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Precise and low-power 
closed-loop neuromodulation 
through algorithm-integrated 
circuit co-design
Jie Yang , Shiqi Zhao , Junzhe Wang , Siyu Lin , Qiming Hou  and 
Mohamad Sawan *
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Implantable neuromodulation devices have significantly advanced treatments 
for neurological disorders such as Parkinson’s disease, epilepsy, and depression. 
Traditional open-loop devices like deep brain stimulation (DBS) and spinal cord 
stimulators (SCS) often lead to overstimulation and lack adaptive precision, 
raising safety and side-effect concerns. Next-generation closed-loop systems 
offer real-time monitoring and on-device diagnostics for responsive stimulation, 
presenting a significant advancement for treating a range of brain diseases. 
However, the high false alarm rates of current closed-loop technologies limit 
their efficacy and increase energy consumption due to unnecessary stimulations. 
In this study, we introduce an artificial intelligence-integrated circuit co-design 
that targets these issues and using an online demonstration system for closed-
loop seizure prediction to showcase its effectiveness. Firstly, two neural network 
models are obtained with neural-network search and quantization strategies. A 
binary neural network is optimized for minimal computation with high sensitivity 
and a convolutional neural network with a false alarm rate as low as 0.1/h for 
false alarm rejection. Then, a dedicated low-power processor is fabricated 
in 55  nm technology to implement the two models. With reconfigurable 
design and event-driven processing feature the resulting application-specific 
integrated circuit (ASIC) occupies only 5mm2 silicon area and the average power 
consumption is 142  μW. The proposed solution achieves a significant reduction 
in both false alarm rates and power consumption when benchmarked against 
state-of-the-art counterparts.
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1 Introduction

With the prolongation of human life expectancy and the emerging of the aging society, 
brain disorders such as epilepsy, Parkinson’s disease, depression have inflicted suffering on a 
significant portion of the global population. Brain disorders not only pose a severe threat to 
human health but also impose a substantial medical and societal burden, ranking as the 
leading cause of all diseases (Poo et al., 2016). As shown in Figure 1, the latest statistics from 
the World Health Organization (WHO) indicate that the numbers of individuals affected by 
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brain disorders such as epilepsy, Parkinson’s disease, and depression 
have exceeded 70, 10, and 350 million, respectively (Lee et al., 2020).

Traditional treatments for brain disorders primarily involve 
medication and surgical procedures. However, medication-based 
treatments often come with significant side effects, slow progress, and 
the risk of developing drug resistance. For instance, approximately 
30% of epilepsy patients exhibit drug resistance or adverse reactions. 
Moreover, irreversible surgeries can lead to unpredictable adverse 
consequences for patients, including impairments in memory, vision, 
and motor function (Kuhlmann et al., 2018b).

In recent years, the utilization of implantable medical devices for 
neuromodulation has emerged as one of the most effective approaches 
for treating various brain disorders, and it has benefited hundreds of 
thousands of brain disorder patients worldwide (Won et al., 2020). 
Figure  2A illustrates the forms and implantation of current 
neuromodulation devices. The devices are typically implanted in the 
chest region through invasive surgeries and connected to electrodes 
implanted near the target brain regions via wires. Most 
neuromodulation systems employ an open-loop design, as depicted 
in Figure 2B, where the device delivers continuous or periodically 
stimulation to the nerves. For example, deep brain stimulation (DBS) 
for Parkinson’s treatment can deliver electrical stimulation to target 
brain regions to regulate the faulty nerve signals causing tremors, 
rigidity, and other symptoms. Although these open loop systems 
provide possibilities of the treatment of many brain disorders, the lack 
of adaptability to the dynamic neural activity or the changing needs 
of the patients have limited their ability to deliver personalized and 
optimal treatment outcomes. Moreover, open-loop control suffers 
from inefficiency because continuous nerve stimulation can lead to 
habituation and neurological chemical changes, resulting in a decrease 
in treatment efficacy and safety issues. Side-effect such as dyskinesia 
have been constantly reported in epilepsy and Parkinson’s patients due 
to open-loop stimulations (Dembek et al., 2017).

