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Aim: Conventional approaches to diagnosing common eye diseases using 
B-mode ultrasonography are labor-intensive and time-consuming, must 
requiring expert intervention for accuracy. This study aims to address these 
challenges by proposing an intelligence-assisted analysis five-classification 
model for diagnosing common eye diseases using B-mode ultrasound images.

Methods: This research utilizes 2064 B-mode ultrasound images of the eye to 
train a novel model integrating artificial intelligence technology.

Results: The ConvNeXt-L model achieved outstanding performance with an 
accuracy rate of 84.3% and a Kappa value of 80.3%. Across five classifications 
(no obvious abnormality, vitreous opacity, posterior vitreous detachment, retinal 
detachment, and choroidal detachment), the model demonstrated sensitivity 
values of 93.2%, 67.6%, 86.1%, 89.4%, and 81.4%, respectively, and specificity 
values ranging from 94.6% to 98.1%. F1 scores ranged from 71% to 92%, while 
AUC values ranged from 89.7% to 97.8%.

Conclusion: Among various models compared, the ConvNeXt-L model exhibited 
superior performance. It effectively categorizes and visualizes pathological 
changes, providing essential assisted information for ophthalmologists and 
enhancing diagnostic accuracy and efficiency.
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1 Introduction

Eye B-mode ultrasonography is a prevalent medical classification approach employed to 
evaluate eye structures and identify eye diseases. This technique is particularly valuable for 
examining intraocular diseases, especially when obstructions like refractive media opacity or 
lesions situated within the orbit are present (Bates and Goett, 2022). Leveraging ultrasound 
technology, it produces real-time images of internal eye structures and holds extensive clinical 
utility. Diseases such as vitreous opacities, posterior vitreous detachment (PVD), retinal 
detachment, and choroidal detachment represent common eye ailments (Bellows et al., 1981; 
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Ghazi and Green, 2002; Shinar et al., 2011; Gishti et al., 2019; Ryan, 
2021), often discernible through eye B-mode ultrasound images.

Eye B-mode ultrasound image classification traditionally relies on 
the expertise of ophthalmologists. However, an uneven distribution of 
medical professionals across different regions in China presents a 
challenge (Jiao and Wang, 2022). The majority of ophthalmologists are 
concentrated in economically developed eastern coastal areas. 
Consequently, eye B-mode ultrasonography is often conducted by 
medical imaging specialists who may lack the specialized knowledge 
required for accurate interpretation. As a result, misdiagnoses occur 
due to the absence of proficiency in ocular ultrasonography 
interpretation. This underscores the current shortage of skilled 
professionals capable of effectively analyzing B-mode ultrasound 
images, particularly in numerous grassroots hospitals, leading to an 
inability to fulfill the demand for precise image analysis.

Recently, the integration of artificial intelligence (AI) into the 
medical domain has emerged as a prominent research area. Notably, 
machine learning and deep learning techniques have demonstrated 
substantial efficacy in medical diagnostics. Machine learning, 
characterized by the use of manually selected features and algorithms 
for disease identification, has yielded satisfactory outcomes (Rajan 
and Ramesh, 2015; Chowdhury and Banerjee, 2016; Hosoda et al., 
2020; Xu et al., 2020; Kooner et al., 2022; Yang et al., 2023). On the 
other hand, deep learning harnesses convolutional neural networks to 
automatically extract features from images (Mirzania et al., 2021; Ho 
et al., 2022; Xie et al., 2022; Chen et al., 2023; Li et al., 2023). In a study 
by Nagasato et al., a comparison between machine learning and deep 
learning in branch retinal vein occlusion (RVO) detection using ultra-
widefield retinal images revealed that deep learning exhibited superior 
sensitivity and specificity (Nagasato et  al., 2019). This trend has 
consequently spurred numerous researchers to leverage deep learning 
methodologies for the diagnosis of eye diseases.

