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We present a Python library (Phybers) for analyzing brain tractography data.

Tractography datasets contain streamlines (also called fibers) composed of

3D points representing the main white matter pathways. Several algorithms

have been proposed to analyze this data, including clustering, segmentation,

and visualization methods. The manipulation of tractography data is not

straightforward due to the geometrical complexity of the streamlines, the file

format, and the size of the datasets, which may contain millions of fibers.

Hence, we collected and structured state-of-the-art methods for the analysis of

tractography and packed them into a Python library, to integrate and share tools

for tractography analysis. Due to the high computational requirements, the most

demanding modules were implemented in C/C++. Available functions include

brain Bundle Segmentation (FiberSeg), Hierarchical Fiber Clustering (HClust),

Fast Fiber Clustering (FFClust), normalization to a reference coordinate system,

fiber sampling, calculation of intersection between sets of brain fibers, tools for

cluster filtering, calculation of measures from clusters, and fiber visualization.

The library tools were structured into four principal modules: Segmentation,

Clustering, Utils, and Visualization (Fibervis). Phybers is freely available on a

GitHub repository under the GNU public license for non-commercial use

and open-source development, which provides sample data and extensive

documentation. In addition, the library can be easily installed on both Windows

and Ubuntu operating systems through the pip library.

KEYWORDS

di�usionMRI, tractography, python,whitematter segmentation, fiber clustering, bundle

atlas

1 Introduction

Structural brain connectivity can be studied using Diffusion Magnetic Resonance

Imaging (dMRI), (Le Bihan and Breton, 1985). This is a non-invasive, in vivo

technique that provides microscopic-scale information on brain white matter (WM) by

measuring the movement of water molecules in brain tissues. Using diffusion local model

reconstruction (Basser et al., 1994; Tuch, 2004; Wedeen et al., 2005; Tournier et al., 2007;

Yeh et al., 2010; Fick et al., 2019) and tractography algorithms on dMRI data (Basser et al.,

2000; Malcolm et al., 2010; Smith et al., 2012; Tournier et al., 2012; Wasserthal et al., 2019),

it is possible to calculate the main trajectory of 3-dimensional (3D) WM fascicles as a set

of 3D polylines. These sets of streamlines, for simplicity, are also known as “fibers” even

though they do not represent single axons.
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Over the years, the tools for analyzing tractography datasets

have evolved along with improvements in MRI equipment

and reconstruction, and tractography algorithms. Today, brain

tractography data are quite complex, containing long and short

fibers, as well as noise, and intricate geometrical configurations.

In addition, these datasets can contain several million fibers

for probabilistic tractography, yielding additional computational

requirements, especially when performing multi-subject analysis.

This is why there are numerous tractography data analysis

algorithms that seek to cluster (O’Donnell et al., 2006; Garyfallidis

et al., 2012; Siless et al., 2018; Vázquez et al., 2020; Chen et al., 2023),

identify patterns (Guevara et al., 2012, 2017; Kumar and Desrosiers,

2016; Román et al., 2017), segment (Donnell and Westin, 2007;

Wassermann et al., 2016; Labra et al., 2017; Garyfallidis et al.,

2018; Wasserthal et al., 2018; Zhang et al., 2020a; Vindas et al.,

2023), filter (Garyfallidis et al., 2014;Mendoza et al., 2021), visualize

(Wang et al., 2007; Riviére et al., 2011; Garyfallidis et al., 2014;

Chamberland et al., 2015; Norton et al., 2017; Tournier et al., 2019;

Zhang et al., 2020b; Franke et al., 2021), and calculate measures

on these data (Yeh et al., 2013; Garyfallidis et al., 2014). Due to

the complexity of tractography data, the algorithms are usually

difficult to use and require a deep understanding of the file formats,

input parameters, and results. Hence, to simplify and promote its

use, several groups have created and distributed software packages

for the processing of dMRI images. Such tools include algorithms

for different stages of the dMRI processing pipeline, from image

distortion correction to tractography analysis. The final goal is to

have methods for the processing of tractography data, for a better

description of WM fibers based on high-quality data (Zhang et al.,

2018; Radwan et al., 2022; Román et al., 2022) and the study ofWM

microstructure on healthy subjects (Lebel et al., 2019; Li et al., 2020;

Schilling et al., 2021; Zekelman et al., 2022) and pathological brains

(O’Donnell et al., 2017; Zhao et al., 2017; Goldsmith et al., 2018;

Mito et al., 2018; Roy et al., 2020; Buyukturkoglu et al., 2022).

There are a wide variety of tools available for the processing of

dMRI data. Tables 1, 2 summarize and describe the main software

packages used by the medical imaging research community. The

table lists the main features and functionalities of the tools, such

as programming language, operating system (OS), distribution

license, dMRI format, tractography format, diffusion-weighted

(DW) model reconstruction, fiber tracking, fiber clustering, bundle

segmentation, visualization, and calculation of fiber measures.

The software considered are: BrainSUITE (Shattuck and Leahy,

2002), Camino (Cook et al., 2006), Diffusion toolkit (Wang et al.,

2007), ExploreDTI (Leemans et al., 2009), FSL (Smith et al.,

2004; Woolrich et al., 2009; Jenkinson et al., 2012), MRtrix

(Tournier et al., 2019), Freesurfer (Fischl, 2012), DSI Studio (Yeh

et al., 2013), Dipy (Garyfallidis et al., 2014), DiffusionKit (Xie

et al., 2016), and SlicerDMRI (Norton et al., 2017; Zhang et al.,

2020b).

As shown in Tables 1, 2, the tool packages have different

functionalities. Some of them are more focused on dMRI pre-

processing, model reconstruction, and tractography, and others

include fiber tractography analysis methods. It is common for

users to employ more than one software to implement their

processing pipeline, where special attention should be paid to file

formats, the reference coordinate system (Tournier et al., 2019),

and the common 3D space, when required. Of course, no tool

contains all the existing algorithms, although there are some fairly

comprehensive ones.

There are fewer software packages dedicated to analyzing

tractography data, such as fiber clustering and segmentation, as

well as filtering fiber clusters. Hence, we present a toolkit for the

analysis of brain tractography data. The package combines several

tools for tractography analysis that are available in the literature,

developed by our group. These include the optimized fiber bundle

segmentation algorithm using a brain fiber atlas (Guevara et al.,

2012; Labra et al., 2017; Vázquez et al., 2019), the hierarchical fiber

clustering (Román et al., 2017, 2022) and Fast Fiber Clustering

(FFClust) based on K-Means (Vázquez et al., 2020). These tools

are difficult to apply for external users due to the lack of unified

code, the multiplicity of programming languages, the plurality

of library dependencies, and the lack of example code/data and

documentation. To overcome these issues, we developed an open-

source library, called Phybers, that integrates all these algorithms,

along with other fiber cluster analysis and visualization tools.

