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Introduction: Shape memory alloy (SMA) actuators are attractive options for 
robotic applications due to their salient features. So far, achieving precise control 
of SMA actuators and applying them to human-robot interaction scenarios 
remains a challenge.

Methods: This paper proposes a novel approach to deal with the control 
problem of a SMA actuator. Departing from conventional mechanism models, 
we attempt to describe this nonlinear plant using a gray-box model, in which 
only the input current and the output displacement are measured. The 
control scheme consists of the model parameters updating and the control 
law calculation. The adaptation algorithm is founded on the multi-innovation 
concept and incorporates a dead-zone weighted factor, aiming to concurrently 
reduce computational complexities and enhance robustness properties. The 
control law is based on a PI controller, the gains of which are designed by the 
pole assignment technique. Theoretical analysis proves that the closed-loop 
performance can be ensured under mild conditions.

Results: The experiments are first conducted through the Beckhoff controller. 
The comparative results suggest that the proposed adaptive PI control strategy 
exhibits broad applicability, particularly under load variations. Subsequently, 
the SMA actuator is designed and incorporated into the hand rehabilitation 
robot. System position tracking experiments and passive rehabilitation training 
experiments for various gestures are then conducted. The experimental 
outcomes demonstrate that the hand rehabilitation robot, utilizing the SMA 
actuator, achieves higher position tracking accuracy and a more stable system 
under the adaptive control strategy proposed in this paper. Simultaneously, 
it successfully accommodates hand rehabilitation movements for multiple 
gestures.

Discussion: The adaptive controller proposed in this paper takes into account 
both the computational complexity of the model and the accuracy of the 
control results, Experimental results not only demonstrate the practicality and 
reliability of the controller but also attest to its potential application in human-
machine interaction within the field of neural rehabilitation.
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1 Introduction

Shape memory alloy (SMA) actuators present numerous 
advantageous features, including excellent volume output ratios, low 
driving voltages, and noiseless and clean actuations (Shi et al., 2017). 
These attributes render SMA actuators appealing choices for 
rehabilitation robotic systems. The inherent shape memory effects of 
SMAs allow them to revert to predefined shapes upon proper heating. 
Nevertheless, these effects introduce nonlinearities, parameter 
uncertainties, and hysteresis into the control problem (Wiest and 
Buckner, 2014). As of now, achieving precise control of SMA actuators 
remains an unresolved and highly relevant challenge, serving as the 
primary motivation for this study.

In the literature, a particularly intuitive approach involves the 
design of controllers based on mechanism models. Romano and 
Tannuri (2009) exemplified this approach by creating a mechanical 
actuator using SMA. The mechanism model, derived from 
experimental setups, encompasses a thermal model, a phase 
transformation model, and a description of the mechanical properties 
and dynamics of the system. Elahinia and Ashrafiuon (2002) developed 
a sliding mode control (SMC) method based on a mechanism model. 
Given that this control law necessitates full state feedback, the extended 
Kalman filter is employed to update the unmeasurable states. In 
Ashrafiuon and Jala (2009), this approach was implemented in a three-
degrees-of-freedom robotic manipulator. Zakerzadeh and Sayyaadi 
(2013) investigated hysteresis behaviors and integrated a feed-forward 
controller into an adaptive controller, relying on the inverse of the 
hysteresis model. Riccardi et  al. (2013) addressed magnetic SMA 
actuators, introducing a novel technique to compensate for hysteresis 
nonlinearity. In a related context, Pai et al. (2017) proposed a force 
control strategy grounded in the mechanism model. Despite the 
contributions, mechanism model-based controllers have limitations: 
(a) the structures of mechanism models are often very complex; (b) 
updating model parameters recursively is quite challenging, and they 
typically remain fixed for online implementation; (c) the inverse 
hysteresis models are also very intricate and lack adaptability.

As an alternative, neural network models have attracted attention 
due to their approximation accuracy and structural flexibility. Tai and 
Ahn (2010) introduced a model for an SMA actuator based on radial 
basis function neural networks, with parameters updated through 
online learning. Nikdel et  al. (2014) compared the neural model 
predictive control method with the SMC approach. In a related 
context, Son and Anh (2015) proposed an adaptive feed-forward 
neural network model to compensate for hysteresis nonlinearity. The 
model proposed by Son and Anh (2015) is constructed by integrating 
multi-layer perceptron neural networks with a linear model. Tai and 
Ahn (2012) combined the advantages of a direct adaptive controller 
with neural network approximations, showcasing effectiveness in 
compensating for hysteresis and ensuring reliable robustness. In a 
related context, Wiest and Buckner (2014) tackled antagonistic SMA 
systems using a hysteretic recurrent neural network. Meanwhile, Pan 
et al. (2017) focused on a novel SMA actuator designed with reduced 
total stiffness and increased compliance. Neural networks are utilized 
to model this nonlinear plant. The effectiveness of the adaptive 
observer-based output-feedback controller in handling load changes 
is demonstrated. However, despite these merits, several key issues still 
need to be addressed: (a) online training of neural networks may face 
challenges associated with local minima; (b) conducting robust 

stability analysis for systems based on neural networks has proven to 
be difficult; (c) controllers based on neural networks often involve 
significant computational complexities and may be impractical for 
specific applications.