To address the issues associated with open-loop control, a natural 
solution is to monitor the activity of the nervous system in real-time 
and determine whether disease-related features exist in the neural 
signals before initiating nerve stimulation. This approach is known as 
closed-loop control, as illustrated in Figure 2C. Closed-loop systems 
integrate real-time data processing and responsive stimulation 
functions, enabling a more sophisticated and adaptive approach to 
neuromodulation. By continuously monitoring neural activity and 
adapting stimulation parameters accordingly, closed-loop 

neuromodulation devices offer enhanced precision, efficacy, and 
patient-specific therapy (Scangos et al., 2021). Algorithms used for 
biomarker detection are crucial for achieving closed-loop 
neuromodulation. Currently, the algorithms primarily used in closed-
loop neuromodulation systems main involves neural signal features 
extraction and classification. Features such as Phase Locking Value 
(PLV; O'Leary et al., 2018), Spectrum Energy (SE; Cheng et al., 2018; 
O'Leary et al., 2018; Huang et al., 2019; Zhang et al., 2022), line length 
(Shin et al., 2022) that can reflect the amplitude, phase, and frequency 
of the neural signal are commonly used. The classification mainly 
relies on linear regression and support vector machine classifiers. 
However, due to limited on-device battery and computing resource, 
the algorithms used in existing neuromodulation devices still suffer 
from a high false positive rate. The reported false positive can exceeds 
2,800 per day (Bruno et al., 2020), which greatly undermining the 
effectiveness of the closed-loop neuromodulation.

In recent years, artificial neural networks have begun to reshape 
closed-loop neuromodulation, substantially reducing false positives. 
In 2018, an epilepsy detection algorithm that used short-time Fourier 
features and convolutional neural networks has been reported (Truong 
et al., 2018). The algorithm has reduced the false positive rate to below 
0.21 fp/h, but due to the use of large convolutional kernels and neural 
network with over seven layers, the model’s parameter size reached 
0.76 MB, the associated computation exceeds the capacity of implant 
medical devices. In 2019, a comparative study of different classification 
algorithms was conducted, validating the superiority of neural 
networks in closed-loop control (Daoud and Bayoumi, 2019). In 2020, 
the difference between regression, SVM and CNN for closed-loop 
control was reviewed and compared in Yang and Sawan (2020). An 
approach that combined direct transfer functions and neural networks 
reduced the false positive rate to 0.08/h, but it involved a large number 
of multiplicative and convolutional calculations, and the model size 
exceeded 1 MB (Wang et al., 2020). Recently, research like EEGNet 
(Lawhern et al., 2018) and its variant (Schneider et al., 2020) have 
been proposed to optimize the neural network so that can be used in 
embedded systems. Through the network size is reduce, they still 
cannot be migrated to implantable devices with limited storage and 
computing capacity.

To solve the computing and power consumption issues associate 
with the close-loop control, dedicated integrated signal processing 
chips have been developed. A closed-loop chip with a power 
consumption of 3.12 mW and an area of 25mm2 was reported. 
Frequency features and linear regression classification method 
achieved a sensitivity of 97.8% and a false positive rate of 2 fp/h 
(Cheng et al., 2018). O'Leary et al. (2018) reported an integrated chip 
with a sensitivity of 100%, and a false positive rate of 0.81 fp/h. The 
chip had an area of 7.6 mm2 and consumed 1.07 mW. In 2019, a 
dedicated neural signal processing chip with 4.5 mm2 area and 1.9 mW 
power consumption was reported (Huang et al., 2019). It achieved a 
sensitivity of 96.6% and a false positive rate of 0.28 fp/h. Recently, an 
integrated chip with an area of 4.5 mm2 and power consumption of 
1.2 mW, achieving a sensitivity of 97.8% and a false positive rate of 0.5 
fp/h was reported (Zhang et  al., 2022). Recently, a SVM-based 
processor has been proposed and achieved 92.0% sensitivity and 
0.57/h false alarm rate in seizure prediction task (Hsieh et al., 2022). 
With optimized SVM algorithm and customized circuits 
implementation, the chip consumes less than 4 mm2 silicon area, and 
the power is reduced to 2.3 mW, exhibit reduced power consumption 

FIGURE 1

Brain disease statistics from WHO (Lee et al., 2020).
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when compared to embedded microprocessors for the computing of 
the same complexity.

In this study, we  undertake an algorithm-integrated circuit 
co-design approach for close-loop control with dedicated integrated 
circuits to address the issues related to false alarm rates and power 
consumption. Initially, we employ a neural-network search strategy to 
acquire neural network models that not only demand less 
computational effort but also exhibits low false alarm rate. These 
models are then quantized to minimal memory and computation 
resource requirements. A low-power, event-driven processor was 
designed to implement these models, allowing consistently monitor 
events in a low-power state and transition to a high-precision state for 
eliminating false alarms. The performance and the efficiency of the 
proposed method are validated with a real-time seizure prediction 
demonstration system.

The organization of this paper is as following. Section 2 describes 
the detail of the algorithm design and the optimization strategies. 
Chip architecture and circuit design are given in section 3. 
Experiments and evaluation results are summarized in Section 4. The 
last section concludes this paper.