The algorithms included in the library were implemented in

C/C++ and Python 3.9. It was structured into four modules:

Segmentation, Clustering, Utils, and Visualization. The library was

implemented in Python to efficiently provide easy manipulation

of data and input parameters, to users without computer

science background. Also, Python allows better interoperability

with software such as the Dipy package (Garyfallidis et al.,

2014). The library includes several internal functions written in

C/C++ to reduce the execution time of computationally intensive

calculations, such as Euclidean distances between pairs of fibers,

which are accessible through Cython. Phybers is freely available and

provides the documentation and test data for its execution.

2 Materials and methods

Phybers contains four modules that include algorithms for

different pre-processing stages. The suite of Utils contains tools for

pre-processing the tractography data prior to fiber segmentation or

clustering, such as the transformation of fibers (bundles format)

to another space using a deformation field (NIfTI format). The

analysis modules include a fiber bundle segmentation algorithm

based on a brain fiber bundle atlas (Guevara et al., 2012; Labra et al.,

2017; Vázquez et al., 2019), and two clustering algorithms, Fast

Fiber Clustering (FFClust) (Vázquez et al., 2020) and Hierarchical

Clustering (HClust) (Román et al., 2017, 2022). Also, a set of post-

processing tools is provided for the analysis of the results of the

fiber bundle segmentation and fiber clustering algorithms (bundles

format). The Visualization module supports different types of data

such as volume (NIfTI), mesh (mesh and GIfTI formats), and fibers

(TRK, TCK, and bundles). In addition, it integrates an interactive

graphical user interface (GUI) that allows the user to manipulate

3D objects in real-time. For example, manual segmentation of brain

fibers can be performed by positioning two or more 3D regions.

Phybers was developed in Python to distribute and update

in a PyPI repository. We implemented the algorithms in C/C++

and Python 3.9, which used Python dependencies such as numpy

(Harris et al., 2020), nibabel, pandas, and subprocess. However,

all dependencies are automatically installed with the package.

Library installation can be performed using the command $
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TABLE 1 Summary of the main software used for the study of dMRIs.

Software Lenguaje OS Distribution
license

dMRI format Tractography
format

BrainSUITE C++,

Matlab

Multi. Open-source DICOM, NIfTI,

Analyze

TRK

Camino Java Linux

MacOs

Open-source DICOM, NIfTI VTK

Diffusion

toolkit

C++ Multi. Open-source DICOM, NIfTI,

Analyze

TRK

ExploreDTI Matlab Multi. Non-commercial

package

DICOM, NIfTI

Analyze,

Matlab formats

MAT

FSL C++/Unix Linux

MacOs

Windows

Non-commercial

package

NIfTI NIfTI

MRtrix C++,

OpenGL

Linux

MacOs

open-source DICOM, Analize

NIfTI, MGH

MRtrix formats

TCK

FreeSurfer C/C++,

Python,

Matlab

Linux Open-source DICOM, Analyze

NIfTI, MINC

-

DSI Studio C++ Multi. Open-source DICOM, NIfTI TRK

Dipy Pyhton,

Cython

Multi. Open-source Analyze, NIfTI,

DICOM

TCK, TRK

DiffusionKit C/C++ Windows

Linux

Freely available DICOM, NIfTI TRK

SlicerDMRI C++,

Python

Multi. Open-source DICOM, Analyze,

NIfTI, nrrd/nhdr

VTK

The order of the columns is as follows: Software, Lenguaje, OS, Distribution License, dMRI Format, and Tractography Format. OpenGL, Open graphics library; Multi., Multiplatform; NIfTI,

Neuroimaging informatics technology initiative; DICOM, Digital imaging and communications in Medicine; MGH, FreeSurfer format; MINC, FreeSurfer format; VTK, Visualization ToolKit;

TRK, Track File; Analyze, Image data format; TCK, Tracks file format; and MAT, Matlab file.

pip install phybers, and the software distribution includes sample

data with code examples for all supported functionalities. Phybers

is compatible with Python versions higher than Python 3.9

and supports Python platforms such as Jupyter Notebook and

Spyder, providing greater flexibility to cater to the specific

needs of each user. Additionally, it functions seamlessly on both

Ubuntu and Windows systems and can also be utilized on

macOS via a virtual machine. Finally, the library documentation

was generated with Sphinx. Phybers library was structured into

four modules (Figure 1) defined as Segmentation, Clustering,

Utils, and Visualization. The following sections describe the

library modules.

The data used to showcase the examples correspond to a

random subject from the HCP database (Glasser et al., 2013).

Specifically, preprocessed diffusion images (“data.nii.gz”) and

deformations to the MNI (Montreal Neurological Institute) space

(“acpc_dc2standard.nii”) were utilized. Deterministic tractography

calculations were performed using DSI Studio software (Yeh

et al., 2013) with GQI model reconstruction. Two datasets

of brain tractography were calculated. The first dataset was

generated using the following fiber tracking parameters: angular

threshold = 60◦, step size = 0.5 mm, smoothing = 0.5, minimum

length = 30 mm, maximum length = 300 mm, and a tract count

of 1.5 million fibers. The second brain tractography dataset was

obtained by placing ROIs, in this case, using the postcentral

region from the FreeSurfer Aseg Atlas (Fischl et al., 2002), with

the same fiber tracking parameters, except for the minimum

length = 90 mm, maximum length = 130 mm, and a tract count of

4,000 fibers.

2.1 Data structure and format

2.1.1 Tractography datasets
Brain tractography datasets are sets of 3D polylines, also

called streamlines or fibers. A tractography file contains arrays

with the coordinates of the fiber 3D points and may include

other metadata, such as an affine transformation. These files

can be read in Python through different libraries, depending

on the file format, as a list of numpy arrays. The most

commonly used formats are TRK, TCK and bundles. In the

proposed library, we use the bundles format. Several functions

are provided to read and write fibers in this format. The

advantage of bundles format is the support of the labeling

of bundles, i.e., a single file can contain several bundles or

clusters, reducing the computational cost for reading/writing

and visualization. This format uses two files: the text metadata

file .bundles that contains the bundle labels, and the binary

.bundlesdata file, which contains the 3D coordinates of the fiber

points. Using available readers and writers of other formats, it
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TABLE 2 Summary of the main software used for the study of dMRIs.