On the other hand, the pseudoelasticity and shape memory effect 
(SME) of SMA hold significant application value in neurology and 
neuromuscular rehabilitation applications (Pittaccio et  al., 2015). 
Specifically, pseudoelasticity has been proposed in various studies, 
including limb positioning and gait rehabilitation (Viscuso et al., 2009; 
Deberg et al., 2014; Mataee et al., 2015). In these studies, the adaptability, 
deformability, and nonlinear mechanical properties of SMA are 
considered effective in addressing clinical issues associated with spasticity 
and paralysis. Similarly, SME can provide the foundational characteristics 
for the design of neural rehabilitation devices, including quasi-constant 
stress levels and a larger range of deformation, and these parameters can 
be manipulated through thermomechanical processing for structural 
design and repair (Pittaccio et al., 2015). SME also enables the SMA to 
integrate the sensor with actuator which can simplify the structure 
(Wang et al., 2021). In addition, SMA actuators are frictionless, quiet, 
corrosion-resistant, offer an extended fatigue life, and demonstrate high 
damping and resistivity (Kumbhar et al., 2017; Shariat et al., 2017). These 
characteristics reduce actuator complexity, size, and weight. Therefore, 
several research teams have employed SMA in wearable rehabilitation 
devices and have devised corresponding system control algorithms. 
Serrano et  al. (2018) introduced an SMA-actuated wrist-based 
exoskeleton with a lightweight and comfortable design. Additionally, 
Serrano et al. (2023) developed a flexible exo-glove powered by SMA, 
capable of executing complex gestures. Jeong et al. proposed a wrist 
exoskeleton robot driven by SMA springs, featuring a high contraction 
strain capacity. However, its coil structure is complex, and despite the 
establishment of a complicated thermodynamic model, the accuracy of 
the model remains unsatisfactory (Jeong et al., 2019, 2022). Wang et al. 
(2021) presented a flexible hand motion device powered by SMA wires. 
This device controls the angle of the robot finger joints by adjusting the 
duty cycle of the PWM pulses. However, the study does not delve into 
the robustness considerations of the robot system. Xie et  al. (2023) 
embedded SMA into a conformal material and proposed a hand 
rehabilitation wearable glove actuated by an SMA-based Soft Composite 
Structure (SSCS). This structure is characterized by simple actuation and 
a large force-to-weight ratio. However, its precision in the motion control 
of the hand is noted to be imprecise. Lai et al. (2023) introduced a hybrid 
actuator combining a flexible actuator and an SMA spring actuator, 
integrated into a soft glove. This configuration offers a larger workspace 
and enhanced output force. However, there is potential for improvement 
in the tracking accuracy of the control system and the anti-interference 
capability. Considering the above set of research results, it is clear that 
ensuring model simplicity and improving the accuracy of control results 
are extremely challenging issues. They directly affect the overall control 
effectiveness and practicality of the actuator.

To this end, this paper proposes describing a SMA actuator using 
a gray-box model. This simple model comprises a first-order discrete 
linear model and unmodeled dynamics, leveraging measurements of 
the actuator’s input current and output displacement as data-driven 
components. Only two model parameters are updated online, resulting 
in a low computational burden. To enhance system robustness and 
reject disturbances, a novel identification algorithm with a dead-zone 
weighted factor is introduced. Robust estimation of unmodeled 
dynamics is necessary, as it can be directly compensated by an adaptive 
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control law. In line with the adaptations, the proportional and 
differential gains of the PI control law are updated online based on a 
pre-specified stable characteristic polynomial. The overall adaptive 
control algorithms are explicit and have been successfully implemented 
in both the Beckhoff controller and the embedded system. More 
interestingly, this method proves to be applicable for handling load 
variations and rejecting disturbances. Furthermore, the integration of 
the SMA actuator into the hand rehabilitation robot system allows for 
position tracking experiments and hand rehabilitation training. These 
experiments are conducted based on the data-driven modeling method 
and the robust adaptive control strategy proposed in this paper. The 
most important contribution of this paper is that, oriented to the SMA 
actuator, a comprehensive method of control system design is 
proposed, which takes into account both the model computational 
complexity problem and the control accuracy problem, tries to give a 
more reasonable solution, and makes this adaptive control technology 
effectively applied in the rehabilitation robot system.

This paper is organized as follows: the problem formulation and 
the adaptive controller are proposed in Section 2, the experiments and 
results are presented in Section 3, a brief summary is given in Section 
4, and the closed-loop stability is analyzed in Appendix.

2 Methods

2.1 SMA characteristics

The SME of SMA wires refers to the fact that the unconstrained 
deformed alloy wire material can be restored to its original shape under 
the condition of external temperature change (Airoldi et al., 1991). On a 
microscopic level, the shape memory properties of a SMA wire are 
caused by changes in its own structure. SMA wires have two main crystal 
states, a martensitic phase at low temperatures, when the SMA wires have 
a monoclinic crystal shape inside; The other is the austenite phase at high 
ambient temperatures, when the material exhibits a cubic crystal 
structure internally; In addition to these two states, SMA wires also have 
an R-phase state at intermediate temperatures, when the material has an 
internal monoclinic crystal structure. The essence of SME is the 
migration of highly ordered “militarization” of crystal atoms within the 
SMA wire (Lagoudas and Dimitris, 2008), from monoclinic to cubic 
crystal structure, and the deformation of the SMA wire is achieved by the 
change of countless such microcrystal structures, a process known as the 
martensitic phase transition, as shown in Figure 1.