2 Algorithm designs

To minimize the false positive rate and power consumption, our 
study adopts a two-stage optimization approach. Initially, a network 
search space is defined, with consideration of the sensitivity and false 
positive rate requirements specific to closed-loop neuromodulation. 
A targeted network search strategy yields a baseline model which 
meets these criteria. Subsequently, the baseline model is refined using 
network quantization techniques, which reduces the model to sizes 
and computational requirement appropriate for integration within the 
limited resources of implantable systems.

2.1 Network search

Traditional neural signal processing techniques like line length, 
although simple to implement in hardware, exhibit limited accuracy 
in recognition. Consequently, they result in a high false positive rate 
during closed-loop control processes, making them unsuitable for 
precise treatment. On the other hand, currently available highly 
accurate and low false alarm rate algorithms rely on neural networks, 

but their sizes typically exceed several hundreds of kilobytes (kB), 
which surpasses the storage capacity and computing resource of many 
implantable chips. In this study, we  first define an approximate 
network structure space (Figure 3A) based on the available on-chip 
storage and computational resources of implantable chips (Yang and 
Sawan, 2020; Martínez et al., 2022). In neuromodulation systems, 
there are a few to tens of channels, and each channel is sampling at the 
rate of at least few hundred Hertz. Hence, the sampled data has 
extremely unbalanced X (time) axis and Y axis (channel), and the Y 
axis would dimmish rapidly if 2d convolution is applied in the 
beginning. Moreover, it may decrease the classification performance 
if the time (X) and channel (Y) axis are mixed up (Zhao et al., 2020; 
Wang et al., 2021). Therefore, a channel-wise neural network structure 
is proposed in this work to avoid mixing up data features from 
different channels. Using one-dimensional convolutions, data 
processing occurs independently within each channel, ensuring that 
there is no mixing or interaction of data across channels during these 
operations. It also reduces memory and computing overhead for 
hardware implementation.

As depicted in Figure 3B, the network structure comprises five 
distinct blocks, the first three blocks are responsible for temporal 
information extraction, while the latter two blocks perform spatial 
convolution. Each convolutional block consists of a convolutional 
layer and a pooling layer, with a Batch Normalization (BN) layer and 
a rectified linear unit (ReLU) activation function applied after the 
convolutional layer. The global average pooling layer is applied to 
further reduce the number of parameters. The finial output was 
obtained using a dense layer with the Softmax function. During 
network search, the convolution kernels are restricted to 
one-dimensional to reduce the number of parameters and associated 
computation. For the first three blocks that operate on the spatial 
dimension, filter and pooling height are fixed as 1, and an RNN-based 
search controller is employed to explore the sizes, quantities, and 
pooling widths of the convolution kernels. It selects filter width from 
the options of [1, 2, 8, 16], the number of filters from the choices of [4, 
8, 16], and select a pooling width from the set [1, 4, 8, 16]. For the last 
two convolutional blocks, which operated on the channel dimension, 
the filter width and pooling width were fixed at 1. Similarly, the 
controller RNN also make decisions regarding filter height, which 
could be chosen from [1, 2, 8, 16], the number of filters (from [4, 8, 
16]), and the pooling height (from [1, 2, 4]). All the strides of the 
convolutional layer were fixed as 1. The RNN controller generates a 
description of the target neural network, including the number and 

FIGURE 2

Neuromodulation modalities: (A) conventional DBS device, (B) open-loop neuromodulation, (C) closed-loop neuromodulation.
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dimensions of convolution kernels and pooling widths. Once the RNN 
controller completes the generation of the description string, the 
neural network it represents is constructed, trained, and validated. The 
validation results are used as a reward signal to update the RNN 
controller, and reinforcement learning is used to maximize the 
expected reward function J(ω), defined as Eq. 1:

 
( ) ( ) [ ]

1: ;TP aJ E Rωω =
 (1)

α1:T represents the string generated by the RNN controller, 
following the probability distribution P. R is the validation accuracy 
of the network generated by the controller, serving as the reward 
signal for training the controller. We  update the RNN controller 
parameters using the following reinforcement learning approach of 
Eq. 2 (Williams, 1992):
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K is the number of network structures generated by the RNN 
controller in a batch, and T is the number of hyperparameters 
predicted by the controller in the string. Rk represents the accuracy of 
the k-th network structure, and b is the exponentially moving average 
of the accuracy of the previous architecture. By constraining the 
search space, we can identify the best-performing model under the 
specified conditions as the baseline model for further compression.

