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Background: Frontotemporal dementia (FTD) represents a collection of 
neurobehavioral and neurocognitive syndromes that are associated with a 
significant degree of clinical, pathological, and genetic heterogeneity. Such 
heterogeneity hinders the identification of effective biomarkers, preventing 
effective targeted recruitment of participants in clinical trials for developing 
potential interventions and treatments. In the present study, we aim to automatically 
differentiate patients with three clinical phenotypes of FTD, behavioral-variant 
FTD (bvFTD), semantic variant PPA (svPPA), and nonfluent variant PPA (nfvPPA), 
based on their structural MRI by training a deep neural network (DNN).

Methods: Data from 277 FTD patients (173 bvFTD, 63 nfvPPA, and 41 svPPA) 
recruited from two multi-site neuroimaging datasets: the Frontotemporal Lobar 
Degeneration Neuroimaging Initiative and the ARTFL-LEFFTDS Longitudinal 
Frontotemporal Lobar Degeneration databases. Raw T1-weighted MRI data were 
preprocessed and parcellated into patch-based ROIs, with cortical thickness 
and volume features extracted and harmonized to control the confounding 
effects of sex, age, total intracranial volume, cohort, and scanner difference. A 
multi-type parallel feature embedding framework was trained to classify three 
FTD subtypes with a weighted cross-entropy loss function used to account for 
unbalanced sample sizes. Feature visualization was achieved through post-hoc 
analysis using an integrated gradient approach.

Results: The proposed differential diagnosis framework achieved a mean balanced 
accuracy of 0.80 for bvFTD, 0.82 for nfvPPA, 0.89 for svPPA, and an overall balanced 
accuracy of 0.84. Feature importance maps showed more localized differential 
patterns among different FTD subtypes compared to groupwise statistical mapping.

Conclusion: In this study, we  demonstrated the efficiency and effectiveness 
of using explainable deep-learning-based parallel feature embedding and 
visualization framework on MRI-derived multi-type structural patterns to 
differentiate three clinically defined subphenotypes of FTD: bvFTD, nfvPPA, and 
svPPA, which could help with the identification of at-risk populations for early 
and precise diagnosis for intervention planning.
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1 Introduction

Frontotemporal dementia (FTD) is an umbrella term describing 
the many clinical syndromes underlain by frontotemporal lobar 
degeneration (FTLD) neuropathology. FTD is characterized by the 
progressive impairment of cognitive and behavioral functions such as 
executive functioning, language, social comportment, and motor 
functioning (Dickerson and Atri, 2014). FTLD is the third most 
common cause of dementia and is as common as Alzheimer’s disease 
(AD) in individuals under the age of 65 (Erkkinen et  al., 2018). 
Clinically, FTLD is typically associated with one of several diagnoses 
characterized by specific constellations of symptoms. Patients who 
present with early impairments in social comportment and executive 
dysfunction are typically diagnosed with behavioral-variant FTD 
(bvFTD). Primary progressive aphasia (PPA) is a clinical syndrome 
characterized by a selective deterioration of language functions and 
can be  further subdivided into semantic (svPPA) and nonfluent 
variants (nfvPPA) (Mesulam et al., 2014). Regardless of the initial 
clinical syndrome, FTD syndromes eventually result in global 
dementia and death (Mioshi et al., 2010).

Although clinical trials of potential disease-altering therapies (e.g., 
anti-tau antibodies, tau aggregation inhibitors) are currently underway 
(Boxer et al., 2013; Tsai and Boxer, 2016; Mis et al., 2017; Logroscino 
et al., 2019; Panza et al., 2020; Huang et al., 2023), the significant 
degree of clinical, pathological and genetic heterogeneity observed in 
FTD hinders the development of sensitive and specific biomarkers 
that would allow for targeted recruitment of groups at highest risk for 
clinical/cognitive decline (Katzeff et al., 2022). Critically, early and 
accurate diagnosis of the clinical syndrome is essential for the targeted 
recruitment of participants in clinical trials, as treatments will only 
be effective if patients are accurately diagnosed. In bvFTD, patients 
show significant gray matter volume loss of the frontal and temporal 
lobes, with early and most distinctive loss of volume in the insula and 
anterior cingulate cortex (Seeley et al., 2008; Mandelli et al., 2016; 
Ranasinghe et  al., 2016). Among the PPA syndromes, svPPA is 
associated with striking asymmetric (typically left > right) atrophy of 
the temporal pole, while nfvPPA shows atrophy of the left inferior 
frontal/insular cortex (Agosta et  al., 2015). Across FTD clinical 
phenotypes, the spatial distribution of atrophy is consistent with the 
constellation of clinical symptoms.