For instance, Zhu et  al. harnessed machine learning to predict 
changes in spherical equivalent refraction (SER) and axial length (AL) 
in children, yielding impressive R2 values of 89.97% for SER and 75.46% 
for AL prediction (Zhu et al., 2023). Employing a deep learning model, 
Li et al. successfully discriminated between normal fundus images and 
eight prevalent eye diseases, attaining an exceptional area under the 
receiver operating characteristic curve (AUC) of 97.84% (Li et al., 2020). 
In their work, He  et al. proposed a binary classification and 
segmentation model tailored for pterygium diagnosis, achieving a 
remarkable classification accuracy of 99% (Zhu et al., 2022). Meanwhile, 
Chen et  al. devised a deep learning system for swift screening of 
rhegmatogenous retinal detachment (RRD), vitreous detachment (VD), 
and vitreous hemorrhage (VH), culminating in accuracies of 94, 90, 92, 
94, and 0.91% for normal, VD, VH, RD, and other lesions, respectively 
(Chen et al., 2021). Notably, Zheng et al. crafted a common retinal 
disease classification model grounded in ResNet50 architecture using a 
dataset of 2000 fundus images, effectively diagnosing various eye 
diseases except macular degeneration (MD) (Zheng et  al., 2021). 
Moreover, Google’s team, led by Gulshan et al., skillfully trained a deep 
learning model to diagnose diabetic retinopathy (DR) and assign a 
severity grade through fundus images. Their efforts culminated in 
compelling outcomes validated through clinical trials (Ahn et al., 2018).

To tackle the challenge of intelligent assistance in the analysis of 
eye disease B-mode ultrasound images, this study leverages the 
ConvNeXt-L model (Liu et al., 2022) to train a intelligence-assisted 
five-classification framework for common eye diseases. This is the first 
application of the ConvNeXt model in Eye B-mode ultrasound image 

classification for eye diseases. This framework aids non-specialist 
ophthalmologists in conducting preliminary patient diagnoses, 
facilitating the identification of no significant abnormalities and four 
common eye diseases (vitreous opacities, posterior vitreous 
detachment, retinal detachment, choroidal detachment), while also 
conducting visualization analysis. This innovative approach seeks to 
bridge the gap between the substantial patient volume encountered in 
grassroots hospitals and the limited accessibility of specialized 
ophthalmologists. By pursuing this approach, the objective is to 
deliver efficacious services to individuals with eye diseases. The 
subsequent findings are delineated as follows.

2 Materials and methods

2.1 Data source

This study encompassed experiments conducted on a dataset of 
common eye disease B-mode ultrasound images, generously 
contributed by collaborative hospitals. The research conformed to the 
ethical principles outlined in the Helsinki Declaration. To ensure data 
providers’privacy, the study did not impose any restrictions on 
patients’age or gender within the images. A rigorous anonymization 
process was undertaken, eliminating all personally identifiable 
information to uphold patient confidentiality. Consequently, no 
patient demographics are available. The research incorporated a total 
of 2064 images, with 1860 allocated for the training set and 204 for 
the test set, as detailed in Table 1.

2.2 ConvNeXt model

This investigation utilized the ConvNeXt-L model, which was 
pre-trained on the ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) dataset. Leveraging a dataset comprising 1860 images, 
encompassing “No Abnormalities” images alongside four common eye 
disease B-mode ultrasound images, a five-class intelligence-assisted 
diagnostic model for prevalent eye diseases was meticulously trained. 
This adeptly trained model exhibits proficiency in classifying both “No 
Abnormalities” images and the four prevalent eye diseases. 
Furthermore, it employs visualization techniques to unveil focal regions 
within the images, contributing to a comprehensive diagnostic process.

This study incorporated additional well-established deep learning 
classification models, namely ResNet50 (Targ et  al., 2016) and 
EfficientNet-B4 (Tan and Le, 2019). These models principally 
comprise convolutional layers, pooling layers, and fully connected 

TABLE 1 Eye disease B-mode ultrasound image dataset.

Category Training dataset Test dataset

Normal 407 44

Vitreous opacities 291 36

Posterior vitreous 

detachment
351 34

Retinal detachment 427 47

Choroidal detachment 384 43

Total 1860 204
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layers. The ConvNeXt model, a refined iteration of the ResNet-50 
model, is available in distinct versions like ConvNeXt-T, ConvNeXt-S, 
ConvNeXt-B, ConvNeXt-L, and ConvNeXt-XL. Notably, these models 
differ primarily in their network structure’s depth and width.