Software DW Model
Reconst.

Fiber
Track.

Fiber
Clustering

Bundle
Segment.

Visual-
ization

Fiber
Measur.

BrainSUITE DTI Det. - - Slice/Volume,

DWmodel,

tractography

-

Camino DTI/ multifiber

HARDI, QBall,

PASMRI

Det.

Prob.

- - Slice/Volume,

DWmodel,

tractography

-

Diffusion

toolkit

DTI, DSI, QBI Det. - - Uses TrackVis -

ExploreDTI DTI, QBI, CSD Det.

Prob.

- Using ROIs Slice/Volume,

DWmodel,

tractography

Mean

length

FSL DTI Prob. - - Slice/Volume,

Meshes

-

MRtrix DTI, Single-tissue

CSD,

Multi-tissue CSD

Det.

Prob.

- - Slice/Volume,

DWmodel,

tractography

-

FreeSurfer TRACULA Prob. Anato-

micCuts

TRACULA Slice/Volume,

Meshes

-

DSI Studio DTI, DSI, QBI Det. - Using ROIs Slice/Volume,

DWmodel,

Tractography,

Meshes

Count,

mean

length

Dipy DTI, DSI,

QBI, CSD

Det.

Prob.

Quick-

Bundles

Reco-

Bundles

Slice/Volume,

DWmodel,

Tractography,

Meshes

Count,

mean

length

DiffusionKit DTI, CSD, dec.

-based SPFI

Det. - - Slice/Volume,

DWmodel,

Tractography

-

SlicerDMRI DTI, Multi-tensor

UKF

Det. - Using ROIs Slice/Volume,

DWmodel,

Tractography

Points

numbers,

count,

mean

length

The order of the columns is as follows: Software, DW (diffusion-weighted) Model Reconstruction, Fiber Tracking, Fiber Clustering, Bundle Segmentation, Visualization, and Fiber Measures.

DTI, Diffusion tensor imaging; HARDI, High angular resolution diffusion Imaging; DSI, Diffusion spectrum imaging; QBI, Q-Ball imaging; CSD, Constrained spherical deconvolution; SPFI,

Spherical polar Fourier imaging; TRACULA, TRActs Constrained by UnderLying Anatomy; Det., Deterministic; Prob., Probabilistic; ROIs, Regions of interest; QuickBundles, (Garyfallidis

et al., 2012); AnatomicCuts, (Siless et al., 2018) RecoBundles (Garyfallidis et al., 2018); DW, Diffusion weighted; and UKF, unscented Kalman filter (Malcolm et al., 2010).

is possible to convert fiber tractography datasets from different

formats. Therefore, we included a source code in the Phybers

documentation that enables the conversion of brain tractography

dataset from the TRK format (used by TrackVis and DSI Studio,

among others) to the bundles format. Additionally, this code

facilitates the conversion of TCK format (used by MRtrix and

others) to the bundles format. We also shared source code for

converting from bundles format to TRK and TCK formats. More

information and access to these codes can be found in the

Phybers documentation.

2.1.2 MRI
MRI volumes are 3D arrays, which can be read

in Python as a 3-dimensional numpy array. The most

commonly used formats are NIfTI, Analyze, and DICOM.

In the proposed library, the NIfTI format is used to read

MRI images.

2.1.3 Mesh
Meshes are geometric surface objects, that can

be read in Python as an array of vertices and

an array of triangles (vertex indices). The most

commonly used formats are GIfTI and mesh. The

proposed library uses the GIfTI and mesh formats for

the meshes.

2.2 Library hierarchy

2.2.1 Segmentation module
This module includes a white matter fiber bundle

segmentation algorithm (Guevara et al., 2012; Labra

et al., 2017; Vázquez et al., 2019) based on a multi-

subject atlas (Figure 2). The method uses as a measure

of similarity between pairs of fibers the maximum
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FIGURE 1

The hierarchical library structure was separated into four modules: (A) Segmentation, (B) Clustering, (C) Utils, and (D) Visualization. (A) Segmentation

contains the fiber bundle segmentation algorithm using a white matter fiber bundle atlas (A1. FiberSeg); refer to Section 2.2.1. (B) Clustering includes

an average-link hierarchical clustering based on the Euclidean distance among fiber pairs (B1. HClust) and Fast Fiber Clustering (B2. FFClust), refer to

Section 2.2.2. (C) Utils module includes several tools for analyzing brain fibers, such as C1. Deforms: transformation of fibers to another space using a

deformation field, C2. Sampling: sampling of fibers with n equidistant points, C3. Intersection: intersection between two sets of fibers, and C4.

PostProcessing: Calculates the size and length of a set of fibers and the maximum Euclidean distance between fibers of a set; refer to Section 2.2.3.

(D) Visualization module is a tool for rendering multiple data types such as brain fibers, MRI slices/volumes, meshes, and fibers selection manually by

ROI; refer to Section 2.2.4.

FIGURE 2

Diagram representing the Segmentation module. On the left is represented the input data, which includes the brain fibers to be segmented (file_in),

subject name (subj_name), the atlas of bundles (atlas_dir), the atlas threshold (atlas_info), and the result directory (dir_out). On the right are the

output folders, which include the segmented brain fibers, the centroids of the segmented fibers, and the index of each fiber grouped by fasciculus.

Euclidean distance between corresponding points (dME),

defined as:

dME(A,B) = min(maxi(|ai − bi|),maxi(|ai − bNp−i|)) (1)

Where ai and bi represent the 3D coordinates of the points

in fibers A and B, respectively, both having an equal number of

points (Np), listed in direct order. Here the points of fiber A are

sequentially traversed as ai = [a1, a2, . . ., aNp ], and those of B are

similarly defined as bi = [b1, b2, . . ., bNp ]. Therefore, the reverse

order of fiber B is expressed as bNp−i = [bNp , bNp−1 , . . ., b1].

The original version was written in Python and presented

in Guevara et al. (2012). It aims at classifying the subject fibers

according to a multi-subject bundle atlas. The bundle atlas consists

of a set of representative bundles and additional information. The

fibers of the atlas bundles are called centroids. We include one

atlas of deep white matter (DWM) bundles (Guevara et al., 2012)

and two atlases of superficial white matter (SWM) bundles (Román

et al., 2017, 2022). These atlases are located in the MNI space

(aligned with “ICBM 2009a Nonlinear Symmetric” template) and

are available for download from the Phybers github repository. We

have also tested the algorithm using the DWM and SWM bundle

atlas of Zhang et al. (2018).