While each FTD clinical syndrome has a typical anatomical 
pattern of neurodegeneration, early manifestations can vary greatly 
across people. Moreover, early patterns of neurodegeneration can 
be highly overlapping across clinical syndromes, such as in the case of 
anterior temporal lobe atrophy for both svPPA and bvFTD, and 
inferior frontal and insular atrophy in both bvFTD and 
nfvPPA. Indeed, Vijverberg et al. (2016) found that a visual review of 
a single MRI had insufficient sensitivity (70%) to identify cases with 
bvFTD. Researchers have therefore attempted to employ machine 
learning methods for pattern analysis to improve the classification and 
diagnosis of FTD (Ducharme, 2023). Similar research in the field of 

AD has achieved high accuracy levels when classifying diseased 
individuals compared to controls (often >90% accuracy) (Falahati 
et  al., 2014; Rathore et  al., 2017). Similarly, several studies have 
demonstrated that machine learning methods can aid in the reliable 
discrimination of AD and FTD (Ma et al., 2020, 2021). However, the 
use of machine learning methods for discrimination between FTD 
syndromes is rarer (see McCarthy et al., 2018 for review), often only 
covering a few subtypes (Wilson et al., 2009; Bisenius et al., 2017; Di 
Benedetto et al., 2022). Both Wilson et al. (2009) and Bisenius et al. 
(2017) classified PPA subtypes against each other using a principal 
component analysis approach based on gray matter volume, 
particularly for the comparison of svPPA from nfvPPA, finding 
moderately high accuracy (89.1%), sensitivity (84.44%) and specificity 
(93.8%), equivalent to an balanced accuracy of 89.1%. Similarly, Kim 
et al. (2019) classified bvFTD, nfvPPA and svPPA using principal 
component analysis and hierarchical classification and reached 
moderately high accuracy (overall balanced accuracy of 79.9% with 
67.1% sensitivity and 92.6% specificity, and lower specificity when 
comparison between each FTD subtypes). Di Benedetto et al. (2022) 
compared different deep learning approaches but specifically for 
detecting bvFTD population only, and reported balanced accuracy 
ranging from 73.6 to 91.0% through independent validation.

In the present study, we trained a deep neural network classifier 
to differentiate bvFTD, nfvPPA, and svPPA patients using a multi-level 
feature embedding and fusion framework on multi-type 
morphological features derived from T1-weighted MRI scans drawn 
from two multi-site neuroimaging consortiums. To our knowledge, 
this is the first study using deep learning to examine the multi-class 
discrimination of all three FTD subtypes (bvFTD, nfvPPA, and 
svPPA) using multi-type MRI-based features.

2 Materials and methods

The overall schematic diagram of the proposed neuroimaging-
based differential diagnosis framework is shown in Figure  1. The 
framework consists of four major steps: (1) feature extraction to derive 
patch-based multi-type features of cortical thickness and cortical/
subcortical volumes; (2) W-score-based feature harmonization to 
control confounding factors such as scanner difference and study site 
bias, as well as demographic-related covariates; (3) the differential 
diagnosis model using multi-layer-perceptron (MLP)-based multi-
level parallel feature embedding deep neural network to achieve FTD 
subtype classification; and (4) neuroimaging-derived feature 
visualization that differentiates FTD subtypes.

2.1 Experimental data

The experimental data consists of 173 bvFTD patients, 63 nfvPPA 
patients, and 41 svPPA patients, aggregated from the baseline visit 
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studies of two cohorts: the ARTFL-LEFFTDS Longitudinal 
Frontotemporal Lobar Degeneration (ALLFTD) cohort (Rosen et al., 
2020) and the Frontotemporal Lobar Degeneration Neuroimaging 
Initiative (FTLDNI, also referred to as NIFD) cohort (Boeve et al., 
2019). We excluded the cognitively normal healthy subjects in the 
aggregated dataset due to the limited sample size (n = 27). Table 1 
shows patient demographic information. The clinical diagnosis of 
FTD subtypes was defined as the ground truth to train the proposed 
differential diagnosis framework, regardless of their mutation 
carrier status.

ALLFTD is a multi-site study consisting of data collected from 
23 North American institutions, which is a combination of two 
previously independently initiated longitudinal neuroimaging 
studies, ARTFL and LEFFTDS. It aims to longitudinally follow 
FTLD mutation carriers to improve understanding of the FTLD 
disease progression based on both biological markers and clinical 
manifestation. Participants were primarily enrolled based on 
probable familial FTLD due to family history (i.e., with prior 
enrollment of a symptomatic proband), along with a small 
percentage of symptomatic and asymptomatic non-carriers 
enrolled. Mutation carriers of MAPT, GRN, or C9orf72 genes were 
most common. Clinical consensus diagnosis for each clinical 
subtype was conducted by multidisciplinary teams following widely 
accepted published criteria (Gorno-Tempini et al., 2011; Rascovsky 
et al., 2011) and included comprehensive neurologic assessment, 
neuropsychological testing, brain MRI, and biofluid collection, as 
well an interview with caregiver or companion. Detailed 
information regarding the subject recruitment, diagnostic criteria, 

neuroimaging scanning protocols as well as image processing are 
available at 1,2.