2.2 Baseline model compression

Network quantization represents a highly effective approach for 
compressing and accelerating neural networks. In this method, the 
neural network’s weights and activation values, originally stored as 
high-bit floating-point numbers, are converted into low-bit integers 
or fixed-point numbers. This transformation results in a reduction 

in the number of operations required by the neural network and 
lowers the hardware implementation costs, as evidenced by previous 
studies (Alyamkin et al., 2019). In some extreme cases, parameters 
of a neural network can be quantized to just 1-bit, taking values of 
−1 or 1 (Courbariaux et  al., 2016). This leads to a significant 
reduction in multiply-accumulate operations, which are replaced by 
the more efficient 1-bit XNOR operation in the hardware. While this 
reduces the amount of memory required for access, it is worth 
noting that this extreme quantization can lead to certain 
performance compromises, including increasing false alarm rate and 
diminished sensitivity.

In our study, we  assess the performance of different bit 
quantization techniques in the context of epileptic seizure prediction 
networks. We  aim to determine if the reduction in performance, 
resulting from these quantization methods, falls within acceptable 
limits. We utilize fixed-point representation to quantize both weights 
and activations to the same number of bits. Specifically, we employ the 
weight quantization method described in Eq. 3 (Moons et al., 2017).
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Here, ω represents the weights before quantization, and Q denotes 
the number of bits required for the quantization process. In the 
quantization of activations, we  utilize the above quantized tanh 
function. Figure 3C shows the quantization process. When training 
the quantized model, the gradient propagated by the straight-through 
estimators (STE) uses function Eq.  4 (Courbariaux et  al., 2016) 
regardless of how the number of quantized bits Q was

 ( ) ( ) ( )( ), 1, 1 max 1, min 1,Htanh a Clip a a= − = −
 (4)

This function is used because the quantization is a 
nondifferentiable operation during the backward pass.

FIGURE 3

The proposed model compression strategy: (A) search space to generate baseline model with high sensitivity and low false alarm rate, (B) baseline 
model with the first two block for temporal information extraction and the last three block for spatial convolution, (C) quantization and straight 
through estimators (STE).
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3 Chip design

Complex neural signal processing is the primary contributor to 
system power consumption. While common low-power technologies 
like periodic wake-up and frequency reduction can decrease power 
usage, they come at the cost of compromising real-time performance 
in closed-loop neuromodulation. The proposed chip features 
low-power, event-driven real-time processing by exploiting the 
sparsity inherent in brain disease occurrences. Figure 4 demonstrates 
the motivation behind the event-driven processing approach. Neural 
signals typically exhibit a consistent pattern and lack distinct 
characteristics most of the time. Devices designed for detecting or 
predicting disease biomarkers are only effective for a brief window of 
time (Liu et al., 2022). For instance, with conditions like arrhythmia, 
various forms of rapid supraventricular arrhythmias occur 
infrequently, only happening once every few hours or less, with these 
episodes being of short duration, often just seconds or minutes. In the 
case of epilepsy patients, seizures represent merely 0.01% of their 
overall life span. The proposed event-driven chip employs an extreme 
compressed binary neural network (BNN) from the baseline model 
for continuous event detection and a moderate convolutional network 
for precise biomarker detection. The binary neural network can 
be achieved through quantize weights to binary values as mentioned 
in Section 2. As it only requires 1-bit weights and simple logic 
operations, the reduction in computational demands significantly 
decreases the required power consumption. The BNN is engineered 
to preserve a high level of sensitivity to guarantee that no potential 
onset goes undetected. However, due to the inherent limitations in the 
classification capabilities of the BNN, the rate of false alarms cannot 
be assured with BNN alone. To reject false alarms, a high-precision 
convolutional neural network will be activated after an event has been 
detected by the BNN. The convolutional neural network helps 
eliminate additional false alarms, ensuring overall low false alarm rate 
at system level. As illustrated in Figure 4, when employing the BNN 
model for event detection, the system successfully filters out most false 
alarms and operates in a low-power state. The CNN mode is briefly 
engaged to confirm alarms that surpass the event threshold. The BNN 
model predominantly governs the system’s power consumption, 
whereas the CNN model dictates the rate of false alarms. To seamlessly 
integrate the BNN and CNN networks and conserve silicon area, the 

chip has been designed in a reconfigurable fashion without using 
any multiplier.