The fibers of each subject are classified using a maximum dME

distance threshold for each bundle between the subject’s fibers

and the atlas centroids. The fibers are labeled with the closest

atlas bundle, given that the distance is smaller than the distance

threshold (in mm). The algorithm was progressively improved

first by Labra et al. (2017) that developed a fast fiber discarding

algorithm in C language. Then, it was optimized by Vázquez et al.

(2019) using a C++ parallel implementation.

The white matter fiber bundle segmentation algorithm based

on a multi-subject atlas included in Phybers is called FiberSeg

(Figure 2A1) and is based on the implementation by Vázquez et al.

(2019). Among the noteworthy enhancements is that this algorithm

is compatible with both Ubuntu and Windows, unlike the previous

version that only supported Ubuntu. New functionalities have
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been added, allowing for the extraction of bundle centroids and

indices of original fibers per bundle. This addition proves beneficial

for fiber bundle segmentation on the subject space and facilitates

the calculation of diffusion tensor-derived measures (Basser et al.,

1994) (FA, MD, AD, RD). In this version, the algorithm accepts

fibers with a variable number of points, unlike the previous version

that fixed the point count at 21 for input data. Furthermore, the data

structure has been improved, enabling the loading of larger input

tractography datasets and brain fiber atlases. Overall, enhanced

data structures have been defined to optimize memory usage.

The implementation of FiberSeg in the Segmentation module

of Phybers has the following inputs (Figure 2):

1. file_in: the whole-brain tractography dataset file of a subject.

The fibers must be in the same reference system as the used

bundle atlas and be in bundles format.

2. subj_name: subject name, used to label the results.

3. atlas_dir: the bundle atlas folder, with bundles in separate files,

sampled at 21 equidistant points.

4. atlas_info: a text file associated to the used atlas, that stores

information needed to apply the segmentation algorithm, i.e., a

list of the atlas fascicles, containing the name, the segmentation

threshold (in mm) and the size of each fascicle. Note that

the segmentation threshold can be adjusted depending on the

database to be used.

5. dir_out: the directory name to store all the results generated by

the algorithm.

FiberSeg outputs are:

1. final_bundles: the directory with the segmented fibers, i.e., the

atlas fascicles extracted from the subject’s tractography dataset,

which are labeled and saved in separate files in bundles format.

2. centroids: a directory that contains the centroid of each

segmented fascicle, saved in a single file in bundles format.

3. bundles_id: a text file containing, for each segmented bundle,

the indexes of the fibers in the subject’s tractography dataset file.

Figure 3 displays the results of the bundle segmentation using

the DWM bundle atlas Guevara et al. (2012) for a subject from

the HCP database. The segmented bundles shown are Thalamic

radiations (B), Corpus callosum segments (C), Arcuate fasciculus

(D), Cingulum fibers (E), Inferior longitudinal fasciculus, Inferior

fronto-occipital fasciculus, Uncinate fasciculus, Corticospinal tract,

and Fornix (F). Figure 4 shows the segmentation results using a

SWM bundle atlas (Román et al., 2017). This atlas comprises 93

fascicles, labeled based on anatomical ROIs extracted from the

Desikan-Killiany atlas (Desikan et al., 2006). Four groups of short

association fiber bundles are presented in more detail: Caudal

middle frontal (B), Rostral middle frontal (C), Lateral occipital (D),

and Supramarginal (E) bundles.

2.2.2 Clustering module
2.2.2.1 HClust sub-module

HClust (Hierarchical Clustering) (Román et al., 2017, 2022),

is an average-link hierarchical agglomerative clustering algorithm

that creates bundles based on a pairwise fiber distance measure.

It is implemented in Python and C++. The algorithm calculates

a distance matrix between all fiber pairs for a bundles dataset

(dij), by using the maximum Euclidean distance between fiber

points (Equation 1). Then, it computes an affinity graph on the

dij matrix for fiber pairs that have a Euclidean distance below

a maximum distance threshold (fiber_thr) in mm. The affinity is

given by Equation (2) (Donnell and Westin, 2007),

aij = e
−dij

σ
2 (2)

Where dij is the distance between the elements i and j, and σ is

a parameter that defines the similarity scale inmm.

From the affinity graph, the hierarchical tree is generated using

an agglomerative average-link hierarchical clustering algorithm.

The tree is adaptively partitioned using an intra-cluster distance

threshold (partition_thr) inmm.

The version of the Hierarchical Clustering developed in

Phybers is based on the work of Román et al. (2017), that was

improved in Román et al. (2022), utilizing a C++ implementation

of the agglomerative clustering algorithm proposed in the

Python Sklearn library. Our implementation (HClust) allows for

calculating centroids of obtained clusters and records indices of

original fibers belonging to each detected cluster. Additionally,

it is compatible with both Windows and Ubuntu, overcoming

a limitation present in the previous version that was exclusively

operational on Ubuntu.

The inputs of HClust are the following (Figure 5B1):

1. file_in: the input tractography data file.

2. dir_out: the directory to store all the results generated by

the algorithm.

3. fiber_thr: a maximum distance threshold (in mm),

default 30mm.

4. partition_thr: an adaptive partition threshold (in mm), default

40mm.

5. variance: a similarity scale (inmm), default 60mm.

HClust outputs are:

1. final_bundles: the directory that stores all the generated fiber

clusters that are labeled with the cluster number and saved in

separate files in bundles format.

2. centroids: a directory that contains the centroids for each

created cluster, saved in a single file in bundles format.

3. bundles_id: a text file storing for each cluster the indexes of the

fibers in the subject’s tractography dataset file.

4. outputs: a temporal directory with intermediate results.

Figure 6 illustrates the results of applying the HClust algorithm

to a tractography dataset of 4,000 fibers. On the left, the

tractography with 4,000 fibers is presented in blue before clustering,

and on the right, eight detected fiber clusters are shown, manually

chosen and using a palette of random colors. In this case, the

size of the brain tractography dataset has been reduced due to

the high computational cost associated with the HClust algorithm.

This challenge is attributed to the distance matrix calculated at

the start of the algorithm, serving as its primary limitation. We

recommend using HClust on tractography datasets of a maximum

of 40,000 fibers. If applying it to the entire brain with a larger

dataset is desired, one can consider the strategy of first utilizing the
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FIGURE 3

Bundle segmentation results for a subject using the DWM bundle atlas (Guevara et al., 2012). (A) Sagittal view of the whole-brain segmentation. (B)

Thalamic radiations, (C) Corpus callosum segments, (D) Arcuate fasciculus, (E) Cingulum fibers, and (F) Inferior longitudinal fasciculus, Inferior

fronto-occipital fasciculus, Uncinate fasciculus, Corticospinal tract, and Fornix.

intra-subject clustering of FFClust and then applying HClust to the

centroids of FFClust (Román et al., 2022).