NIFD is also a multi-site cohort with both clinical and MRI data 
collected at the University of California San Francisco, Mayo Clinic 
Rochester, and Massachusetts General Hospital. The NIFD 
consortium was initiated in 2010. NIFD did not collect information 
regarding familial mutations, and the comprehensive clinical 
evaluation for consensus diagnoses of FTD subtypes follows the 
similar criteria of ALLFTD, which includes neurologic history, 
neuropsychological testing, neurologic and physical examinations, 
structured interviews with caregiver, and neuroimaging. Detailed 
information regarding the subject recruitment, diagnostic criteria, 
neuroimaging scanning protocols, and image processing are 
available at 3.

2.2 Image preprocessing and patch-based 
multi-level multi-type feature extraction

2.2.1 Brain anatomical structural parcellation and 
patch segmentation

Deep learning approaches such as convolutional neural network 
(CNN) require large-sample data to train. However, our sample size 
does not lend itself to those methods. Therefore, we  designed a 
multi-type feature extraction and multi-level feature embedding 
framework based on a multi-layer perceptron (MLP) architecture 
that is appropriate for this sample size. We employed neuroimaging-
based preprocessing pipelines to extract the structural features from 
the raw T1 MR. Two primary structural feature types were extracted 
from the raw T1 structural MRI data: the regional brain structure 
volume and cortical mantle thickness. Each MRI scan was 
parcellated into small patch-based features (also called super-pixels) 
to reduce the dimensionality of the input data while preserving 
anatomically relevant MRI features.

The manifold of cerebral cortical surface data was first derived 
through brain tissue segmentation (gray matter, white matter, and 
cerebral spinal fluid – CSF), followed by cortical surface reconstruction 
using FreeSurfer 5.3 (Fischl, 2012). The initial vertex-based data was 
then further segmented into 360 patches, or regions of interest (ROIs), 
using the HCP-MMP1 atlas (Glasser et al., 2016) to preserve critical 
local discriminative features. The mean cortical measurements, both 
volume and thickness, were then calculated for each patch as the input 
features. In addition, the volumes of 15 FreeSurfer-segmented 
subcortical gray matter structures were also included as additional 
volumetric features (thalamus, caudate, putamen, pallidum, 
hippocampus, amygdala, accumbent, both left and right hemisphere, 
plus brainstem). The final multi-type features resulted in a total of 735 
features: 360 cortical thickness features plus 360 cortical volume 
features, as well as 15 subcortical volume features.

2.2.2 Feature harmonization
When combining multi-cohort data, confounding factors such 

as demographic variation as well as discrepancies within the data 

1 https://www.allftd.org/

2 https://memory.ucsf.edu/research-trials/research/allftd

3 http://4rtni-ftldni.ini.usc.edu/

FIGURE 1

Schematic diagram of the framework in this study, which consists 
of: (1) feature extraction to derive patch-based multi-type features 
of cortical thickness and cortical/subcortical volumes; (2) W-score-
based feature harmonization to control confounding factors such 
as scanner difference and study site bias, as well as demographic-
related covariates; (3) the differential diagnosis model using multi-
layer-perceptron (MLP)-based multi-level parallel feature 
embedding deep neural network to achieve FTD subtype 
classification; (4) neuroimaging-derived brain differential patterns 
among different FTD subtypes.
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acquisition devices and protocols will introduce unwanted 
heterogeneity within the data. Such data heterogeneity not only 
reduces the power of the analysis but may also introduce systematic 
bias. Neuroimage-derived measurements such as cortical thickness 
and subcortical volume will likely inherit such confounder-
induced intrinsic biases. To control the confounders including 
cohort difference, scanner and coil difference, sex, as well as total 
intracranial volume (TIV), we used the generalized linear model 
(GLM)-based data harmonization that we  have previously 
developed (Ma et al., 2019), using bvFTD as the reference group to 
calculate the reference mean and standard deviation. The resulting 
standard-residual term of the original feature, which is termed as 
w-score, is then used as the harmonized feature for the downstream 
tasks. It is worth noting that the GLM model used for feature 
harmonization was constructed using only the training data in 
each validation fold in the cross-validation. Details about cross-
validation are described in the “model training and evaluation” 
section below.

