signature
for specific disorders (Finnegan et al., 2019; Álvarez-Marimon
et al., 2021). Correlative Light and Electron Microscopy (CLEM)
is a promising technique that seamlessly combines the advantages
of light microscopy, such as molecular markers, with the high
spatial resolution of EM. Particularly valuable for studying
neural circuits, CLEM generates synaptic-level resolution images
across a large field of view, revealing extensive neural circuitry.
Its ability to incorporate fluorescent markers streamlines post-
processing segmentation, resulting in a more precise reconstruction
of neural networks (Iwasaki et al., 2022). It is important to
highlight additional aspects of multimodal imaging. APEX2
and MiniSOG serve as genetic tags that are applicable not
only in EM as molecular markers but are also suitable for
X-ray tomography absorption contrast, as noted by Kuan et al.
(2020). These tags, when fused with specific proteins, enable
researchers to selectively label and study the dynamics of organelles,
membrane structures, and the localization of proteins within cells
in 3D space.

Computational processing in a High-Performance Computing
(HPC) environment imposes several challenges, including storage
of large datasets and models, memory capacity, and parallelization
of algorithms (Zhang et al., 2023). Although deep learning
techniques have been demonstrated as a cornerstone approach
for image analysis, the use of such algorithms on large-scale
datasets in HPC environments still requires advanced expertise
in the design of parallel algorithms and programming in
specialized language programming (e.g., C/C++, CUDA). To
overcome this limitation, a new research area, called High-
Performance Machine Learning, has recently emerged to provide
methodologies and tools that explore data and model parallelism
in a heterogeneous computing environment, i.e., composed of
hundreds of CPU cores and GPUs, transparently to the users
(Website, no date). Thus, the researchers can focus efforts on
solving the problem by designing proper algorithms, without caring
about model size and how to feed the neural networks with large
datasets.

Another crucial limitation of deep learning techniques is their
dependency on labeling data. Machine learning has streamlined
the manual processing of imaging data, yet the scarcity of
validated annotated datasets are bottlenecks. Collaboration within
neuroscience is vital for creating integrated, standardized and
multiscale validated datasets, akin to efforts by the Allen Institute.
The demand for multidisciplinary experts in neurosciences and
computational vision is rising to evaluate machine learning model
predictions. Synthetic data generated by artificial intelligence
serves as a data augmentation resource, mitigating the scarcity

of labeled data in deep learning training. Vision transformers
and morphological features for neuron classification are reshaping
image analysis, enhancing algorithm performance, particularly
with large datasets, and providing efficient methods to quantify
mesoscale connectivity.

5 Conclusion

To attain a comprehensive understanding of brain function
it is essential to seamlessly integrate cellular functions into
the broader framework of brain organization. This integration
involves incorporating fine details, ranging from the intricacies
of dendritic spines to the branching patterns and interactions
of individual neurons, into tridimensional models of neuronal
network formation and adaptation to stimuli. A critical aspect
of this integration is the preservation of the hierarchical
organization of brain tissue, ensuring that cellular and sub-
cellular data become an intrinsic part of the entire network.
The mesoscale (cell-cell interactions) information links the
micro/nanoscale (cellular and subcellular data) to the macro
scale (whole brain functioning network). As such, integrative
data can retrieve meaningful connections between cells, providing
deeper insights into the complex neural network and reveal
mechanisms underlying neurological and psychiatric disorders.
Our review article aimed to highlight the state-of-the-art of
the innovative field of neuroimaging in the context of the
mesoscale, giving particular attention to its importance for
a better comprehension of schizophrenia and epilepsy. This
work presented the main techniques for image acquisition, data
processing, and analysis optimized for mesoscale, emphasizing
their distinctive aspects in analyzing specific structures, as
well as acknowledging their limitations, especially concerning
sample integrity. In this regard, we pinpoint multimodal imaging
techniques like CLEM are emerging as the next frontier to
capture large volumes in fine detail. Additionally, the latest (4th)
generation of synchrotron accelerators offers approximately 1000x
faster measurement capacities, enabling objective data generation
through scanning, volume registration studies, and increased
sample sizes (Winding et al., 2023).

Like every frontier of knowledge, neuroimaging is
continuously expanding and experiencing rapid innovations.
Its interdisciplinarity should not, therefore, be the primary
limitation to its advancement. It is crucial that neuroscientists and
computer scientists can comprehend the uses and potentials within
the field of neuroimaging through a shared language.
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Glossary

Adaptive Boosting
(AdaBoost):

is a meta-learning algorithm that
combines weak learners, slightly
outperforming random guessing, into a
weighted sum during the training process
(Schapire and Singer, 1999).

3D neural organoids: three-dimensional structures generated
from stem cells that can mimic certain
aspects of the developing human brain
(Paşca et al., 2022).

Calcium-modulated
photoactivatable
ratiometric
integrator
(CaMPARI):

a photoconvertible calcium indicator to
investigate network dynamics. CaMPARI
shifts from green to red fluorescence when
exposed to calcium influx and violet light,
allowing for precise identification of
activated neuronal populations (Fosque
et al., 2015).