3.1 Neural signal processing architecture

Figure 5 provides the architecture of the proposed processor. It 
consists of four reconfigurable cores interconnected via a system bus. 
The sensor interface is responsible for receiving external input neural 
signals. The top controller fetches instructions from a 32 kB 
instruction memory through the system bus and controls the overall 
system while streaming data from the sensor interface to the four 
reconfigurable cores. Each core includes an array of Processing 
Elements (PEs), data reorder logic, 32 kB local data memory, and 
inter-PE logic that governs the behavior of the PE array. The data 
reordering mechanism contains two parts, the input data reorder and 
the output data reorder as illustrated in Figure 4. The input order logic 
connects 16-source ports from the data SRAM within the core to 
16-destination ports at the PEs. Data is received at each source port 
from a designated SRAM address (e.g., i0), with an enable signal (e.g., 
ie0) activated based on the decoded instruction pattern. This signal 
guides the routing of input data to any of the PEs for subsequent 
processing. For the output reorder logic, 16-source ports from the PEs 
are linked to 16-destination ports at the data SRAM. These ports 
handle the processed data output from the PEs (e.g., o0), with each 
piece of output data linked to an output enable signal (e.g., oe0). This 
signal specifies which data bits should be stored back into the SRAM 
at the appropriate addresses. Each PE consists of eight pipelined 
Computation Units (CU) and intra-PE logic controlling the pipeline 
configuration, control signals, and inputs for each CU. The proposed 
processor is designed to support various sizes of CNN and BNN 
computation. The limitation on model size is determined by the 
memory requirement for the maximum intermediate layer if maps 
values and the weights.

Figure 6 shows the BNN and CNN mapping of the proposed 
architecture. During always-on event detection mode, each PE can 
work independently to compute the multiple-accumulation result of 
eight pairs of binary numbers. Taking a 4-channel 2 × 4 convolution 
operation as an example, every 2 × 4 binary weight kernel can 
be treated as an 8-bits integer. Every such 8-bit integer are copied to 

FIGURE 4

Motivation of the proposed event-driven neural signal processor.
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a row of PEs. The feature maps are grouped in the same fashion and 
are broadcast in a column-wise fashion to the PEs. Then every PE 
performs XOR and Popcount operations to generate the partial sum 
of different kernels. After broadcasting the entire feature map, the 
first set of BNN convolution operations are completed, and the 
feature map can be replaced for the next round of operations. Upon 
detecting an event with the BNN configuration, the chip can 
be  reconfigured to CNN mode for precise classification which 
involves more complex multiplication operations. As shown in 
Figure 6B, two PEs are interconnected, every four 8-bits values in 
the weight kernel are placed in the two PEs of the same group, thus, 

16 values in one weight kernel can be placed in the first two rows of 
the PEs. The 16 values in the other weight kernel can be mapped into 
the eight PEs in the next two rows. The CNN feature map will 
be  grouped every four values in the order of computation. 
Subsequently, they are placed together into the four PEs with placed 
weights. Simultaneously, these feature maps are also broadcast to the 
four PEs where another weight kernel is placed. These feature maps 
are passed forward in a chain until the partial sums of the 1 × 4 
vectors inner product is calculated. The partial sums computed by 
multiple PEs will be passed to other PE arrays for accumulation to 
obtain the final convolutional operation results.

FIGURE 5

The architecture of the proposed event-driven neural signal processor and the structure of data reorder logic.

FIGURE 6

Weight and feature mapping methods of the proposed architecture, (A) BNN mapping, (B) CNN mapping.
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3.2 Reconfigurable processing element 
design

The computation of BNN mainly involves XNOR-popcount 
operations. As shown in Figure 7A, during inference, multiple bits 
from weights and activations are grouped into two sets. The XNOR 
operation is performed based on these two groups of values, and then 
the number of resulting “one” are counted. The popcount operation can 
be completed by right shift the result of XNOR in each cycle and add 
the extracted least significant bit (LSB) to the left spare position of the 
register. The computation of CNN mainly involves multiplication and 
accumulation operations. To mitigate the usage of area and power 
consuming multipliers, all multiplication operations in this work are 
replaced with booth encoded accumulations. As shown in Figure 7B, 
an 8-bit multiplier can be encoded into four values and each represent 
a value in [−1, −2, 0, 1, 2]. The final multiplication operation can 
be  implemented by shifting or adding the multiplicand. Unlike 
conventional multiplication where the multiplier and the multiplicand 
can vary frequently, in CNN inference, either the feature map or the 
weight can stay stationary during the multiplication process.