2.3 Deep neural network (DNN)-based 
FTD subtype differential diagnosis model

2.3.1 Neural network architecture design
To achieve accurate differentiation between the three FTD 

subtypes based on neuroimaging information, we designed and 
trained a deep neural network (DNN) classifier through a two-level 
multi-type parallel feature embedding and fusion process 
(Figure 2). Each of the feature-embedding blocks was built using a 
multi-layer perceptron (MLP). Specifically, both the patch-wise 
cortical thickness features and cortical/subcortical volume features 
were fed into the two parallel input arms of the first-level network 
(shown in blue and red blocks) and optimized simultaneously. The 
embedded features from the first level were then concatenated into 
a fused intermediate latent feature vector and fed into the second 
level network (shown in green blocks), to derive the final output 
node of three classes of FTD subtypes.

2.3.2 Model training
A 10-fold nested cross-validation procedure was used to 

evaluate the robustness of the classification model, with each fold 
containing 80% training data, 10% validation data, and the 
remaining 10% of the data reserved as the independent testing set. 

The train/validation/test split was stratified based on the sample 
size ratio among FTD subtypes to ensure a comparable percentage 
sample for each class in each fold. The final predicted subtype 
classifications were derived from the probabilistic ensemble of the 
nine models trained in the inner folds. Weighted cross-entropy loss 
function was used to account for unbalanced sample size across 
subtypes, with weights calculated as the inverse proportion of class 
samples for each class. Stochastic gradient descent was used to 
optimize the model parameters of the DNN to minimize the loss 
function, with a learning rate of 1 × 10−3 and an L2 weight decay 
rate of 1 × 10−5.

2.3.3 Performance evaluation and ablation 
study

To evaluate the classification performance of the differential 
diagnosis model, we measured the balanced accuracy for each FTD 
subtype, which was defined as the mean of sensitivity (the true 
positive rate) and specificity (the true negative rate), as well as the 
overall balanced accuracy calculated as the averaged across all FTD 
subtypes. We performed model comparisons to evaluate the effect 
of each component of the multi-type, multi-level feature 
embedding framework. A set of different experimental setups were 
included: (1) the proposed multi-level multi-type parallel feature 
embedding framework, in which the volume and thickness features 
were embedded into latent feature space independently in the first 
level before fusing and feeding into the second-level feature 

FIGURE 2

The schematic diagram of the neural network architecture of the 
multi-level parallel feature embedding framework used in this study 
to achieve accurate classification to differentiate FTD subtypes. Each 
block represents a multi-layer-perceptron (MLP) block. The number 
displayed in each of the MLP-based feature embedding blocks 
indicates the number of nodes in the corresponding layer.

TABLE 1 Demographics information of the patients collected from multiple cohorts, in terms of sample size and age, stratified by sex, study cohort, as 
well as FTD subtypes.

Overall Grouped by Sex

Male Female

Sample size (%) 277 151 (54.5%) 126 (45.5%)

Age, mean (SD) 63.7 (7.7) 63.5 (6.9) 63.9 (8.6)

Cohort, n (%)
ALLFTD 131 (47.3%) 79 (52.3%) 52 (41.3%)

NIFD 146 (52.7%) 72 (47.7%) 74 (58.7%)

Subtype, n (%)

bvFTD 173 (62.5%) 97 (64.2%) 76 (60.3%)

nfvPPA 63 (22.7%) 32 (21.2%) 31 (24.6%)

svPPA 41 (14.8%) 22 (14.6%) 19 (15.1%)
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embedding block; (2) “naïve concatenation” model that 
concatenated the volume and thickness input features into a long 
feature vector as a naïvely-fused multi-type feature and trained a 
conventional MLP network with the same number of nodes at each 
level; (3) ablation model that used only the thickness features as 
input; and (4) ablation model that only used volume features as 
input. All the model evaluations were performed on the test sets 
across all 10 outer folds.

2.4 Clinical explainability via local feature 
importance

To investigate the local distinguishable structural features 
that contribute more toward differentiating FTD subtypes, 
we  used an explainable AI (XAI) approach called “Integrated 
Gradient” (Sundararajan et al., 2017), which assigned importance 
scores to each input feature (i.e., volume and thickness patches) 
reflecting their relevant contribution to the model’s outcome 
prediction. This was achieved by computing the integral of the 
gradients of the predicted output for the given input features. The 
populational mean Integrated Gradient based feature importance 
map of each FTD subtype was then projected onto the template 
cortical manifold (HCP-MMP1 atlas) using the R package ggseg 
(Mowinckel and Vidal-Piñeiro, 2020). Additionally, for both 
volume and thickness, we conducted patch-wise linear models 
with the diagnostic group (vs. other groups) as the main effect 
and age, sex, and education as covariates. Multiple comparisons 
for the patch-wise cortical statistical mapping was controlled 
with a false discovery rate (FDR) set to 0.05.