There are many types of constituent materials of shape memory 
alloy wires, and the different properties of different materials lead to 
differences in the shape memory function of SMAs, and researchers 
have categorized the SME into three types according to the differences 
in the shape memory function: the single-pass memory effect, the 
two-pass memory effect, and the whole-pass memory effect (Wu et al., 
1996). The SMA wires used in this study were dual-range memory 
effect SMA wires. Dual-range SMA wires have a shape memory effect 
when they are deformed and processed, and they change back to their 
original shape when heated to a certain temperature, and then regain 
their length when cooled. Different heat treatments during processing 
also have a great influence on the SMA wires. Figure 2 shows the 
deformation and temperature curves of SMA wires selected with the 
same diameter and phase transition temperatures of 70 and 90°C, 
respectively, in the process of heating and cooling. As depicted in the 
figure, it is evident that the temperature of deformation increases with 
the higher temperature of the heat treatment.

2.2 Gray-box model description

Plenty of research has demonstrated a fact that it is almost impossible 
to precisely capture the nonlinear dynamics of SMA actuators during a 
relatively wide range. An alternative idea to address the unmodeled 
dynamics is to compensate the negative effects in the subsequent control 
problem, rather than copy with it directly in the modeling problem.

In other words, for the modeling aspect of this work, the aim is to 
approximately capture the main dynamic property of this actuator, based 
on a computationally efficient model. Later, the adaptive controller will 
ensure the robust stability despite the unmodeled dynamics.

Let the single-input-single-output SMA actuator be described as 
a discrete-time nonlinear dynamical system in the following form:

  
y t y t y t n u t u t na b+( ) = ( ) … + −( ) ( ) … + −( ) 1 1 1φ , , , , ,

 
(1)

where the system output y(t) is the displacement of the SMA wire 
(unit: m); the system input u(t) is the current signal (unit: A); na and 
nb are unknown system orders; ϕ[⋅] is a nonlinear function. The origin 
can be assumed as an equilibrium point.

FIGURE 1

Microstructural changes in shape memory alloys.
FIGURE 2

Deformation rate of SMA at different phase transition temperatures.
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FIGURE 3

The adaptive PI control scheme.

By using Taylor’s formula around the origin, the nonlinear system 
(Equation 1) can be  equivalently expressed as a first-order linear 
model together with unmodeled dynamics:

 
A z y t B z u t t− −( ) ( ) = ( ) ( ) + ( )1 1 ζ

 
(2)

where A z−( )1  and B z−( )1  are polynomials in the time delay operator 

z e g z u t u t− − ( ) = −( ){ }1 1
1. .  which are defined as:

 
A z a z− −( ) = +1

1
11

 
B z b z− −( ) =1

1
1

where a1 and b1 are the uncertain system parameters; ζ(t) is the 
unmodeled dynamics, which is unknown and varies due to 
temperature changes, load variations or other factors.

The system Equation (2) can be written as a compact form

 y t t tT( ) = ( ) + ( )ϕ θ ζ  
(3)

where the parameter vector θ and the regressor vector φ(t) are defined 
as follows:

  θ = [ ]a b T
1 1,  

(4)

 ϕ t y t u t T( ) = − −( ) −( ) 1 1,  
(5)

Regardless of ζ(t), the prediction model is considered as:

 ( ) ( ) ( )ˆ1 1ϕ θ+ +Ty t t t
 

(6)

with ( )ˆ tθ  defined as the estimation of θ:

  ( ) ( ) ( )1 1̂ˆ ˆ ,
T

t a t b tθ  =    
(7)

We can approximately capture the main dynamic property  
of the nonlinear plant by the discrete linear model  
(Equation 6). Inevitably, there exist modeling errors based on this 
simple model. But it will be  proved in the Appendix that the 
unmodeled dynamics can be  compensated by the proposed 
PI controller.

2.3 An adaptive control strategy

The utilized PI controller is written as:

 u t u t k t t k tP I( ) = −( ) + ( ) − −( )  + ( )1 1ε ε ε  
(8)

where kp and kI are the proportional and integral gains, and 
ε t y t y t( ) = ( ) − ( )∗  with y t∗ ( ) defined as the reference.

It is desired that the system output tracks the reference,  
and the robust stability is ensured under uncertainties. The adaptive 
PI control scheme is briefly depicted in Figure 3, which consists of 
online parameter adaptation and control law calculation.

2.3.1 Control law for deterministic systems
The above control law can be written in the following form:

 
H z u t G z t− −( ) ( ) = ( ) ( )1 1 ε

 
(9)

where H z h z− −( ) = −( )1 11  and G z g g z− −( ) = +1
0 1

1. Note that the 
proportional and differential gains in Equation (8) are chosen by the 
following relation Equation (10).

 

k k g
h

k g
h

P I

P

+ =

− =










0

1

 

(10)

An effective technique to design the polynomials H z−( )1  and 
G z−( )1  is based on the pole assignment concept (Goodwin and 
Sin, 1984).