The foundational structure of the ConvNeXt model encompasses 
convolutional layers, activation layers, and fully connected layers. The 
architecture of the ConvNeXt-L model integrates a 4×4 convolutional 
layer alongside 36 ConvNeXtBlocks of varying sizes. Each 
ConvNeXtBlock comprises three convolutional layers of different 
dimensions, along with LayerNorm, GELU activation, LayerScale, 
and DropPath components. For ConvNeXt-L, input images undergo 
preprocessing and resizing to 192×192 dimensions, derived from eye 
B-mode ultrasound images, culminating in the final five-class 
intelligent diagnostic model. Figure  1 visually outlines the 
architecture of the ConvNeXt-L model.

To enhance the precision of eye disease classification in B-mode 
ultrasonography, this study conducted a comprehensive model 
comparison. The examined models encompassed ResNet50, 
EfficientNet-B4, DeiT3 (Touvron et al., 2022), and Swin Transformer 
V2 (Liu et al., 2022). Notably, ResNet50 and EfficientNet-B4 belong to 
the domain of deep convolutional neural networks, while DeiT3 and 
Swin Transformer V2 adopt attention-based neural network 
architectures. These four models were subjected to experimentation 
using the eye B-mode ultrasound image dataset. Subsequently, the 
most superior-performing model was meticulously identified for the 
accurate classification of eye B-mode ultrasonography diseases.

2.3 Statistical analysis

Statistical analysis was performed using SPSS 27.0 software. 
Firstly, count data was presented in the form of both image numbers 
and percentages. Subsequently, common metrics for diagnosing eye 
diseases, such as sensitivity, specificity, and F1 score, were calculated 
for both normal fundus images and images associated with four 
common diseases. Following this, the receiver operating characteristic 
(ROC) curve was plotted to evaluate the model’s performance. 
Additionally, we employed the kappa statistic to assess the agreement 
between the diagnoses made by expert clinicians and the model’s 
diagnostic results. In this context, the results from the expert clinician 
group were taken as the ground truth, and the kappa statistic was 
utilized to quantify the level of agreement. Typically, a kappa value 
between 0.61 and 0.80 indicates substantial agreement, while a kappa 
value exceeding 0.80 suggests high agreement. Through the 
aforementioned analyses, conclusions regarding the performance and 
consistency of the eye disease diagnostic model can be drawn.

3 Results

3.1 Expert classification results

The study employed 1860 eye B-mode ultrasound images for 
training and 204 images for testing. The image collection format 
remained consistent throughout. Among the entire set of eye B-mode 
ultrasound images, expert clinicians identified 451 as normal, 327 as 
vitreous opacity, 385 as posterior vitreous detachment, 474 as retinal 
detachment, and 427 as choroidal detachment.

3.2 Intelligent-assisted classification results

The confusion matrices for the diagnostic results of the ResNet50, 
EfficientNet-B4, DeiT3, Swin Transformer V2, and ConvNeXt-L 
models can be found in Tables 2–6.

3.3 Evaluation metric results

The evaluation metric results for the five models: ResNet50, 
EfficientNet-B4, DeiT3, Swin Transformer V2, and ConvNeXt-L, are 
presented in Table 7.

3.4 Visualization study

In this research, Grad-CAM (Selvaraju et al., 2017) was harnessed 
to produce visualizations for the ResNet50, EfficientNet-B4, DeiT3, 
Swin Transformer V2, and ConvNeXt-L models, as showcased in 
Figure 2. An observation from the images reveals that ConvNeXt-L’s 
visualization showcases the most accurate annotated regions. In 
comparison, the annotated regions in the visualizations for the 
remaining four models exhibit a slightly lower precision. It’s 
noteworthy that these visualizations for the five models are generated 
through the same algorithm. Consequently, as the overall performance 
of the models advances, the accuracy of the annotated regions in the 
visualizations proportionally improves.