3 Results

3.1 Multi-type structural feature extraction 
and harmonization

Figure 3 displays the panorama visualization of the Z-scores for 
each of the input features (columns) across the entire sample 
population of patients (rows) for all three FTD subtypes, both before 
and after the feature harmonization. Z-score value for each feature 
represents the difference between individual measurements compared 
to the reference group mean, standardized by the reference group 
standard deviation. Negative Z-scores indicate values lower than the 
reference mean (i.e., smaller volume, thinner cortex); while positive 
Z-scores represent higher than the reference mean (i.e., larger volume, 
thicker cortex). The raw volumetric features showed a significant 
cohort effect between the ALLFTD and NIFTD data compared to the 
thickness feature (Figure 3 left). Comparatively, no visible cohort bias 
was observable after the feature harmonization (Figure 3 right).

3.2 Differential diagnosis model evaluation 
and ablation study

The proposed differential diagnosis model showed the best 
classification performance among all compared models, achieving a 
balanced accuracy of 79.7% for bvFTD, 81.9% for nfvPPA, 89.2% for 
svPPA, and an overall balanced accuracy of 83.6%. Table 2 shows the 
results of the ablation study to evaluate the performance of the 
proposed FTD subtype differential diagnosis model using 10-fold 
class-stratified nested cross validation, in terms of balanced accuracy 

FIGURE 3

Effects of feature harmonization in preprocessings. The paranomic heatmap shows the Z-scores of thickness and volume features before (left) and 
after (right) the data harmonization. Z-score values for each features represents the difference between individual measurements compared to the 
reference group mean, standardized by the reference group standard deviation. Negative Z-scores indicate lower value than the reference mean (i.e., 
smaller volume, thinner cortex), while positive Z-scores represent higher value than reference mean (i.e., larger volume, thicker cortex). Cohort-
dependent biases were noticeable before the harmonization (left), which were reduced after the GLM-based feature harmonization step (right).
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for each subtype as well as the overall performance, and Figure 4 
shows the corresponding box plot of the class-specific balanced 
accuracy as well as the overall multi-class balanced accuracy. When 
comparing single-type features as input, the thickness-only feature 
input (Table  2B; Figure  4 yellow) showed stronger discriminative 
power compared to the volume-only feature input (Table 2A; Figure 4 
blue) for bvFTD, svPPA, as well as the overall performance. 
Interestingly, simply concatenating the volume and thickness feature 
types into a single input feature vector (Table 2C; Figure 4 green) 
resulted in reduced classification performance compared to the 
thickness-only feature input. On the contrary, the proposed multi-
level parallel feature embedding approach (Table 2D; Figure 4 red) 
demonstrated performance improvement in terms of balanced 
accuracy for the classification of two out of the three FTD subtypes 
(bvFTD and nfvPPA), as well as the overall balanced accuracy.

3.3 FTD subtype differential patterns 
through explainability deep learning

The Integrated Gradient based FTD subtype feature attribute 
visualization patterns are shown in Figure 5 for both cortical thickness 
and volume features. The magnitude of the feature attributions (i.e., 
absolute value) represents the influence of each feature toward the 
output classification, while the sign of the feature attribution (i.e., 
positive and negative) reflect the direction of the feature influence 
toward the classification output. For example, for features with positive 
attributions (as shown in red), increasing in scalar value of the feature 
(i.e., structural volume or cortical thickness) will increase the 
likelihood of prediction for the correct FTD subtype; while for features 
with negative attribution (as shown in blue), decrease in scalar value 
of the feature will increase the likelihood of prediction for the correct 

TABLE 2 The ablation study of the FTD subtype differential model.

Feature Type bvFTD nfvPPA svPPA Overall

A) Volume 0.742 0.791 0.854 0.796

B) Thickness 0.781 0.790 0.885 0.819

C) Thickness + Volume 0.760 0.796 0.867 0.808

D) Thickness + Volume (multi-level) 0.797 0.819 0.892 0.836

The classification performances were reported as the mean balanced accuracy on the test sets across all the 10 outer folds of the nested cross-validation. Different combination of input features 
and network architecture design are reported, including: (1) volume-only input features; (2) thickness-only input features; (3) Joint volume and thickness input feature using single-level MLP; 
and (4) Joint volume and thickness input feature using two-level MLP. The balanced accuracy for each individual FTD subtype (bvFTD, nfvPPA, and svPPA) as well as overall balance accuracy 
was reported. Bold values indicate the model with the best performance in terms of mean balanced acuracy.