2.2.2.2 FFClust sub-module

FFClust (Fast Fiber Clustering) (Vázquez et al., 2020) is an

intra-subject clustering algorithm that aims to identify compact

and homogeneous fiber clusters on a large tractography dataset.

The algorithm consists of four stages. First, it applies the

Minibatch K-Means clustering on five specific fiber points (Stage

1), and merges fibers sharing the same point clusters (map

clustering) (Stage 2). Next, it reassigns small clusters to bigger

ones (Stage 3), considering the distance of fibers in direct and

reverse order. Finally, the algorithm groups clusters sharing the

central point and merges close clusters represented by their

centroids (Stage 4). The distance among fibers is defined as the

maximum Euclidean distance between the corresponding fiber
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FIGURE 4

Bundle segmentation results for a subject using the SWM bundle atlas (Román et al., 2017). (A) Sagittal view of the whole-brain segmentation. (B)

Caudal middle frontal (CMF) and CMF - Precentral (PreC) bundles (CMF-CMF, CMF-PreC), (C) Rostral middle frontal (RoMF) and RoMF - Superior

frontal (SF) bundles (RoMF-RoMF 0, RoMF-SF 1), (D) Lateral occipital (LO) bundles (LO-LO 0, LO-LO 1), and (E) Supramarginal (SM) bundles (SM-SM 0,

SM-SM 1).

points. The algorithm supports sequential and parallel execution

using OpenMP.

The implementation of FFClust in Phybers is based

on the work of Vázquez et al. (2020). This version brings

improvements, such as handling variable sizes of brain

fibers. Previously, the number of points was fixed at 21

for input data. Additionally, FFClust is now compatible

with both Windows and Ubuntu platforms, overcoming the

previous limitation that restricted its exclusive use on Ubuntu

platforms. Figure 5B2 shows the hierarchy of the module. The

inputs are:

1. file_in: the input tractography dataset file.

2. dir_out: the directory to store all the results generated by

the algorithm.

3. points: the index of the points to be used in the point clustering

(Stage 1), default: 0, 3, 10, 17, 20.

4. ks: the number of clusters to be computed for each point using

K-Means (Stage 1), default: 300, 200, 200, 200, 300.

5. assing_thr: a maximum distance threshold for the cluster

reassignment inmm (Stage 3), default: 6.0 mm.

6. join_tht: a maximum distance threshold for the cluster merge in

mm (Stage 4), default: 6.0 mm.
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FIGURE 5

Diagram representing the Clustering module. (B1) Describes the HClust algorithm. On the left is represented the input data, which includes the brain

fibers to be clustered (file_in), the result directory for saving the outputs (dir_out), the maximum distance threshold (fiber_thr, in mm), the threshold

for dendrogram partitioning (partition_thr, in mm), and variance is measured on a similarity scale in mm. On the right are the output folders, which

include the obtained fiber clusters, the centroids of the clusters, the index of the fibers of each cluster, and the temporal directory with intermediate

results. (B2) Describes the FFClust algorithm. On the left is represented the input data, including the brain fibers to be clustered (file_in), the result

directory for saving the outputs (dir_out), the numbers of fiber points to be used in the clustering (points), the number of clusters used by Minibatch

K-Means for each chosen fiber point (ks), the threshold distance for reassigning points to a cluster (assign_thr, in mm), and the threshold distance for

merging clusters (join_thr, in mm). On the right are the output folders, which include the obtained fiber clusters, the centroids of the clusters, the

index of the fibers of each cluster, and the temporal directory with intermediate results.

FIGURE 6

Results of the HClust algorithm for the calculated tractography dataset of the postcentral region. (Left) In blue, the reconstructed fibers for the

postcentral region are shown before applying clustering. (Right) Displays eight clusters manually chosen from the total detected fiber clusters with

random colors.

The structure of FFClust outputs is similar to HClust module.

Figure 7 shows the results of applying FFClust to the whole-

brain tractography dataset with 1.5 million streamlines. The

detected clusters were filtered using the PostProcessing sub-module

of the Utils module (Section 2.2.3) to simplify result visualization.

Clusters with a size greater than 150 and a length between 50 and

60mm are shown on the left side of the figure, while clusters with a

size greater than 100 and a length greater than 150 mm are shown

on the right side of the figure.

2.2.3 Utils module
The Utils module is a set of tools used for tractography

dataset pre-processing and the analysis of brain fiber clustering
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FIGURE 7

Results obtained with the FFClust algorithm. Fiber colors are randomly distributed, and all fibers within a cluster are assigned the same color. (Left)

Clusters with a size greater than 150 and a length ranging from 50 to 60 mm. (Right) Clusters with a size greater than 100 and a length exceeding

150 mm.

FIGURE 8

Diagram representing the Utils module. (C1) Deform sub-module, which has the inputs: deform_file (image in NIfTI format containing the

deformations), file_in (path of the input tractography dataset), and file_out (path to the transformed tractography dataset). The output consists of a

tractography dataset transformed into the MNI space. (C2) Sampling sub-module, which has the file_in (path input tractography dataset), file_out

(path to save the sub-sampled fibers), and npoint (number of sampling points). The output is a tractography dataset sampled at n equidistant points.

(C3) Intersection sub-module, which has as input the file1_in (path of the first fiber bundle), file2_in (path of the second fiber bundle), and

distance_thr (in mm) used to consider similar two fibers. The output is a tuple object of Python with the percentage of intersections between the

bundles. (C4) PostProcessing sub-module that has as input the dir_in where the segmentation or clustering result is located. The algorithm output

includes information about the fiber size, bundle length (in mm), and intra-bundle fiber distance (in mm), all of which can be accessed through a

DataFrame (Pandas object of Python).
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FIGURE 9

Example of fiber transformation using Deform sub-module. The tractography dataset before (left) and after (right) applying the transformation to the

MNI space of a subject.