Applying the controller Equation (8) and combining Equation (3) 
with Equation (9) yield the closed-loop Equation (11).

  

A z H z B z G z y t

B z G z y t

− − − −

− − ∗

( ) ( ) + ( ) ( )





+( )

= ( ) ( ) ( )

1 1 1 1

1 1

1

   ++ ( ) ( )−H z t1 ζ
 

(11)

Let the closed-loop characteristic polynomial be  defined as 
T z t t z t z− − −( ) = + +1

0 1
1

2
2, which has stable poles.

When A z−( )1  and B z−( )1  are completely known, to ensure the 
closed-loop stability, the polynomials H z−( )1  and G z−( )1  should 
be designed based on:
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T z A z H z B z G z− − − − −( ) = ( ) ( ) + ( ) ( )1 1 1 1 1

 (12)

From Equations (2), (9), and (12), the coefficients are:

 
h t g t t a t

b
g t a t

b
= =

+ −
=

+
0 0

1 0 1 0

1
1

2 1 0

1

, ,
 

(13)

Further based on Equation (10), the proportional and differential 
gains kp and kI are designed as follows:

 
k t a t

b t
k t t t

b tP I= −
+

=
+ +2 1 0

1 0

1 2 0

1 0

,
 

(14)

The above analysis is carried out based on the deterministic 
model. However, such an assumption is unrealistic for the SMA 
actuator. Actually, the parameters a1 and b1 of the gray-box model are 
uncertain, and it is difficult to offline choose fixed and appropriate kp 
and kI to ensure the closed-loop stability during the whole operating 
range. A more reasonable treatment seems to estimate A z−( )1  and 
B z−( )1  recursively, to update H z−( )1  and G z−( )1  online, and then to 
calculate kp and kI.

2.3.2 Online adaptation algorithm
This subsection presents an online adaptation algorithm for 

uncertain parameters. Recursive least squares (RLS) algorithm has a 
fast convergence rate. However, it has high computational 
complexities, especially when it is applied to the Beckhoff IPC 
programming. On the other hand, recursive stochastic gradient (RSG) 
algorithm is more favorable to model adaptations, but it leads to a 
much slower convergence rate. To this end, a novel recursive estimator 
will be introduced, which has a similar form as the RSG algorithm, but 
possesses a similar convergence rate as the RLS algorithm.

The parameter identification will be  carried out based on 
Equation (3). We first impose an assumption on this system.

Assumption 1: The unmodeled dynamics ζ(t) satisfies

  ζ t( ) ≤ ∆ 
(15)

where the bound Δ is user-designed.

Remark 1: This condition is commonly used to improve the 
robustness performance (Goodwin and Sin, 1984). The 
unmodeled dynamics can be treated as a bounded disturbance, 
and the parameter estimation can reject some continuous 
perturbations. The bound Δ is easy to design according to the 
control performance.

Then the uncertain parameter estimation vector ( )ˆ tθ  can 
be  updated by the following modified recursive multi-innovation 
stochastic gradient identification algorithm (Zhang et al., 2008) with 
a novel dead-zone weighted factor:

  E t e t e t e t p T( ) = ( ) −( ) … − +( ) , , ,1 1  
(16)

 Φ t t t t p( ) = ( ) −( ) … − +( ) ϕ ϕ ϕ, , ,1 1  
(17)

 ( ) ( ) ( ) ( )ˆ 1Te t y t t tϕ θ= − −
 

(18)

 
( ) ( ) ( ) 2

21r t r t t= − + Φ
 

(19)

 

( ) ( ) ( ) 2
2

1 ,if

0,otherwise

p
E t p

t E tλ
 ∆
− > ∆= 


  

(20)

 
( ) ( ) ( ) ( ) ( )

( )
ˆ ˆ 1

t t E t
t t

r t
ελ

θθ
Φ

= − +
 

(21)

where p is the dimension of the extended signals, which is designed 
by the user; r(0)=1; e(t) is the model error; E(t) is the extended model 
error; Φ(t) is the extended regressor vector; λ(t) is a nonnegative 
weighted factor; ε is a user-designed adaptation gain and satisfies 0 < 
ε ≤ 2 (Lemma 1 will explain the reason).

Remark 2: It is seen that when p = 1, the algorithm becomes a 
RSG one. Ding and Chen (2006) proved that when p increases, 
the convergence rate of a multi-innovation-based 
identification algorithm tends to an RLS one. To make a 
tradeoff between the convergence rate and the computational 
complexities, we  will select p = 3. More interestingly, the 
update of each parameter can be separated and written in one 
dimensional form, such as 

( ) ( ) ( ) ( ) ( ) ( )2
1 1 0
ˆ ˆ 1 1 / .na t a t y t n e t n t r tελ=

 = − − − − − ⋅  ∑

2.3.3 Control law update
Based on Equation (7), the estimated polynomials at instant t can 

be defined as:

 
( ) ( )1 1

1ˆ ˆ, 1A t z a t z− −= +
 

(22)

  
( ) ( )1 1

1̂ˆ ,B t z b t z− −=
 

(23)