FIGURE 4

Classification performance in terms of balanced accuracy comparison among different combination of input features and network architecture design: 
(1) volume-only input features; (2) thickness-only input features; (3) Joint volume and thickness input feature using single-level MLP; and (4) Joint 
volume and thickness input feature using two-level MLP. The balanced accuracy for each individual FTD subtype (bvFTD, nfvPPA, and svPPA) as well as 
overall balance accuracy was reported. The black diamond box both in each subtype group as well as the overall performance represent the values of 
balanced accuracy that beyond two standard deviations among the 10-fold cross-validation.
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FTD subtype. In other words, both the positive attributions (red) and 
negative attribution (blue) with the same Integrated Gradient value 
will have equivalent feature importance for making the correct 
classification, but with different direction of the influence. Attributions 
that are close to zero represent features that have minimal influence 
in the model prediction. Based on the thickness features (Figure 5, 
left), patches within the left temporal lobes appear to positively impact 
differentiation for both nfvPPA and svPPA. Regions from the inferior 
frontal and frontal operculum also positively influence the model for 
nfvPPA. For bvFTD, left-sided anterior temporal and frontal 
opercular/insular as well as bilateral frontal pole regions showed 
positive influences on the model, while cingulate and paracentral 
regions had negative influences (shown in blue). Volume-based 
features showed relatively diffuse differential patterns for both positive 
and negative influence than thickness features, although in generally 
similar overall patterns. This observation aligns with the results of the 
ablation study that thickness features showed stronger power to 
classify FTD subtypes compared to volume features. Figure 6 displays 
their corresponding patch-based statistical cortical mapping 
visualization, demonstrating canonical patterns of cortical atrophy in 
each subtype. Patterns of cortical atrophy in each subtype generally 
correspond to the Integrated Gradient based features of importance 

(i.e., in the temporal regions for svPPA and nfvPPA, and in frontal 
regions for bvFTD). However, it’s worth noting that the patterns of 
atrophy tend to be  more evenly distributed across neighboring 
patches, whereas Integrated Gradient based feature importance 
displays a more scattered distribution.

4 Discussion

In this study, we developed a deep-learning-based framework for 
the identification and differentiation of three subtypes of FTD 
(bvFTD, nfvPPA, and svPPA) based on structural MRI data drawn 
from two multi-site neuroimaging consortiums. We showed that the 
ensembled DNN classifier achieved promising differentiation power, 
with a balanced accuracy of 0.80 for bvFTD, 0.82 for nfvPPA, and 0.89 
for svPPA. We additionally implemented a novel feature visualization 
tool to identify the most discriminative cortical and subcortical 
regions and explore their clinical relevance, which can provide insights 
into the underlying neuropathological processes and aid in the 
development of targeted interventions for different FTD subtypes.

The high balanced accuracy achieved by the DNN classifier in this 
study is an important step towards developing more reliable tools for 

FIGURE 5

Differential cortical patterns for each of the FTD subtype. The cortical manifold plot visualizes populational average feature importance map using 
Integrated Gradient based feature importance analysis projected onto the template cortical manifold (HCP-MMP1 atlas) for both the cortical thickness 
(left) and volume (right) features. The color maps represent Integrated Gradient based feature importance scores ranging from −0.06 to 0.06. The 
magnitude of the feature attribution (i.e., absolute value) represent the influence of each feature towards the output classification, while the sign of the 
feature attribution (i.e., positive and negative) reflect the direction of the feature influence towards the classification output. Attributions that are close 
to zero represent features that have minimal influence in models prediction.

FIGURE 6

the statistical cortical mapping for each FTD subtype in which the patch-wise cortical features (both thickness and volume) were statistically compared 
with the combination of remaining populations that belong to the combination of the other two FTD subtypes.
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differentiating FTD subtypes using neuroimaging data. Machine 
learning methods have been extensively implemented in the 
differential diagnosis of Alzheimer’s disease (AD) from cognitively 
normal controls (Wang et al., 2007; Lucas et al., 2011; Raamana et al., 
2014; Dominic et  al., 2018; Popuri et  al., 2018; Bae et  al., 2019; 
Gyujoon et al., 2022), and between AD, FTD, and cognitively normal 
(CN) groups (Wang et al., 2016; Kim et al., 2019; Ma et al., 2020; Hu 
et  al., 2021). Prior work has also implemented machine learning 
methods for differential diagnosis of PPA subtypes, including svPPA, 
nfvPPA and logopenic PPA (Agosta et al., 2015; Themistocleous et al., 
2021). However, the performance of these models has been 
inconsistent, with few studies reporting high accuracy levels but with 
small sample sizes (McCarthy et al., 2018).