FIGURE 10

The flowchart illustrates the main components and interactions of the Visualization module: User Interface, CPU Interface, and Visualization Backend

GPU. The graphical user interface defines the supported file formats for each object type (tractography datase, slice or volume images, and meshes),

as well as the available interactions (including rotation, zoom, and panning) and segmentation (3D ROI-based fiber segmentation). The CPU interface

facilitates the loading of objects and interactions into memory, which can be displayed through the Visualization Backend GPU using OpenGL

pipeline shaders.

and segmentation results. The module includes tools for reading

and writing brain fiber files in bundles format, transform the

fibers to a reference coordinate system based on a deformation

field, sampling of fibers at a defined number of equidistant

points, calculation of intersection between sets of brain

fibers, and tools for extracting measures and filtering fiber

clusters or segmented bundles. We considered the extraction of

measures such as size, mean length (in mm), and the distance

between fibers of each cluster (or fascicle), in mm. The set of

tools implemented in Utils is being introduced for the first

time in Phybers, and the source code is mostly developed

in C/C++.
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FIGURE 11

Interactive 3D ROI-based fiber segmentation using the Visualization Module. (A) Within the Visualization Tool window, the first quadrant is utilized to

interact with objects loaded by the software. It shows a loaded tractograohy file (“fiber_test.bundles”) containing 1.5 million fibers. This fiber bundle

dataset has undergone ROI segmentation, highlighted in blue. The ROIs object consists of three spheres organized in order of creation (0: purple, 1:

green, and 2: blue). In the second quadrant of the Visualization Tool, various spatial manipulations, such as rotation, translation, and scaling, can be

applied manually or through a text file (Apply Transforms Matrix from File and Reset Transforms). The manipulation options displayed depend on the

selected object. (B) This section illustrates the segmentation of brain fibers connecting the purple and green spheres. Within the Extraction Tool

window, you have access to various tools for interacting with the segmentation process, including Always Detect (real-time segmentation), Add ROI,

Remove ROI, Alpha for not colliding fibers (for adding transparency to unsegmented fibers), Logic (for logical operations between the ROIs), Detect

(for a one-time segmentation execution), and Export (to save the segmented fibers). In this case of Logic option, the “0&1” operation is employed to

identify fibers intersecting both sphere 0 (purple) and sphere 1 (green). (C) It shows the segmentation of the brain fibers that intersect the purple and

green spheres while excluding those that pass through the blue sphere. In this case, we specified the logical operation (Logic) as “0&1&!2” within the

Extraction Tool window.

2.2.3.1 Deform sub-module

The deformation sub-module (Figure 8C1) transforms a

tractography dataset file to another space using a non-linear

deformation file. The maps must be stored in NIfTI format, where

the voxels contain the transformation to be applied to each voxel 3D

space location. The Deform sub-module applies the deformation to

the 3D coordinates of the fiber points. Deform needs as input data

the deformation map, the file path of the fibers to be transformed,

and the path of the output file, containing the tractography dataset

file in the transformed space.

Figure 9 shows the result of applying the deformation

function on a tractography dataset, using an anatomical image

as visualization reference. The left side of the figure shows the

tractography dataset before applying the transformation, and the

right side shows the tractography dataset transformed to the MNI

space. On the left side, there is a disalignment between the image

and the tractography dataset, which is corrected on the right side.

2.2.3.2 Sampling sub-module

Tractography datasets are usually composed of a large number

of 3D polylines with a variable number of points. The Sampling

sub-module (Figure 8C2) performs a sampling of the fibers,

recalculating their points using a defined number of equidistant

points. The input data of the algorithm are the path of the

tractography dataset file to be sampled, the output file with the

fibers with n points, and the number of points (npoints). The

Sampling sub-module is used in the pre-processing stage of the

segmentation and clustering algorithms.

2.2.3.3 Intersection sub-module

The Intersection sub-module (Figure 8C3) calculates a

similarity measure between two sets of brain fibers, that could be

generated with other algorithms, such as fiber clustering (fiber

clusters) and bundle segmentation (segmented bundles). It uses

a maximum distance threshold (in mm) to consider two fibers as

similar. Both sets of fibers must be in the same space. First, an

Euclidean distance matrix is calculated between the fibers of the

two sets. The number of fibers from one set that have a similar

fiber in the other set are counted, for both sets. The similarity

measure yields a value between 0 and 100%. The input data of the

intersection algorithm are the two sets of fibers and the maximum

distance threshold, while the output is the similarity percentage.

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2024.1333243
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


González Rodríguez et al. 10.3389/fnins.2024.1333243

2.2.3.4 PostProcessing sub-module

The PostProcessing sub-module (Figure 8C4) contains a set

of algorithms that can be applied to the results of clustering

and segmentation algorithms. This algorithm constructs a Pandas

library object (Dataframe), where each key corresponds to the name

of the fiber set (cluster or segmented fascicle), followed bymeasures

defined on the fiber set such as number of fibers (size), intra-fiber

bundle distance (in mm) and mean length (in mm). It can be used

to perform single or multiple feature filtering on the clustering or

segmentation results. The input of the algorithm is the directory

with the bundle sets to be analyzed, and the output is a Pandas

Dataframe object with the calculated metrics (Figure 8C4).

2.2.4 Visualization module
The Visualization module can render multiple types of 3D

objects, including tractography dataset, meshes, and MRI scans

as slices or volumes. The module was designed with a focus on

scalability, utilizing dictionaries to store the objects to be displayed,

thus enabling the rendering of multiple objects simultaneously.

For each object, a set of functionalities is defined that can be

accessed through a graphical user interface (GUI). The GUI enables

visualization of multiple objects at once, performing camera

operations such as zooming, rotating, and panning, modifying

object material properties such as color and transparency, and

applying linear transformations to brain tractography dataset.

Figure 10 illustrates the flow diagram of the visualization module.

The input data is read into RAM and processed by the CPU.

This data is then loaded into the VRAM and rendered using

shaders. MRI volumes are loaded as VBOs (Vertex Buffer Objects),

EBOs (Element Buffer Objects), and textures, which are accessed

during the rendering process. Tractography dataset files are loaded

according to the bundle dataset format (bundles, TRK, TCK).

ROI inputs are created through the user interface. MRI volume

inputs consist of 3D images in the NIfTI format. Mesh inputs are

loaded from GIfTI and mesh files. The GPU renders the objects

using geometric primitives such as points, lines, and triangles,

and it can also accept buffer objects as input. The EBO contains

geometrical information, specifying which vertices form which

primitives. The OpenGL pipeline and shaders are employed to

offload computational tasks from the CPU to the GPU.

2.2.4.1 Algorithms for visualization

The tractography dataset files can be rendered with lines or

cylinders. In the case of lines, the software loads the streamlines,

defining a fixed normal per vertex, which corresponds to the

normalized direction for the particular segment of the streamline.