In order to adaptively design the proportional and differential 
gains kp and kI for the PI control Equation (8), a modified relationship 
is as follows:

 
( ) ( ) ( ) ( )1 1ˆˆ , , ε− −=H t z u t G t z t

 
(24)

where ( )1ˆ , −H t z  and ( )1ˆ , −G t z  are used in place of H z−( )1  and 
G z−( )1 . These two polynomials are defined as:

 
( ) ( )( )1 1ˆˆ , 1− −= −H t z h t z

 
(25)

 
( ) ( ) ( )1 1

0 1ˆ ˆ ˆ,G t z g t g t z− −= +
 

(26)

https://doi.org/10.3389/fnins.2024.1337580
https://www.frontiersin.org


Shi et al. 10.3389/fnins.2024.1337580

Frontiers in Neuroscience 06 frontiersin.org

It is desired that the polynomials ( )1ˆ , −H t z  and ( )1ˆ , −G t z  satisfy 
the following relation:

 
( ) ( ) ( ) ( ) ( )1 1 1 1 1ˆ ˆˆ ˆ, , , ,− − − − −= +T z A t z H t z B t z G t z

 
(27)

where T z t t z t z− − −( ) = + +1
0 1

1
2

2  is a pre-specified characteristic 
polynomial with stable poles.

Now that the estimates ( )1̂a t  and ( )1̂b t  are obtained, then the 
coefficients ( )ĥ t , ( )0ĝ t , and ( )1ĝ t  can be updated based on the 
relation Equation (28):

 
( ) ( ) ( )

( )
( ) ( )

( )
1 0 1 0 2 1 0

0 0 1
1 1

ˆ ˆˆ ˆ ˆ,  ,  ˆ ˆ
t t a t t t a t t

h t t g t g t
b t b t

+ − +
= = =

 
(28)

Similar to Equation (10), now the proportional and differential 
gains in Equation (8) are chosen by the following relation:

 

( )
( )
( )
( )

0

1

ˆ
ˆ

ˆ
ˆ

P I

P

g t
k k

h t

g t
k

h t


+ =



 − =
  

(29)

which means that kp and kI should be designed as:

 

( )
( ) ( )

2 1 0 1 2 0

1 0 1 0

ˆ
,  ˆ ˆP I

t a t t t t tk k
b t t b t t
+ + +

= − =
 

(30)

From Equation (30), it is found that ( )1̂b t  appears in the 
denominator. In order to ensure the smoothness of the control law, 
we impose a constrain on ( )1̂b t :

 
( ) ( )

( )
1

1
1

ˆ
ˆ

ˆ
b b b

b
b

if t
t

t else

 ≤= 


 

 
(31)

where b


 is a pre-specified upper bound. It is noted that such 
treatment has no negative effect on the convergence or stability 
properties (Chen et al., 2001).

The proposed PI controller can be implemented as follows:
Step 1: Update ( )1̂a t  and ( )1̂b t  by Equations (16)–(21);
Step 2: Calculate ( )ĥ t , ( )0ĝ t  and ( )1ĝ t  by Equation (28);
Step 3: Calculate kp and kI by Equation (30);
Step 4: Calculate u(t) by Equation (8);
Step 5: Let t =t + 1 and apply u(t) to the plant.

2.4 Human–robot interaction control 
framework

The integration of voluntary participation and mechanical 
assistance in robot-assisted rehabilitation for hand rehabilitation is 
also crucial. Therefore, a SMA actuator-based rehabilitation robotic 
system is needed to not only perform motion-guided training for 
functional rehabilitation of patients with impaired hand function, but 

also to assist and collaborate with the patient’s preserved motor 
abilities to achieve on-demand assistance. Therefore, collaboration 
and interaction between the patient and the rehabilitation robot 
during human–robot interaction is a major challenge for the control 
system. To address this challenge, we  plan to propose a fusion 
human–robot-environment interaction control framework that 
incorporates multi-level control research techniques. The framework 
for human–robot-environment cohesive interaction control strategy 
is shown in Figure 4.

The intention for motion is generated by the user themselves, 
requiring the recognition of human intent. User states include the 
body’s posture, velocity, and the physical interactions between the user, 
environment, and devices. The external environment comprises spatial 
features and terrain, which the controller can also perceive and take into 
consideration. At the high level, the controller needs to perceive human 
intent, recognize mental thoughts, and perform pattern recognition for 
gesture activities such as clenching fists or bending fingers. In the 
mid-level, the user’s intent is translated into the desired state of the 
device by adjusting controller gains, switching models, or tuning model 
parameters. At the low level, the device’s controller and specific control 
algorithms are responsible for realizing the desired device state and 
achieving compliant motion control of the hand rehabilitation robot. 
Finally, the SMA actuators-based hand rehabilitation robot executes 
control commands to achieve hand rehabilitation for the user. The hand 
rehabilitation robot system could also provide artificial sensory 
feedback in combination with pre-set electrical stimulation, etc.