Figure 8A shows the BNN circuit-level paradigm of the PE, it is 
configured to facilitate the popcount operations. In this mode, binary 
weights and feature maps originally represented as −1 or 1 are 
converted to 0 or 1. The conversion process begins with the PE 
employing its internal logic to compute the XNOR result from the 
weights and input feature maps. The CUs within each PE are 
interconnected in a sequential manner to execute popcount 
operations. Each XNOR result undergoes a one-bit shift to the right, 
and the bit that is shifted out is added to the rightmost spare bits in 
the register. These spare bits serve as a temporary storage to tally the 
number of “1”s counted. In the following cycle, the subsequent CU 
carries on with this operation, continuously updating this temporary 
count until all bits have been accounted for. This repetitive process 
enables the efficient computation of popcounts during BNN inference. 
As illustrated in Figure 8A, after this interactive process, the register’s 
value updates to “00000101,” indicating that there are five “1”s in the 
original XOR result of “11010011.”

In the CNN mode, the PE undergoes a reconfiguration to operate 
as a Multiply-Accumulate (MAC) unit using Booth encoding, 
eliminating the need for a multiplier. Figure 8B demonstrates how this 
mode facilitates the MAC operation at the circuit level, where two 
8-bit input numbers, a multiplicand “x” and a multiplier “y,” interact 
to complete the MAC operation. The process begins with the extension 
of the least significant bit (LSB) of “y,” transforming it into a 9-bit 
multiplier. This extended multiplier “y” is then divided into four 3-bit 
Booth multipliers. Each of these Booth multipliers encodes the 
multiplicand “x” using Booth encoding, resulting in four Booth 
products. These four Booth products are subsequently assigned to four 
consecutive Computational Units (CUs) in a specific order. In contrast 
to the BNN mode, where one of the inputs of each CU’s ALU is 
connected to the Least Significant Bit (LSB) of the preceding CU’s 
register, one ALU input is now linked to the predetermined Booth 
products values. Within each CU, the Booth products are added with 
the other input of the ALU, namely the old partial sums (psums) 
obtained from the previous CU. This addition yields new partial sums, 
which are then stored in the CU’s register and subsequently 
transmitted to the next CU. This iterative method of incorporating 
Booth products with propagated partial sums (psums) throughout the 
chain of Computational Units (CUs) enhances the efficient execution 
of Multiply-Accumulate (MAC) operations. In contrast to general 
multiplication scenarios where both the multiplicand and multiplier 
are arbitrary, in convolutional operations, the multiplicand remains 
constant as it represents the kernel value. Consequently, the Booth 
products can remain unchanged throughout the computation of an 
entire kernel.

The intra-PE logic and the CU circuit diagram is shown in 
Figure 9. In BNN mode, the top controller oversees the operations and 
help read binary weight from data memory and reorganize weights 
into suitable weight groups through data reorder logic within the 
reconfigurable core. Once organized, these weights are written into the 
registers using the intra-PE logic and waiting for the input feature map 
to perform XNOR operations. The results of these XNOR operations 
are then sent to the first CU to start the popcount calculations. The 
final CU within the PE is responsible for propagating the results back 

FIGURE 7

Major operations required in BNN and CNN inference, (A) PE configured to perform popcount operation, (B) PE configured to perform booth encoded 
multiplication.
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to the intra-PE logic. If the computation involves a partial convolution 
operation, the outcome is forwarded to the next connected 
PE. However, if it’s a complete convolution operation, the final result 
is achieved by applying the sign activation function and the max 
pooling module within the intra-PE logic.

During the CNN mode, multipliers are fetched from the data 
memory and stored in the registers of the intra-PE logic. These 
multipliers serve the purpose of encoding the multiplicand using 
Booth control logic. The encoded Booth products are then directed 
to the respective CU. Depending on if the output is partial sum or 
final results, the finial CU will direct the data to the next PE for 
further accumulation or necessitates the execution of the Rectified 
Linear Unit (ReLU) activation function and the max pooling 
operation by the respective modules. The data sent to the data 
memory needs to be quantized to 8-bits. The quantization process is 
managed by the quantizer module, and its configuration is 
determined by the immediate instructions decoded by the 
top controller.

4 Experiments and evaluation results

Evaluations of this study are conducted in terms of model 
classification accuracy, false alarm rate and chip power consumption. 
Experimental setup including graphic user interface (GUI), PCB and 

FPGA test board are designed to facilitate the testing of the proposed 
algorithm and the chip.