Furthermore, a Phong lighting algorithm (Osorio et al., 2021)

is implemented in a vertex shader to compute the color of the

streamline. The MRI data is rendered using specific shaders for

slice visualization and volume rendering. Meshes can be displayed

using points, wireframes, or shaded triangles. The visualization

algorithm, along with all its functionalities, such as the Interactive

3D ROI-based fiber segmentation, has been implemented for the

first time for personal computers in Phybers.

2.2.4.2 Interactive 3D ROI-based fiber segmentation

This function allows users to interactively extract fiber bundles

using spherical ROIs. Internally, it creates a point-based data

structure (Octree) for fast queries, based on storing points inside

a bounding box with a capacity of N. When a node is filled, and

a new point is added, the node subdivides its bounding box into

eight new non-overlapping nodes, and the points are moved into

the new nodes.

For the query, different 3D objects check whether the node

collides with or is inside the bounding box. In the first case, the

algorithm continues recursively through the branch nodes until

it reaches a leaf node, where the points are tested and added to

the validator buffer if selected. In the latter case, all the points

contained in the subnodes are translated into the corresponding

fiber and marked as selected in the fiber validator buffer. The

resulting selected fibers for each object can be used in logical

mathematical operations (AND, OR, XOR, NOT). This allows for

the use of multiple ROIs to find fibers connecting specific areas

while excluding those selected by other areas. Figure 11 displays a

selection of fibers that intersect two ROIs (green and purple), while

excluding fibers that intersect the blue ROI.

3 Results

We executed the Phybers package on eight computers, each

with different hardware and software configurations, as outlined

in Table 3, listing features such as the CPU, graphics card, RAM,

OpenGL version, OS, and Python version. The computers were

sorted by CPU generation. To conduct the tests, we applied the

following procedure: first, we installed Anaconda and created two

virtual environments, one with Python 3.9 and another with Python

3.11. Subsequently, we installed the Phybers package from the

repository using the command $ pip install phybers. Finally, we

executed all the library commands to assess the different modules

of the package (available as supplementary material). For each

module execution, we randomly selected two subjects. One subject

was sourced from the HCP database, while the second subject

was derived from the ARCHI database. Additionally, a test was

conducted in a Python 3.10 environment on the PC8 listed in

Table 3.

The installation of Phybers is straightforward via the $ pip

install phybers command. The Segmentation, Clustering, and Utils

modules function optimally across all the tested hardware and

software configurations. Nonetheless, for the Visualization module,

it is required to use OpenGL versions equal to or greater than

4.1.0, as earlier versions, such as 3.0 (PC7 in Table 3), lack support

for certain functions. This hardware limitation extends to the

graphics card, necessitating compatibility with OpenGL versions

equal to or exceeding 4.1.0. Fortunately, OpenGL version 4.1.0

has been available since 2010, ensuring compatibility with graphics

cards released thereafter. Regarding software prerequisites, Phybers

offers compatibility with bothWindows andUbuntu systems. Users

opting for MacOS are recommended to install a virtual machine.

The recommended Windows versions include Windows 10 and

Windows 11. Ubuntu users are encouraged to select from the

following Long Term Support (LTS) versions: Ubuntu 18.04.6,

Ubuntu 20.04.2, Ubuntu 20.04.5, Ubuntu 22.04.1, and Ubuntu
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TABLE 3 Provides an overview of the primary hardware and software characteristics evaluated while running the Phybers package, categorized by CPU

generation.

Computer CPU Graphics
card

RAM OpenGL
Version

OS Python
Version

PC1 Intel Core

i9-12900

NVIDIA GeForce

RTX 3060

128 GB 4.6.0 Ubuntu

22.04.1 LTS/

Windows 11

3.9 & 3.11

PC2 Intel Core

i7-9700KF

NVIDIA Quadro

P620

32 GB 4.6.0 Ubuntu

20.04.5 LTS

3.9 & 3.11

PC3 AMD Ryzen 9

5900HX

NVIDIA GeForce

RTX 3060

24 GB 4.6.0 Windows 10 3.9 & 3.11

PC4 Intel Core

i7 -8700K

NVIDIA GeForce

GTX 1050 Ti

64 GB 4.6.0 Windows 10 3.9 & 3.11

PC5 Intel Core

i7-7700HQ

Intel HD Graphics

630

64 GB 4.6.0 Ubuntu

20.04.2 LTS

3.9 & 3.11

PC6 Intel Core

i7-12700K

NVIDIA GeForce

GTX 1650

16GB 4.6.0 Ubuntu

22.04.2 LTS

3.9 & 3.11

PC7 Intel Core

i5-8600K

NVIDIA GeForce

GTX 1050 Ti

16 GB 3.0 Ubuntu

18.04.6 LTS

3.9 & 3.11

PC8 Intel Core

i5-6600k

NVIDIA

GTX 1660

16 GB 4.1.0 Windows 10 3.10

The first column assigns a unique number to each computer employed. Hardware resources are examined through the CPU, Graphics card, and RAM columns, whereas software resources

are appraised via the columns for OpenGL version, OS (Operating System), and Python version. Phybers runs smoothly for all these listed features except for the Visualization module, which

requires OpenGL versions higher than 3.0.

22.04.2. Lastly, Phybers seamlessly supports Python versions 3.9

and higher. Phybers’ source code is publicly available on the GitHub

repository. Additionally, it features a website that offers extensive

and detailed documentation, along with examples and test data.

4 Discussion

In this study, we conducted the testing of the Phybers package

on real neuroimaging data on eight computers with different

configurations (Table 3). By conducting tests on computers with

varying hardware and software configurations, we could fix some

compatibility errors and ensure a comprehensive coverage of

scenarios. This approach allowed us to identify potential strengths

and weaknesses of the Phybers package, shedding light on its

versatility and adaptability to different computing environments.

The Segmentation module enables fast segmentation of white

matter fiber bundles from tractography dataset using a multi-

subject atlas. The algorithm has been implemented with multicore

processors and graphics processing units (GPUs), which allows

for the segmentation of massive tractography datasets, and it has

been tested with datasets containing up to 5.2 million fibers. To

achieve this, the algorithm rapidly discards noisy fibers, leading

to improved execution time and reduced memory usage (Vázquez

et al., 2019). The algorithm allows a configurable threshold for each

bundle in the atlas. The library provides three multi-subject atlases:

one for DWM fibers (Guevara et al., 2012) and two for SWM fibers

(Román et al., 2017, 2022). Additionally, any atlas of fibers in the

MNI space with the specified format can be used. For example, we

have segmented subjects from the HCP dataset using the atlas of

long and short fibers from (Zhang et al., 2018). Segmentation results

from this algorithm have been utilized in various clinical studies (Ji

et al., 2019; Buyukturkoglu et al., 2022).