In the research conducted in this paper, our proposed adaptive 
control method focuses on robust adaptive control at the low level 
controller of the SMA actuator-based hand rehabilitation robots. This 
method ensures stability and practicality during human–robot 
interactions. The experimental verification process will be presented in 
the following sections. It is worth pointing out that in our proposed 
control framework for human–robot interaction, the research methods 
related to mid-level and high-level control are already relatively 
mature. For instance, our research team has proposed a continuous 
estimation method for upper limb multi-joint motions based on sEMG 
(Ding et al., 2016). Moreover, deep learning has recently been widely 
applied in sEMG signal recognition and gesture classification (Xiong 
et al., 2021). In addition, some research teams have proposed methods 
for electrode shifts estimation and adaptive correction, applying them 
to enhance the robustness of sEMG recognition in hand rehabilitation 
processes (Li et al., 2020). Besides, a benchmark dataset of sEMG in 
non-ideal conditions (SeNic) has also been introduced to investigate 
the robustness of gesture recognition based on surface 
electromyographic signals in practical applications (Zhu et al., 2022). 
In summary, extensive research has been conducted on mid-level and 
high-level control for hand neurorehabilitation. Therefore, due to space 
constraints, we will not elaborate further on this aspect.

3 Experiments and results

3.1 Experimental validation on the SMA 
actuator-based platform

3.1.1 The experimental set-up
The experimental platform diagram of the SMA actuator is 

depicted in Figure  5, and the experimental set-up is presented in 
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Figure 6. The structure of this SMA actuated system is similar to the 
one in Romano and Tannuri (2009) but without a cooling device. The 
SMA wire is the Flexinol actuator wire which is produced by Dynalloy, 
Inc. For this type of wire, the diameter is 0.25 mm, the length is 
340 mm, the deformations are up to about 4%, and the Austenite start 
temperature is 90°C. In this experiment, the system output is the 
displacement (unit: m) and the input signal is the current (unit: A), 
which is constrained to the range 0 ~ 0.4. The control current applied 
to the SMA actuator is obtained from a V/I converter. The SMA wire 
then generates significant strains in response to the temperature 
changes caused by the current heating effect. The displacement of the 
SMA wire is measured by a high precision encoder. The Beckhoff 
EtherCAT terminals are used for the transformation and conversion of 
data, and the sample frequency is 200 Hz. The load is fixed as 500 g for 
the set-point tracking experiment, but varies for the other experiments.

To describe this nonlinear plant, two groups of models have been 
considered in previous studies (Nikdel et al., 2014; Pai et al., 2017; Pan 
et al., 2017), namely, mechanism models or neural networks models. 
However, there exist some inevitable drawbacks in each group. The 
objective of this work is to find an alternative way to simultaneously 
address the computational burden and the unmodeled 
dynamics issues.

3.1.2 PI controllers design
The proposed adaptive PI controller is applied to this plant. Before 

the control implementation, some offline identifications have been 
carried out in the Matlab software. The purpose of the offline 
procedure is to probe the main dynamic properties of this nonlinear 

FIGURE 4

A framework for human–robot-environment interaction control strategy.

FIGURE 5

The experimental platform diagram of the SMA actuator.

FIGURE 6

The experimental set-up of the SMA actuated system.

https://doi.org/10.3389/fnins.2024.1337580
https://www.frontiersin.org


Shi et al. 10.3389/fnins.2024.1337580

Frontiers in Neuroscience 08 frontiersin.org

plant. Based on some groups of input–output data around different 
operating points, an RLS algorithm is used to identify the parameters 
of the model Equation (6). Then some groups of convergent parameter 
estimates are obtained. Based on these estimates and other input–
output data, we  have also conducted the model test experiment. 
Finally, the best prediction model is selected as y(t + 1) = 0.9923 y(t) 
+ 0.001 u(t). Meanwhile, the obtained results are used as initial 
conditions for the controller design. For the proposed PI control 
method, the initialization is ( ) [ ]0 0.9923,0.001ˆ Tθ = − , the multi-
innovation length is p = 3, the gain is ε = 1, the bound is Δ = 0.00012, 
the characteristic polynomial is pre-specified as 
T z z z− − −( ) = − +1 1 2

1 1 44 0 445. . , and the constrain is 0.001b =


.
As a comparison, the conventional fixed-gains PI controller is 

applied to this plant as well. The proportional and differential gains kp 
and kI are pre-specified as kp = 500 and kp = 5.

3.1.3 Set-point tracking
The load is fixed as 500 g in this test. Sinusoidal trajectory and 

square-wave trajectory are both considered. The set-point tracking 
results of these methods are shown in Figures 7, 8.

The performance of the adaptive PI controller is better than the 
conventional PI one, especially for the milder control input. It is 
obvious that the adaptive PI controller can accurately track the 
reference trajectory with a slowly changing reference trajectory. In 
addition, the overshoot and oscillation of the adaptive PI controller 
are more satisfactory. Interestingly, the unmodeled dynamics has been 
gradually compensated by the adaptive PI controller, which can verify 
Theorem 1 in Appendix.

3.1.4 Load variations
An additional load with 200 g is imposed on this actuator at 90th 

second, and removed at 105th second. Another heavier load with 300 g 
is added at 120th second, and removed at 135th second. The regulation 
results are shown in Figures 9, 10.

The conventional PI controller leads to unattractive results under 
uncertainties induced by load variations. Worse still, the system 
becomes unstable after 135th second. Obviously, thanks to the online 
adaptation, the adaptive PI controller can ensure satisfactory robust 
stability despite of severe uncertainties.