Confocal
microscopy:

light microscopy technique that uses a
laser to illuminate a single plane
eliminating out-of-focus light to produce
sharp, high-contrast images (Jonkman and
Brown, 2015).

Convolutional
Neural Network
(CNN):

neural network architecture for images
that uses a hierarchical stack of
convolutional layers to extract features
(Yamashita et al., 2018).

Covariance: statistical tool used to understand the
relationship between two variables.
A positive covariance means both variables
increase together, while a negative
covariance suggests that they move in
opposite directions (Koch et al., 1982).

DAPI
(4′,6-diamidino-2-
phenylindole):

fluorescent probe that binds to the minor
groove (A-T rich) of double-stranded
DNA (Kapuscinski, 1995).

Diffusion weighted
image (DWI):

MRI technique that measures water
diffusion in tissues. DWI images are used
to diagnose and monitor a variety of
neurological disorders (Baliyan et al.,
2016).

Diffusion MRI
tractography:

allow assessing the topological
organization of brain networks (Jeurissen
et al., 2019).

Diffusion Tensor
Imaging (DTI):

MRI-based technique that measures the
diffusion of water molecules within the
brain. DTI and tractography are employed
to visualize and map the pathways of nerve
fiber bundles and the white matter tracts
(Alexander et al., 2007).

Dijkstra algorithm: greedy graph algorithm for finding the
shortest path from a single source node to
all other nodes in a weighted graph
(Dijkstra, 1959).

Effective
connectivity:

the causal interactions among neural
elements within a neural system aiming to
identify their intricate interrelation
(Stephan and Friston, 2010).

Electron microscopy
(EM):

technique that uses electron beams instead
of visible light to achieve much higher
resolution in imaging (Hayes and Pease,
1968).

Epileptogenic zone: macroscopic/microscopic brain lesion
responsible for the generation of seizures
(Jehi, 2018).

Fast Marching
Method (FMM):

numerical method for finding the global
minimum of an energy function (Sethian,
1996).

Fields Of View
(FOV):

in optical instruments is the angle at the
camera’s vertex, created by the two edges
that represent the maximum range within
which the measured target’s object can
traverse (Gao S. et al., 2022).

Filament tracing: bioimaging technique used to reconstruct
the three-dimensional (3D) morphology of
neuronal filaments, such as axons and
dendrites (Østerlund et al., 2022).

Fractional
Anisotropy (FA):

metric in diffusion imaging that measures
the directionality and integrity of water
diffusion in tissues. Higher FA values
indicate healthy white matter, while lower
values suggest disruption or damage
(Zolkefley et al., 2021).

Functional
connectivity:

measurement of the synchronization of
neural activity between different brain
regions (Biswal et al., 1995).

GABA: main inhibitory neurotransmitter in the
brain, reduces neuronal excitability by
binding to GABA receptors on neurons
(Möhler, 2012).

Genetically Encoded
Calcium Indicator
(GECI):

a molecular probe designed to monitor
intracellular calcium ion (Caˆ2+) levels
within living cells (Oh et al., 2019).

Generative
Adversarial
Networks (GAN):

type of deep learning model consisting of
two neural networks, a generator and a
discriminator, trained in a competitive
manner to generate realistic data
(Goodfellow et al., 2014).

Graph: data structure composed of nodes or
vertices connected by edges or links,
representing their relationships (Zhou
et al., 2020).

Hippocampus: region of the brain located in the medial
temporal lobe and involved in processes
related to memories
(Squire et al., 2004).

Ictal event: seizure caused by abnormal electrical
activity in the brain (Fisher et al., 2014).
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K-Means clustering: unsupervised learning technique that
subdivides data into groups based on their
characteristics. This algorithm operates by
placing so-called centroids within the
data’s vector space, and data points are
classified by the centroid closest to them
(Jin and Han, 2011).

L-measure: software tool for quantifying the
morphology of neurons (Scorcioni et al.,
2008).

Light sheet
microscopy or
Selective Plane
Illumination
Microscopy (SPIM):

imaging technique that uses a thin sheet of
laser light to illuminate a specimen from
the side, minimizing photodamage and
allowing for fast 3D imaging (Hillman
et al., 2019).

Magnetic resonance
imaging (MRI):

non-invasive, non-ionizing, quantitative,
and multi-parametric imaging technique
(Liu et al., 2021). It includes functional
MRI (fMRI) and structural MRI (sMRI)
(Shenton et al., 2012; Wu et al., 2021).

MCC-Net: deep learning model for medical image
segmentation that learns robust features at
different scales of the image using
contrastive learning (Wei et al., 2023).

Microtubules: tube-like structures that provide structural
support and facilitate intracellular
transport (Desai and Mitchison, 1997).

Mossy fiber: excitatory axons that project to and
modulate hippocampal activity for spatial
memory formation and consolidation
(Henze et al., 2000).