One of the challenges in machine learning classification of FTD 
subtypes is the significant clinical, pathological, and genetic 
heterogeneity of FTD, making it difficult to develop a universal model 
that can accurately classify all subtypes. Additionally, the lack of large 
and standardized datasets, as well as the variability in imaging 
protocols across studies, have also limited the generalizability. DNN 
classifiers have shown superior performance compared to traditional 
machine learning methods, such as support vector machines (SVM) 
and random forest for accurate classification of disease groups using 
neuroimaging data (Schmidhuber, 2015; Eslami and Saeed, 2019; 
Amini et al., 2021). On the other hand, end-to-end deep learning 
frameworks such as CNN-based usually require a large sample size for 
training. In the current study, we  designed a multi-type feature 
extraction and multi-level feature embedding framework based on the 
multi-layer perceptron (MLP) framework, with dimension reduction 
and feature extraction achieved through neuroimaging-based 
preprocessing pipelines to extract the structural features from the raw 
T1 MR. Specifically, we demonstrated that the fusion of multi-type 
input features in DNN is most effective through multi-level parallel 
feature embedding, in which each feature type was embedded into 
independent feature-specific low-dimensional representation before 
fusion together for a higher-level concurrent representation learning. 
Our results (Table 2; Figure 4) demonstrated the effectiveness of such 
a multi-type feature fusion approach as compared to the naïve feature 
concatenation at the input layer. Such a multi-type parallel feature 
embedding framework could be generalizable to other multi-modal 
deep learning problems such as neuroimaging genomics 
(Mirabnahrazam et al., 2022).

Our results showed the highest balanced accuracy of classification 
for svPPA at 0.89. svPPA is commonly associated with striking 
asymmetric atrophy of the dominant hemisphere temporal pole 
(Rogalski et al., 2011). This distinctive atrophy pattern is usually due 
to the presence of TDP-43 Type C neuropathology in these regions 
(Kawles et al., 2022; Keszycki et al., 2022). The high discriminative 
accuracy found in the present study is, therefore, unsurprising given 
this distinctive neuropathological profile and resultant 
neuroanatomical pattern of atrophy. Regions of the temporal lobes 
were identified as most useful in the discrimination, both for nfvPPA 
and svPPA, potentially driven by the semantic and linguistic variations 
that are identified as clinical features to define these two FTD subtypes. 
Moreover, subcortical regions, including the hippocampus and 
amygdala, were identified by the feature visualization tool as aiding in 
the differentiation (Supplementary Figure S3), aligning with the fact 
that more posterior elements of the medial temporal lobe in svPPA 
spared (Tan et al., 2014).

For bvFTD, our classifier achieved a balanced accuracy of 0.80. 
Individuals diagnosed clinically with bvFTD typically show significant 
gray matter volume loss of the frontal and temporal lobes, with early 
and most significant loss of volume in the insula and anterior cingulate 
cortex (Seeley et al., 2008; Mandelli et al., 2016; Ranasinghe et al., 
2016). The lower classification accuracy observed in bvFTD than in 
svPPA may represent the greater clinical, neuroanatomical, and 
pathological heterogeneity of bvFTD. Indeed, bvFTD can be due to 
underlying FTLD-Tau, FTLD-TDP, or less commonly, AD 
neuropathology (Peet et al., 2021). Based on the feature visualization 
map, brain regions that more strongly contributed to the classification 
of bvFTD vs. others include the left posterior insula, superior temporal 
gyrus, and right prefrontal lobe for cortical thickness. For volume-
based input data, the right posterior cingulate and bilateral insular and 
frontal opercular regions were identified as strongly contributing to 
the classification. This is consistent with reports showing that atrophy 
of the insular cortex is common in bvFTD (Mandelli et al., 2016; Fathy 
et al., 2020) and has even been shown to correlate with key clinical 
features, such as social cognition (Baez et al., 2019).

Finally, we showed that nfvPPA classification balanced accuracy 
was 0.82. Patients who present clinically with nfvPPA typically show 
atrophy of the left inferior frontal, insular and premotor cortex 
(Agosta et  al., 2015), consistent with the pattern of motor speech 
deficits that are observed clinically (Rogalski et al., 2011). The lower 
observed classification accuracy of bvFTD and nfvPPA may 
be attributable to overlapping neuropathological and neuroanatomical 
signatures, as both syndromes are frequently associated with 
FTLD-Tau pathology (Mesulam et  al., 2008, 2014). In the feature 
visualization map, regions identified as contributing to the 
classification included the left lateral and medial temporal lobes, left 
inferior frontal lobe, and left paracentral/midcingulate for the 
thickness inputs. In addition, regions from the volume inputs that 
were identified as important included the left superior temporal and 
right frontal operculum. Interestingly, prior work by Mandelli et al. 
(2016) found that nfvPPA subjects showed greater atrophy in the left 
posterior insula, which corresponds more to speech production, 
whereas bvFTD subjects showed greater atrophy in the ventral 
anterior insula, which corresponds to social–emotional functions. 
We  observed similar results in our feature importance map, with 
regions of importance for nfvPPA being more congruent with inferior 
frontal motor speech areas, while bvFTD areas of importance were 
more apparent in the posterior insula and the anterior superior 
temporal lobe. Feature visualization maps also indicated that the 
bilateral hippocampal and right amygdala volumes were important in 
the classification (Supplementary Figures). Analyses of subcortical 
structural changes in nfvPPA are limited. However previous research 
has indicated possible effects on structures of the basal ganglia due to 
their role in hypothesized speech production pathways (Mandelli 
et al., 2018).