3.1.5 Disturbance rejection
We further test the disturbance rejection ability. An unknown 

instantaneous vertical force is suddenly imposed on the load at 160th 
second, and then an unknown instantaneous lateral force is suddenly 

FIGURE 7

Set-point tracking results by the conventional PI scheme.

FIGURE 8

Set-point tracking results by the adaptive PI scheme.

FIGURE 9

Regulation results under load variations by the conventional PI 
scheme.
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added at 175th second. The disturbance rejection result of the 
proposed adaptive PI controller is shown in Figure 11.

The result shows that the proposed adaptive PI controller is 
reliable under non-Gaussian stochastic noise, which is ensured by the 
dead-zone weighted factor Equation (20). Though the control input 
varies a lot, the system output stays within a small region.

3.1.6 Summary
For robotic applications, plenty of issues (i.e., modeling error, load 

variations and stochastic noise) may cause uncertainties. The proposed 

adaptive PI controller can address these issues in a computationally 
efficient manner. During the whole operation, the proportional and 
differential gains kp and kI are updated according to the current 
working conditions, as shown in Figure 12. Most interestingly, it is 
seen that when the system suffers from severe uncertainties, especially 
around 135th and 160th seconds, the updated gains can address the 
negative effects timely.

3.2 Experiments on SMA actuator-based 
hand rehabilitation robot system

3.2.1 The experimental set-up
After verifying the driving principle of SMA and the proposed 

adaptive PI control algorithm, we designed an actuator mechanism 
based on SMA and integrated it into a hand rehabilitation robot system 
to form an SMA-based hand rehabilitation robot system platform, 
which is suitable for hand rehabilitation training of hemiplegic patients. 
In this hand rehabilitation robot, each finger is controlled by an 
individual SMA actuator, and the entire robot comprises five identical 
SMA actuators. The SMA actuator is primarily comprised of six 
components, as shown in the left part of Figure 13A. This includes the 
installation of a pulley device on the main plate of the actuator, winding 
a shape memory alloy wire around the pulley, connecting the shape 
memory alloy wire to the output wire and the preloaded pulley through 
connecting members, and incorporating a wiring mechanism on the 
actuator’s main plate for ease of wiring. Additionally, a displacement 
feedback mechanism is established to enhance control over the shape 
memory alloy wire. A prototype SMA actuator was fabricated and 
assembled using 3D printing technology, as shown in the right part of 
Figure 13A. To prevent short-circuiting of the wiring mechanism with 
the shape memory alloy filament, a layer of Teflon tape with insulating 
and high-temperature-resistant properties was applied to the copper 
sheet of the wiring mechanism.

After the hand rehabilitation robot system based on SMA actuator 
is built, the movement of the hand rehabilitation robot is controlled in 

FIGURE 10

Regulation results under load variations by the adaptive PI scheme.

FIGURE 11

Regulation results under non-Gaussian by the adaptive PI scheme.

FIGURE 12

The online updates of the proportional and differential gains.
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the form of sending commands from the upper computer to the lower 
computer, so as to assist the patient in rehabilitation training. The 
framework of the hardware system is shown in Figure 13B.

3.2.2 Position tracking experiments of hand 
rehabilitation robot system based on adaptive PI 
control

In this subsection, the control core utilizes the Raspberry Pi, and 
the SMA is subjected to heating signals dispatched to the controller, 
causing it to contract and deform, thereby propelling the movement 
of the rehabilitation hand. In this experiment, the SMA actuator of the 
index finger part of the hand rehabilitation robot is selected as the 
control object, and based on the adaptive PI control algorithm 
proposed in this paper to track the position response curve of the 
SMA actuator under the step signal as well as the sinusoidal signal. For 
comparative analysis, the PID control law (Khalil, 1996) is utilized as 
a reference algorithm. Meanwhile, in order to be  able to visually 
compare and analyze the control effects of the two control algorithms, 
the errors of the SMA actuator-based hand rehabilitation robotic 
system will be compared when it reaches the steady state under the 
two control algorithms, respectively. The actual results of the robot 
system tracking the step and sinusoidal signals and the steady state 
error results are shown in Figure 14.

From the experimental results in Figure 14A, it can be seen that 
under the adaptive PI control algorithm, the desired value of the hand 
rehabilitation robot system is set to 4 mm at 2 s, and the system 
responds at 2.4 s, reaches the desired position at about 3 s, and 
maintains stability thereafter, with almost no deviation. Meanwhile, 
the response times of the two control algorithms are basically the 
same, but the hand rehabilitation robotic system does not produce 
overshooting and has a smaller steady state error when the step signal 
is tracked under the adaptive PI control algorithm. Consequently, for 
reference trajectories represented by step signals, the hand 
rehabilitation robot system demonstrates superior control 
performance under the adaptive PI control algorithm proposed in 
this paper. Examining the experimental outcomes in Figure 14B, it is 

observed that the hand rehabilitation robotic system adeptly tracks 
sinusoidal signals. While the response times of the SMA actuator 
system remain consistent under both algorithms, the adaptive PI 
algorithm proposed in this paper achieves more accurate position 
tracking with less error when tracking sinusoidal signals. Thus, for 
various signal amplitudes, the methodology presented in this paper 
enables the SMA actuator-based hand rehabilitation robotic system 
to approach the target position with reduced overshooting and a 
smaller steady-state error. These experiments substantiate the 
reliability and accuracy of the proposed methodology, affirming the 
safety of the SMA actuator-based hand rehabilitation robot in 
assisting subjects during the rehabilitation training process.