4 Discussion

Eye ultrasonography stands as a pivotal imaging technique for 
evaluating eye and adjacent tissue structures (Elabjer et al., 2017). In 
the realm of ophthalmology, it holds a prominent status as a 
diagnostic imaging approach, offering a secure, non-invasive avenue 
with instantaneous, real-time feedback. Its integration into 
ophthalmic evaluation traces back to the 1950s, spurred by the 
accessibility of eye anatomy (Bangal et al., 2016). Notably, the eye’s 
cystic nature renders it an ideal candidate for ultrasound examination 
facilitated by high-frequency sound waves (Uduma et al., 2019). The 
merits of eye ultrasound examination lie in its attributes of 
non-invasiveness, cost-effectiveness, real-time functionality, and the 
potential for repetition in diagnosing eye pathologies. As a 
consequence, eye ultrasound examination has evolved into an 
indispensable tool, effectively serving the diagnosis and treatment of 
a spectrum of ophthalmic diseases.

As scientific and technological progress continues, the landscape 
of artificial intelligence (AI) is undergoing rapid transformation, 
venturing into uncharted territories. An illustrative example is the 
landmark introduction of AlexNet by Krizhevsky et al. (2012) and 
colleagues, which remarkably outperformed competitors in the 
ImageNet competition. This breakthrough ignited widespread 
fascination with neural networks, laying the groundwork for tackling 
image-related challenges using deep neural networks. This catalyst 
subsequently led to a proliferation of exceptional accomplishments in 
the realm. In 2015, the introduction of ResNet (Simonyan and 
Zisserman, 2014), pioneered by Kaiming He and team, secured a 
triumph in the ImageNet competition, pushing image classification 
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error rates to a remarkable low of 3.6%, even surpassing human 
recognition capacities.

Further fueling progress, Google’s application of the Transformer 
to image classification tasks in 2020 birthed the revolutionary Vision 
Transformer (ViT) model (Dosovitskiy et  al., 2020). Another 

milestone occurred in 2022, with the unveiling of the ConvNeXt 
model by Liu et al. (2022). This innovation drew inspiration from the 
Swin Transformer architecture, achieving advancements by refining 
ResNet50. The ConvNeXt-L variant notably achieved heightened 
performance, boasting an accuracy of 87.8% on ImgNet 22 k. The 

FIGURE 1

The structure of the ConvNeXt model.
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TABLE 2 ResNet50 model classification results.

Normal Vitreous 
opacities

Posterior 
vitreous 

detachment

Retinal 
detachment

Choroidal 
detachment

Normal 41 0 3 0 0

Vitreous opacities 0 25 6 3 2

Posterior vitreous detachment 3 8 23 0 0

Retinal detachment 0 0 2 39 6

Choroidal detachment 0 0 1 9 33

TABLE 3 EfficientNet-B4 model classification results.

Normal Vitreous 
opacities

Posterior 
vitreous 

detachment

Retina 
ldetachment

Choroidal 
detachment

Normal 42 0 2 0 0

Vitreous opacities 0 25 4 3 4

Posterior vitreous detachment 4 12 17 0 1

Retinal detachment 0 0 2 41 4

Choroidal detachment 0 3 0 5 35

TABLE 5 Swin transformer V2 model classification results.

Normal Vitreous 
opacities

Posterior 
vitreous 

detachment

Retina 
ldetachment

Choroidal 
detachment

Normal 42 0 2 0 0

Vitreous opacities 0 26 5 5 0

Posterior vitreous detachment 3 14 16 0 1

Retinal detachment 0 0 1 43 3

Choroidal detachment 0 2 0 8 33

TABLE 4 DeiT3 model classification results.

Normal Vitreous 
opacities

Posterior 
vitreous 

detachment

Retina 
ldetachment

Choroidal 
detachment

Normal 42 0 2 0 0

Vitreous opacities 1 30 4 1 0

Posterior vitreous detachment 4 10 20 0 0

Retinal detachment 0 1 0 42 4

Choroidal detachment 0 1 0 5 37

TABLE 6 ConvNeXt-L model classification results.