4.1 Closed-loop control performance 
evaluation

This paper employs three datasets to assess the performance of the 
proposed model: the American Epilepsy Society Seizure Prediction 
Challenge (AES) intracranial electroencephalogram (iEEG) dataset 
(Brinkmann et  al., 2016), the Melbourne University iEEG dataset 
(Kuhlmann et al., 2018a), and the CHB-MIT electroencephalogram 
(EEG) dataset (Goldberger et al., 2000). The AES dataset comprises 
iEEG recordings collected from five dogs and two human subjects. 
The dog data was sampled at a rate of 400 Hz, with 16 electrodes used 
for four dogs and 15 electrodes for one dog (Dog5). The human 
subjects’ iEEG data were sampled at 5,000 Hz, using 15 electrodes for 
one patient and 24 electrodes for the other patients. The Melbourne 
University dataset, accessible through the Melbourne-University 
AES-MathWorks-NIH Seizure Prediction Challenge, contains iEEG 
signals from three patients. Each patient had 16 electrodes implanted, 
and all measurements were sampled at a frequency of 400 Hz. The 
CHB-MIT dataset comprises EEG data from 22 patients, recorded 
over multiple days, resulting in a total of 637 recordings, including 163 
seizures. Most measurements were obtained using 23 fixed electrodes, 

FIGURE 8

Reconfigure PE to perform different operation, (A) PE configured to perform popcount operation, (B) PE configured to perform booth encoded 
multiplication.
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and the sampling rate for all subjects was 256 Hz. There were variations 
in the data, including the number of seizure events and data length. 
For seizure prediction task, it is essential to consider the Seizure 
Prediction Horizon (SPH) and the Preictal Interval Length (PIL) 
during the data preprocessing stage (Yang and Sawan, 2020; Wang 
et al., 2021). The SPH denotes the time interval between the onset of 
a seizure and the preictal phase, while the PIL quantifies the duration 
of the preictal state. In the case of the two iEEG datasets, we configured 
the SPH and PIL to be 5 min and 1 h, respectively. Conversely, for the 
CHB-MIT EEG dataset, these values were set to 5 and 30 min, 
respectively. In accordance with the specified SPH and PIL parameters, 
the training data is segregated into preictal and interictal samples. To 
address the data imbalance between these two sample types, preictal 
samples are extracted with 5-s overlaps, while interictal samples are 
extracted without any overlaps.

Following the use of the proposed method in Section 2, we can 
obtain a baseline model and quantize the model to 8-bit quantization 
or binary models. The CNN model obtained with CHB-MIT dataset 
is shown in Figure 10. The architecture comprises five convolutional 
blocks, each consisting of a convolutional layer followed by a pooling 
layer. A ReLU activation function is applied after the convolution. 
The output is generated using a global average pooling layer, followed 
by a dense layer applying the Softmax function. The dimensions of 

the convolution and pooling for each layer are also depicted in 
Figure 10.

Due to the difference between sampling rate and number of 
channels, the network architecture can vary based on different dataset. 
Throughout the training process, we employ the leave-one-out cross-
validation method to mitigate the risk of potential overfitting and 
helps ensure the robustness of our model’s performance. Critical 
metrics, including sensitivity, false alarm rate, model size is presented 
in Table  1. Our 8-bit quantization model achieved overall better 
performance when compared with previous reported top-performing 
models in different datasets. The 8-bit model can outperform other 
models in both sensitivity and false alarm rate. Although the binary 
model may not achieve a low false alarm rate comparable to other 
models, it significantly reduces computational and memory demands.

4.2 Chip implementation and performance

Figure  11A illustrates the prototype system designed for 
evaluating the proposed processor. The test system consists of several 
essential components, including an oscilloscope, power supply, a 
testing printed circuit board (PCB) that links the FPGA to the chip, 
and a real-time graphical user interface (GUI) on a desktop computer 

FIGURE 9

Reconfigurable details of PE, (A) intra-PE connection in BNN configuration (B) intra-PE connection in CNN configuration.
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(PC). The PCB is interconnected with the FPGA via the FMC 
interface, and the FPGA communicates with the host PC through the 
PCIe interface. The GUI acts as the control central of the 
demonstration system, enabling various functions such as displaying 
neurological signals, loading instructions and data onto the chip, and 
collecting and presenting real-time calculation results generated by 
the chip. During operation, the GUI retrieves and streams 
electrophysiological signals from the database to the FPGA board via 
the PCIe interface. The FPGA board then executes the PCIe protocol, 
decoding the incoming data to align with the standard sensor interface 
format. Final, the FPGA retrieves the processed data from the chip 
and then these results are displayed on the GUI. Figure 11B displays 
the chip photograph along with its performance summary. The chip 
was fabricated using SMIC 55 nm CMOS technology and occupies an 
area of 2.5 × 2.51 mm2. It can operate within a clock frequency range 
from 300 kHz to 20 MHz and with a supply voltage range of 0.75 to 1.1 
volts. During the seizure prediction task, power consumption 