3.2.3 Experiments on hand rehabilitation training 
with different gestures

We oriented the SMA actuator-based hand rehabilitation robotic 
system platform to conduct the hand passive rehabilitation training 
experiments on subjects with different gestures, and the training 
process is shown in Figure 15. The hand rehabilitation exercises are 
divided into five movements, which are thumb extension/flexion, 
index extension/flexion, index and middle finger extension/flexion, 
three fingers extension/flexion and hand open/close. During the hand 
gesture rehabilitation training experiment with the SMA actuator-
based hand rehabilitation robot system, a complete single flexion-
extension training cycle takes a total of 12 s. Throughout this process, 
spanning from 0 to 4 s, the SMA contracts upon heating and powering, 
propelling the fingers to their maximum extended position. 
Subsequently, from 4 to 12 s, the SMA undergoes cooling facilitated 
by a fan on the outer shell of the hand rehabilitation robot, causing the 
hand to return to its initial state. Importantly, this mechanism satisfies 
the requirements of passive rehabilitation training for multiple 
gestures in patients with hand hemiplegia, demonstrating an optimal 
control effect. This experiment effectively establishes the reliability and 
precision of the SMA actuator-based hand rehabilitation robotic 
system for subject-specific rehabilitation training under the adaptive 
PI control strategy. It is worth noting that, due to space limitations, 

FIGURE 13

Hand rehabilitation robotic system based on SMA actuator. (A) SMA actuator structure diagram: 1- Connection, 2- SMA Wires, 3- Actuator body plate, 
4- Pulley mechanism, 5- Wiring mechanism, 6- Displacement feedback mechanism. (B) System hardware integration framework for hand 
rehabilitation robot.
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our experiments only focused on the low-level robust adaptive control 
of hand rehabilitation robots based on SMA actuators. We did not 
conduct experiments related to neural rehabilitation control involving 
mid-level and high-level controllers. This aspect will be addressed in 
our future research.

4 Discussion and conclusion

This paper presents an innovative adaptive PI control strategy 
tailored for SMA actuators. Utilizing a simplified gray-box model, the 
primary dynamic properties of the plant are approximated. An 
efficient adaptive algorithm is then introduced to iteratively update 
the model parameters. Subsequently, a PI control law is proposed, 
with gains calculated through the pole assignment technique, 
ensuring closed-loop stability under mild conditions. Notably, the 
strategy exhibits robustness, particularly in the face of load variations 
and continuous disturbances. The proposed adaptive control 
algorithm is well-defined and has been initially experimentally 
validated on a Beckhoff controller. Finally, the SMA actuator is 
designed, fabricated and integrated into a hand rehabilitation robot 
system, and the position tracking experiments of the SMA actuator 
based on the proposed adaptive PI control strategy are conducted to 
verify the stability and accuracy of the proposed control algorithm. 
Meanwhile, rehabilitation training for several different gestures was 
conducted for subjects to verify the reliability of the hand 
rehabilitation robot system based on the SMA actuator.

From another perspective, the control method proposed in this 
paper exhibits closed-loop stability. Additionally, it is based on several 
foundational assumptions and theorems, as mentioned in 
Equation (15) and Theorem 1. The assumption in Equation (15) 
implies treating unmodeled dynamics as bounded disturbances, and 
parameter estimation can reject certain continuous disturbances. 
From the practical application standpoint in the field of hand 
rehabilitation robotics, disturbances within bounds refer to slow 
temperature changes in the rehabilitation environment or subtle 
vibrations in the load. Disturbances beyond bounds refer to severe 
shaking of the load or significant parameter drift. Furthermore, 
regarding Equation (A20) in Theorem 1, in actual rehabilitation 
scenarios, especially in hand rehabilitation, the rehabilitation goals 
and environment are relatively stable systems not subject to large-scale 
fluctuations. Therefore, Equation (A20) is satisfied according to the 
practical needs of rehabilitation. For Equation (A21), in practical 
applications, for the safety of patients, the reference trajectory of 
rehabilitation equipment changes slowly and has a small range during 
the hand rehabilitation process. Therefore, we  believe that 
(Equation A21) can be satisfied in practical applications. In summary, 
from the perspective of practical applications in the rehabilitation 
field, our system complies with Theorem 1, demonstrating rationality 
and reliability.

For control issues of SMA actuators, the systematic method 
derived in this work probably is the simplest adaptive controller so far, 
which takes into account the model computational complexity as well 
as the accuracy of the control results, and the controller has good 

FIGURE 14

(A) Position tracking result and system steady state error for step signal tracking. (B) Position tracking result and system steady state error for and 
sinusoidal signal tracking.
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practicability and reliability. In the future, we  expect that the 
theoretical achievements we have obtained can be further applied to 
a broader range of rehabilitation robotic devices.
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