Normal Vitreous 
opacities

Posterior 
vitreous 

detachment

Retina 
ldetachment

Choroidal 
detachment

Normal 41 0 3 0 0

Vitreous opacities 0 31 3 1 1

Posterior vitreous detachment 4 7 23 0 0

Retinal detachment 0 1 2 42 2

Choroidal detachment 0 1 0 7 35
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pervasive influence of AI extends across diverse domains, with the 
medical sphere being no exception. Noteworthy instances include 
Zheng et al. (2021), who harnessed 2000 fundus images to devise a 
model employing ResNet50 for classifying common retinal diseases, 
and Zhu et al. (2022), who effectively utilized the EfficientNet-B4 
model for diagnosing a range of retinal diseases, yielding 
promising results.

This study employed five models for experimentation: 
ResNet50, EfficientNet-B4, DeiT3, Swin Transformer V2, and 
ConvNeXt-L. Among them, the ConvNeXt-L model exhibited the 
best classification performance. Several factors could contribute 
to its superior performance over the other four models. Firstly, the 
ConvNeXt-L model ingeniously tweaks the ResNet50 architecture, 
infusing it with design principles inspired by Transformers while 
retaining convolutional layers instead of attention modules. This 

strategic fusion enhances the ConvNeXt-L model’s feature 
extraction capabilities, amplifying its strength in classification. 
Secondly, the ConvNeXt-L model underwent training on the 
ImgNet 22 k dataset, leveraging a pretrained model that was 
subsequently fine-tuned in this investigation. The model’s 
exposure to a diverse array of images during its pretraining phase 
ostensibly influenced its performance boost. The ConvNeXt 
model encompasses an assortment of five versions, namely 
ConvNeXt-T, ConvNeXt-S, ConvNeXt-B, ConvNeXt-L, and 
ConvNeXt-XL. The elemental divergence across these versions 
pertains to the depth and breadth of their network structures. 
Importantly, ConvNeXt-L distinguishes itself with its enhanced 
feature extraction prowess and a relatively streamlined parameter 
count, culminating in expedited execution speeds compared to the 
remaining four variants.

TABLE 7 Evaluation metric results for the five models.

Model Evaluation 
metrics

Normal Vitreous 
opacities

Posterior 
vitreous 

detachment

Retina 
ldetachment

Choroidal 
detachment

ResNet50

Sensitivity 93.2% 67.6% 69.4% 83.0% 76.7%

Specificity 98.1% 92.9% 95.2% 92.4% 95.0%

F1Score 93% 67% 72% 80% 79%

AUC 98.6% 88.9% 91.7% 97.4% 96.7%

Kappa 73.5%

ACC 78.9%

EfficientNet-B4

Sensitivity 95.5% 50.0% 69.4% 87.2% 81.4%

Specificity 98.1% 92.9% 95.0% 92.4% 95.0%

F1Score 93% 67% 72% 80% 79%

AUC 98.6% 88.9% 91.7% 97.4% 96.7%

Kappa 73.5%

ACC 78.9%

DeiT3

Sensitivity 95.5% 58.8% 83.3% 98.0% 97.5%

Specificity 96.9% 96.5% 92.9% 96.2% 97.5%

F1Score 92% 67% 77% 88% 88%

AUC 99.8% 87.5% 94.8% 98.0% 97.5%

Kappa 79.7%

ACC 83.8%

Swin transformer V2

Sensitivity 95.5% 47.1% 72.2% 91.5% 76.7%

Specificity 98.1% 95.3% 90.5% 91.7% 97.5%

F1Score 94% 55% 67% 83% 82%

AUC 99.7% 92.4% 95.1% 98.2% 98.3%

Kappa 72.9%

ACC 78.4

ConvNeXt-L

Sensitivity 93.2% 67.6% 86.1% 89.4% 81.4%

Specificity 97.5% 95.3% 94.6% 94.9% 98.1%

F1 Score 92% 71% 82% 87% 86%

AUC 95.4% 89.7% 95.0% 97.1% 97.8%

Kappa 80.3%

ACC 84.3%
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Using the Grad-CAM method, this study produced visualizations. 
From Figure 2, it can be observed that the ConvNeXt-T model exhibited 
the most optimal performance, with its annotated regions closely 
aligning with those identified by ophthalmologists. Among the 
remaining four models, apart from the DeiT3 model, which exhibited 
a substantial disparity between its visualized annotations and the 
ophthalmologists’ diagnostic regions, the performances were relatively 
comparable to the ConvNeXt-L model’s results. DeiT3’s classification 
performance was not poor; however, the poor visualized annotations 
might be attributed to a misalignment with the Grad-CAM methodology.