The Clustering module contains two exploratory fiber

clustering algorithms that have proven their utility for analyzing

fiber tractography datasets. These methods can be used as an

initial exploration procedure to identify the main groups of fibers

in a tractography dataset. Since the algorithms do not rely on

anatomical data, they can be applied to any fiber configuration, as

in Guevara et al. (2011) where an intra-subject clustering algorithm

was applied to the FiberCup data (Poupon et al., 2008). Our library

includes two fiber clustering methods: HClust (Román et al., 2017,

2022) and FFClust (Vázquez et al., 2020).

HClust is an automatic hierarchical method that can be applied

to individual or multi-subject tractography dataset analysis. It

is based on a distance metric between fibers and a threshold

for dividing the dendrogram. The dendrogram is adaptively

partitioned to get clusters with a maximum intra-clustering

distance, a procedure that has proven to have a high power for

disentangling WM fibers (Guevara et al., 2017, 2022; Román et al.,

2017, 2022). However, it has a limitation on the number of input

fibers due to its computation complexity and the calculation of all

the pairwise fiber distances. This is the reason why we developed

an FFClust fiber clustering algorithm designed for intra-subject

clustering of massive tractography datasets.

FFClust is capable of capturing regular and compact clusters

on a tractography dataset (Vázquez et al., 2020), on a reduced

computation time (Vázquez et al., 2020), while obtaining high

quality clusters, which was measured using the DB index (Davies

and Bouldin, 1979). To deal with large datasets it uses several steps,

based on the clustering of fiber points, following the principle that

similar fibers will share the same point clusters. This algorithm

was conceived as a first pre-processing step, hence it prefers to

oversegment clusters than fuse groups of fibers with different

shapes. As a limitation, it has a big set of input parameters, but

for whole-brain tractography dataset many of them can be set to
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default values, and only a single value for both distance thresholds

could require to be modified.

Users should evaluate which clustering method is more

convenient, depending on their goal. Of course, results depend on

the quality of tractography dataset and the registration method for

the case of multi-subject analysis.

The Utils module provides a set of tools for tractography

dataset analysis. Some of these tools are used internally by the

other modules of the library, e.g., the tools for reading and

saving fibers are used in all modules. However, we consider it

necessary to provide the possibility to use these tools individually

for any purpose of the user. The Deform sub-module allows

the user to transform a tractography dataset to another space

of a database providing a deformation image, such as the HCP

database that provides the transformation to MNI space calculated

with FSL software. Respecting the Sampling sub-module, both the

segmentation and the clustering algorithms require that all fibers

have the same number of points, which can be achieved using

this module. The number of points depends on the application,

and various numbers have been used, including 21 points

(Guevara et al., 2012; Román et al., 2022), 12 points (Garyfallidis

et al., 2012), 51 points (Garyfallidis et al., 2018), among others.

The Intersection sub-module provides a similarity percentage of

similarity between two fascicles that can be used to compare

clustering or segmentation results. The Postprocessing sub-module

generates a dataframe containing measurements from fiber sets

(clusters or segmented), such as fiber bundle size, mean fiber bundle

length (in mm), and intra-fiber bundle distance (in mm). These

measurements enable the evaluation of both segmentation and

clustering algorithms and facilitate filtering based on these features.

The Visualization module allows for the visualization of

multiple objects in a single scene. This module enables the

visualization of MRI images in NIfTI format, mesh data in mesh

format, and brain tractography dataset in bundles and TRK formats.

Various operations can be performed on each object, such as

rotation, zoom, and panning. This module features a simple and

user-friendly graphical interface. Furthermore, it provides a tool for

the interactive segmentation of a set of brain fibers by placing two or

more spherical ROIs. This tool is quite useful when exploring brain

tractography dataset quickly and in real-time. It was implemented

with an optimal use of OpenGL features to perform well on

personal computers, and even some simplified components can

execute on Mobile devices (Osorio et al., 2021). Several libraries

developed for diffusion MRI data analysis include tools for data

visualization. However, none of the software programs mentioned

in Table 2 (Visualization column) have the feature to segment brain

tractography dataset using 3D ROIs in real-time. On the other

hand, our visualization software has the disadvantage of not being

able to visualize diffusion MRI model glyphs, while packages such

as SlicerDMRI, MRtriX, and Dipy have incorporated this tool.

In neuroscience, there is a wide variety of formats for

tractography dataset files,MRI volumes, andmeshes. The presented

library has the limitation of supporting only a few input and

output formats. It currently supports just four formats: bundles

for tractography dataset, NIfTI for MRI, and mesh and GIfTI for

meshes. In the state-of-the-art there are libraries that support other

formats, for example: ExploreDTI, SliceDMRI, DSI Studio, and

MRtrix. Future updates to our library may incorporate flexibility to

read more formats or provide tools in the Utils module to convert

among formats.

Respecting the library documentation, the choice of Sphinx

as the primary tool for creating our documentation was based

on several factors. Firstly, Sphinx offers remarkable ease of use

and configuration, since its reStructuredText markup language is

intuitive, enabling an efficient focus on content. Another notable

advantage of Sphinx is its ability to generate documentation in

multiple output formats, being selected HTML for our library.

The inclusion of Sphinx in our development workflow played a

significant role. The tool effortlessly fits into our current tools and

processes, guaranteeing that the documentation remains up-to-

date alongside source code changes. This ensures that users will

always have access to the most recent information.

Finally, we packaged the library using the Python Package Index

(PyPI), a widely used repository for software related to the Python

programming language. This repository hosts a vast collection of

projects, and facilitates easy installation of the library through the

Python package manager (pip).

5 Conclusion

We propose a software library (Phybers) with state-of-the-art

tools for analyzing brain fibers aiming to facilitate their use by

the scientific community. It integrates tools such as fiber bundle

segmentation, fiber clustering, and visualization algorithms that

have been used separately in different studies. In addition, we

integrated utility tools for sampling and transforming tractography

datasets, calculating the intersection between fiber bundles and

post-process brain fiber sets. The library provides sample data and

extensive documentation. Furthermore, the library was developed

with scalability in mind, therefore it is possible to integrate other

existing state-of-the-art algoritmhs.

We believe that the generated library will facilitate the use of

the included algorithms, achieving better sharing of state-of-the-art

tools. As future work, we plan to integrate other methods such as

the intersection of fibers with cortical meshes and a diffusion-based

parcellation (López-López et al., 2020).
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