measures at 142.9 μW with a 300 kHz frequency and 0.75 V supply 
voltage, while it reaches 18.86 mW at a 20 MHz frequency and 1.1 V 
supply voltage. Operating at a frequency of 20 MHz, the energy 
consumption per inference is 3.74 μJ for BNN and 11.8 μJ for 
CNN. When the frequency is reduced to 300 kHz, the energy 
consumption decreases to 0.99 μJ for BNN operations and 1.89 μJ for 
CNN operations. A breakdown of the power distribution for the chip 
is presented in Figure 12. The four reconfigurable cores accounting for 
91.2% of total power consumption. The top RISC, system bus and 
other components contribute to 2.9, 5.9% of the power consumption, 
respectively. The chip achieves peak energy efficiency at 300 kHz and 
0.75 V. Table 2 provides comparison between the proposed chip and 
existing state-of-the-art works. This chip incorporates event-driven 
processing, enabling it to effectively handle biomarker detection with 
low-power consumption. The proposed chip represents the first 
implementation of event-driven processing through a reconfigurable 
design featuring two neural networks for closed-loop 
neuromodulation control.

5 Conclusion

In this paper, we propose an algorithm and integrate circuits 
co-design strategy to close the loop of implantable neuromodulation 
devices. Low memory and computation demand convolutional 
neural network is first searched and compressed with architecture 
search and quantization techniques. The obtained network 
architecture achieves low false alarm rate of 0.1/h and high sensitivity 
while reducing model size about 50% when compared to state-of-
the-art models. A dedicated neural signal processor that can 
implement the networks is designed and fabricated in 55 nm 
technology. With the event-based processing scheme, the chip can 
switch between low-power consumption event detection mode and 
high precision classification mode to maintain both real-time 
performance and low-power consumption. The chip can operate 
under 0.75 V supply voltage and 300 kHz clock frequency with only 
143 μW power. In summary, the proposed algorithm and integrated 
codesign strategy can offer versatility, high accuracy, and outstanding 
energy efficiency to close the loop for neuromodulation applications. 
While our proposed algorithm and integrated co-design strategy 
showcase significant improvement toward energy efficiency and 

FIGURE 10

The obtained network structure based on the constraints and CHB-MIT dataset.

TABLE 1 Comparison with closed-loop control algorithms for seizure 
prediction.

Method Database Sensitivity 
(%)

False 
alarm 

rate(h−1)

Model 
size

Truong et al. 

(2018)

CHB-MIT 81.2 0.16 0.8 MB

AES 75.0 0.21 0.8 MB

Eberlein et al. 

(2018)

CHB-MIT 96.3 0.02 1 MB

AES 91.9 0.10 1 MB

Melbourne 74.0 0.21 1 MB

Lawhern et al. 

(2018) 

(EEGNet-8,2)

CHB-MIT 92.9 0.07 17.8 kB

AES 84.5 0.12 22.3 kB

Melbourne 77.7 0.30 22.3 kB

This work 

(8-bit, CNN)

CHB-MIT 99.6 0.01 23.5 kB

AES 91.8 0.09 20.2 kB

Melbourne 85.2 0.12 15.2 kB

This work 

(1-bit, BNN)

CHB-MIT 99.2 0.81 13.8 kB

AES 98.7 0.94 9.5 kB

Melbourne 95.3 1.4 6.5 kB
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accuracy, we acknowledge challenges such as catastrophic forgetting 
and the need for meta-learning capabilities that warrant further 
investigation in the field of closed-loop neuromodulation. 
Additionally, clinical validation is an essential next step in our 
continued research efforts.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding author.

FIGURE 11

Test system and chip photograph, (A) test system with GUI, FPGA platform and PCB board, (B) microphotograph of the proposed chip.

FIGURE 12

Performance summary and power breakdown of the proposed processor.

TABLE 2 Comparison with closed-loop control algorithms for seizure prediction.

Method This work JSSC’23 (Hsieh et 
al., 2022)

JSSC’2019 (Huang et 
al., 2019)

JSSC’2018 (O’Leary et 
al., 2018)

Technology 55 40 40 130

Area 5.06 1.96 4.5 3.3

On-chip Memory 160 kB 5 kB NA NA

Classifier BNN + CNN SVM SVM SVM

Frequency 300 kHz–20 MHz 6 MHz 130 K, 65 K 10 M

Application Seizure prediction Seizure prediction Seizure detection Seizure detection

Inference consumption 0.99–11.8 μJ 96.2 nJ 170.9 μJ 168.6 μJ

Power consumption 142.9 μW–18.86 mW 2.3 mW 1.9 mW 0.67 mW
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