In Table 7, the models demonstrated relatively higher sensitivity 
and specificity scores for the diseases of Normal, Retinal Detachment, 
and Choroidal Detachment. However, for the diseases of Vitreous 
Opacity and Posterior Vitreous Detachment, the sensitivity and 
specificity scores were notably lower. This discrepancy arises from the 
models difficulty in distinguishing between Vitreous Opacity and 
Posterior Vitreous Detachment, likely due to the striking similarity of 
pathological regions in these two diseases on eye B-mode ultrasound 
images. The low sensitivity and specificity scores for these two diseases 
can be  attributed to their confusion by the model, which could 
potentially be mitigated by an increased dataset size.

Tables 1–6 collectively demonstrate that these five models are 
capable of diagnosing Normal and the other four common eye 
diseases. However, errors are more prone to occur in the classification 
of the four common eye diseases, particularly Posterior Vitreous 

Detachment versus Vitreous Opacity, and Retinal Detachment versus 
Choroidal Detachment. Therefore, when the model diagnoses any of 
the four diseases apart from Normal, it is recommended for physicians 
to reconsider the diagnosis or for patients to seek further evaluation 
at a higher-level medical institution to prevent misdiagnosis or 
missed diagnosis.

Although, this research does have some limitations. Primarily, the 
model faces challenges in diagnosing detachment of the vitreous from 
the retina and vitreous opacities, as well as the immature application of 
transfer learning on medical imaging datasets. Additionally, there is still 
room for improvement in the model’s interpretability. The model 
frequently confuses Posterior Vitreous Detachment with Vitreous 
Opacity, and Choroidal Detachment with Retinal Detachment. Thus, 
the five-classification model based on ConvNeXt-L is only suitable for 
preliminary diagnosis of common eye diseases. This issue might stem 
from the fact that a single eye B-mode ultrasound image can have 
multiple labels, while the model provides only the most severe diagnosis, 
leading to incorrect results. The accuracy of the model in diagnosing 
Normal and the four common eye diseases ranges from 78 to 84%, 
indicating that the accuracy is not exceptionally high. The slightly lower 
accuracy is mainly due to the limited dataset and the presence of 
multiple labels per image. To elevate accuracy, specificity, and sensitivity, 
strategies like data augmentation, employing Generative Adversarial 
Networks (GANs) for image generation, and expanding the dataset’s 
scope could be harnessed. Due to the incomplete maturity of transfer 

FIGURE 2

B-mode ultrasound images and four common eye diseases, along with visualization results.
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learning in medical imaging datasets, we  will further explore its 
potential on such datasets to enhance the classification accuracy of eye 
diseases. Meanwhile, considering the limitations of model 
interpretability, we plan to adopt ensemble methods to delve into the 
crucial features in the model decision-making process, aiming to further 
improve model interpretability.

5 Conclusion

In conclusion, this study proposes an intelligence-assisted five-
classification model for common eye diseases B-mode ultrasound 
images, focusing on four common eye diseases. The model aims to 
intelligently analyze and visualize images of these four common eye 
diseases. This study employed the ConvNeXt-L model to design an 
intelligence-assisted five-classification model for common eye diseases 
in eye B-mode ultrasound images. This model contributes to the 
enhancement of classification accuracy and timeliness for common 
eye diseases in underdeveloped regions. In the future, this model will 
be  refined to provide more comprehensive assisted classification 
results for patients with eye diseases, thus covering an even broader 
range of eye diseases and adaptable to various scenarios.
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