MRI-T1: type of MRI scan that produces images
with high contrast between water and fat
(Chen et al., 2018).

Neuropil: defined as the space between neuronal and
glial cell bodies that is composed of
dendrites, axons, synapses, glial cell
processes, and microvasculature (Spocter
et al., 2012).

Point spread
function (PSF)
deconvolution:

method that attempts to correct the optical
distortion. It serves as a mathematical
representation of the blurring effect that
occurs when a point source of light is
recorded by an optical system (Corle and
Kino, 1996).

Positron emission
tomography (PET):

medical imaging technique that uses small
amounts of radioactive tracers to visualize
and measure physiological processes in the
body (Phelps, 2000).

Principal
Component Analysis
(PCA):

statistical method for reducing the
dimensionality of data while preserving as
much of the variation in the data as
possible (Jolliffe, 2002).

Pyramidal neurons: Neurons exhibit a distinctive cellular
structure, featuring apical and basal
dendritic trees, as well as a
pyramidal-shaped soma (Spruston, 2008).

RandomForest: machine learning algorithm used for
classification and regression, where the
result is generated from the combination
of multiple decision trees. Each decision
tree is an independent model that divides
the data into subsets based on a sequence
of rules for data features (Belgiu and
Drăguţ, 2016).

Regional
homogeneity
(ReHo):

concept and analysis technique to measure
the similarity or coherence of the blood
oxygen level-dependent (BOLD) signal
within a specific brain region or voxel (Xu
et al., 2019).

Region of interest
(ROI):

significant portion of an image to be
focused on or analyzed (Poldrack, 2007).

Residual Network
(ResNet):

neural network architecture designed to
address the vanishing gradient problem in
very deep convolutional neural networks.
It introduces skip connections, which
allow gradients to flow more easily during
training, improving the training of deeper
networks in tasks like image recognition
(He et al., 2015).

Resting state: state in which a person is awake and alert
but not actively engaged in a specific task
or mental activity, also known as a baseline
functional connectivity, when the brain
continues to exhibit spontaneous neural
activity (Biswal et al., 1995).

Serial section
electron microscopy:

EM technique that sections and images a
specimen to create 3D models of its
internal structures, aiding in mapping
neuronal connections within the brain
(Gay and Anderson, 1954; Motta et al.,
2019).

Sholl descriptors: rule that links each neuron to a specific
feature, associating neuron morphology
with a function that produces numeric
values in a metric space (Khalil et al.,
2021).

Signal-to-Noise
Ratio (SNR):

measure used to quantify the quality or
strength of a signal in relation to the level
of background noise or interference.
A higher SNR indicates a more reliable and
discernible signal compared to unwanted
or random variations (noise) (Welvaert
and Rosseel, 2013).

Single-photon
emission computed
tomography
(SPECT):

nuclear medicine imaging technique that
uses gamma-ray-emitting radiotracers to
create 3D images of the distribution of
radioactive compounds within the body
(Devous, 1995).

Stimulated Emission
Depletion (STED):

super-resolution microscopy technique
that uses a combination of laser beams to
overcome the diffraction limit, achieving
extremely high spatial resolution in
imaging (Vicidomini et al., 2018).
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Structural
connectivity:

Anatomical connections between different
brain regions. It represents the physical
pathways formed by bundles of nerve
fibers (axons) that connect neurons in one
part of the brain to neurons in another
part (Hagmann et al., 2008).

Support Vector
Machines (SVM):

supervised machine learning algorithm
used for classification operates by
identifying a hyperplane that separates
different classes with a larger margin
(Cristianini and Ricci, 2008).

Synchrotron x-ray
microtomography:

non-destructive image technique that uses
intense x-ray beams generated by a
synchrotron particle accelerator to create
high-resolution, 3D images of the internal
structures of biological specimens (Betz
et al., 2007).

Synthetic data: artificially generated data used for various
purposes, including training machine
learning models (Rajotte et al., 2022).

Two-photon
microscopy:

microscopy technique able to image a
cm-thick biological specimen to create 3D
images of its internal structures, aiding in
mapping neuronal connections within the
brain (Denk et al., 1990).

UNet: Architecture employed for image
segmentation. Uses convolutional layers
for feature extraction and employs
upsampling and transposed convolutional
layers to create a segmentation mask
(Ronneberger et al., 2015).

Voxel: three-dimensional pixel, which is the
smallest unit of a 3D space in a digital
image or a 3D dataset (Foley, 1990).

Vision Transformers
(ViT):

neural network architectures that utilize
attention mechanisms to transform image
patches into embedded representations,
replacing traditional convolutional layers
in computer vision tasks (Khan et al.,
2022).

XGBoost (eXtreme
Gradient Boosting):

an optimized version of the Gradient
Boosting algorithm for classification and
regression problems (Mason, no date).

Watershed: image segmentation and instance labeling
algorithm. It starts by dropping seeds to
mark different regions, then these labeled
seeds expand and delimitate the image into
different areas, helping to identify
individual instances in the image
(Najman and Schmitt, 1994).
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