4.1 Limitations and future directions

In the current study, we considered demographic information as 
cofounding factors and controlled their effects on neuroimaging 
features through a regression-based harmonization step (Ma et al., 
2019). This harmonization approach has been shown to be effective in 
increasing the classification power when predicting the risk of future 

https://doi.org/10.3389/fnins.2024.1331677
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ma et al. 10.3389/fnins.2024.1331677

Frontiers in Neuroscience 09 frontiersin.org

dementia onset (Popuri et  al., 2020) and differentiating dementia 
subtypes (Ma et al., 2020).

Furthermore, disease subtypes might have populational 
prevalence among different demographic groups (Ma et al., 2022), and 
this information might aid discrimination. Indeed, incorporating 
demographic information into deep-learning frameworks has shown 
benefits to the deep-learning model in clinical applications such as 
dementia onset risk (Mirabnahrazam et al., 2022). Future directions 
of the current research could include investigating an alternative 
strategy to incorporate demographic information into the differential 
diagnosis framework instead of treating them as confounding factors 
in the harmonized preprocessing step, potentially improving the 
efficacy and generalizability of the differential diagnosis framework.

Additionally, our classification of interest was clinical diagnosis, as 
clinical syndromes are known to correspond more closely to 
neuroanatomical lesions as compared to neuropathology (Seeley et al., 
2009). However, future research may choose to incorporate clinical, 
pathological, or genetic information to evaluate how this impacts 
classification accuracy.

In this work, we did not include cognitively normal control subjects 
as the healthy aging population due to insufficient samples, so 
we  selected bvFTD as the reference group for data harmonization. 
Therefore, the resulting feature importance map mainly accounts for the 
more subtle differences among the three FTD subtypes rather than their 
differential atrophy patterns compared to the cognitively normal 
subjects. Future studies may choose to incorporate a large representative 
healthy aging population to be  regarded as the reference group to 
achieve the most unbiased data harmonization (Ma et al., 2020), as well 
as extend to multi-syndrome dementia subtypes (Lampe et al., 2022) to 
capture brain patterns that include both predominant pathological 
factors as well as secondary subtype-driven differential patterns that are 
more likely to be subtle and relatively more heterogeneous.

We used structural features from T1-weighted MRI in the current 
study to derive differential features for detecting subtypes within 
FTD. Extension of current work could involve additional neuroimaging 
modalities such as diffusion tensor imaging (DTI) (Torso et al., 2020) 
or functional MRI (fMRI) (Gonzalez-Gomez et al., 2023). Another 
future direction for dealing with limited features would be to use a self-
supervised approach as a feature extractor, to be  trained on larger 
datasets, to extract disease-agnostic generalized neuroimaging features 
in lower dimensions, and then train a using the low-dimension 
representation space (Krishnan et al., 2022; Tang et al., 2022; Huang 
et al., 2023).

Finally, in terms of the model explainability, we mainly focused on 
using the deep-learning-based integrated gradient to derive the feature 
importance map. In follow-up studies, other feature importance 
methods, especially model-agnostic approaches such as SHAP (SHapley 
Additive exPlanations) (Lundberg and Lee, 2017) and multi-type feature 
permutation tests (Mirabnahrazam et al., 2022) could be incorporated 
to achieve more comprehensive and comparative analysis on the clinical 
explainability of deep-learning-based models.

5 Conclusion

In conclusion, we present here what we believe represents the first 
study to use a deep neural network classifier to differentiate the FTD 
subtypes of bvFTD, nfvPPA, and svPPA with feature visualization. 

We showed promising differentiation power using a combination of 
feature harmonization and a parallel multi-type feature embedding 
framework. Our approach has several potential clinical applications. 
For example, it could be used to identify at-risk populations for early 
and precise diagnosis, leading to more effective intervention planning. 
Further, our work may also help to advance our understanding of the 
underlying neurobiological mechanisms of FTD, providing important 
insights into the pathophysiology of the disorder.
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