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Removal of movement artifacts 
and assessment of mental stress 
analyzing electroencephalogram 
of non-driving passengers under 
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The discomfort caused by whole-body vibration (WBV) has long been assessed 
using subjective surveys or objective measurements of body acceleration. 
However, surveys have the disadvantage that some of participants often express 
their feelings in a capricious manner, and acceleration data cannot take into 
account individual preferences and experiences of their emotions. In this study, 
we investigated vibration-induced mental stress using the electroencephalogram 
(EEG) of 22 seated occupants excited by random vibrations. Between the 
acceleration and the EEG signal, which contains electrical noise due to the 
head shaking caused by random vibrations, we found that there was a strong 
correlation, which acts as an artifact in the EEG, and therefore we  removed 
it using an adaptive filter. After removing the artifact, we  analyzed the 
characteristics of the brainwaves using topographic maps and observed that 
the activities detected in the frontal electrodes showed significant differences 
between the static and vibration conditions. Further, frontal alpha asymmetry 
(FAA) and relative band power indices in the frontal electrodes were analyzed 
statistically to assess mental stress under WBV. As the vibration level increased, 
EEG analysis in the frontal electrodes showed a decrease in FAA and alpha 
power but an increase in gamma power. These results are in good agreement 
with the literature in the sense that FAA and alpha band power decreases with 
increasing stress, thus demonstrating that WBV causes mental stress and that 
the stress increases with the vibration level. EEG assessment of stress during 
WBV is expected to be used in the evaluation of ride comfort alongside existing 
self-report and acceleration methods.
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1 Introduction

A large number of occupants are exposed to vertical vibrations in various forms of 
transport such as automobiles, aircraft, trains, and ships. These vibrations, known as whole-
body vibrations (WBVs), are transmitted to either specific parts or the entire human body 
through the seat structure, which consists of the seat surface, backrest, and foot area. The WBV 
during driving can cause adverse effects in occupants, including motion sickness (Donohew 
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and Griffin, 2004), drowsiness (Bhuiyan et al., 2022), low-back pain 
(Burström et  al., 2015), and discomfort (Griffin, 2007). Of these 
effects, discomfort is particularly noteworthy as it is becoming more 
important as long-distance travel increases with advances in 
autonomous driving and vehicle infotainment technologies. Therefore, 
there is an emerging need to quantitatively measure and assess 
discomfort in WBV environments from a brain response perspective.

The discomfort caused by vertical WBV has long been assessed 
using a self-report questionnaire or acceleration. In the self-report 
questionnaire, discomfort has been quantified by subjective ratings 
(often on a scale of 1–10) from test drivers during product 
development (Griffin, 2007; Badiru and Cwycyshyn, 2013; Taluja 
et al., 2017). In addition, several researchers have used the equivalent 
comfort contour to quantify discomfort in terms of the magnitude, 
frequency, and direction of the vibration (Griffin and Erdreich, 1991; 
Morioka and Griffin, 2006; Zhou and Griffin, 2014; Huang and Zhang, 
2019; Lin et  al., 2022). The equivalent comfort contour is a 
representation of the physical magnitude of a WBV that causes the 
same level of discomfort over a range of frequencies. It is obtained by 
subjective ratings of the magnitude and frequency of the vibration 
(Zhou and Griffin, 2014). The equivalent comfort contour has been 
used as a guideline for human factor design in transport, as it indicates 
which frequency ranges are sensitive and how this varies with 
magnitude. While these methods are useful for making relative 
judgments about the ride comfort of different vehicles, they are 
inadequate for providing an absolute measure of comfort (Griffin, 
2007). Subjective ratings are not as sensitive to small changes in 
vibration; for example, reductions in vibration magnitude of less than 
10% are generally undetectable by subjective ratings (Morioka and 
Griffin, 2000). Meanwhile, in the acceleration-based method, the 
international standards ISO 2631-1 and BS-6841 proposed a ride 
index to quantify discomfort by applying a frequency weighting and 
axis multiplication factors to accelerations measured at different 
locations on the body (Griffin and Erdreich, 1991; Griffin, 2007; 
Badiru and Cwycyshyn, 2013; Taluja et al., 2017). Several studies have 
used the ride index to evaluate discomfort in different modes of 
transport, such as a car (Cantisani and Loprencipe, 2010; Song et al., 
2023), a train (Zoccali et al., 2018), a helicopter (Delcor et al., 2022), 
and a cruise flight (Huang and Li, 2023). However, the acceleration-
based rating has the disadvantage that it cannot reflect within-subject 
variability, such as personal preferences that vary across different 
environments, and between-subject variability, such as exceptional 
sensitivity in certain passengers. Additionally, the human response, 
which is influenced by stress factors, cannot be accurately measured 
by acceleration alone.

Physiological signals have been considered potential objective 
tools to detect emotional changes and stress of individuals (Alarcao 
and Fonseca, 2017; Giannakakis et  al., 2022). In particular, 
electroencephalogram (EEG) signals are advantageous over other 
physiological signals in detecting individual emotions because 
cognitive status is directly associated with brain activity (Cheng et al., 
2022). Numerous studies have used EEG to detect individual 
emotional changes in response to different driving conditions. For 
instance, Rebolledo-Mendez et  al. (2014) proposed a detector of 
human emotions such as tiredness and stress (tension), which are 
highly related to traffic accidents in highway and urban environments. 
They used a body sensor network (BSN) consisting of EEG and 
electrodermal activity sensors to detect emotions. They showed that it 

is possible to detect one emotional state in real time using BSN. Halim 
and Rehan (2020) presented a machine learning-based approach 
based on EEG to identify stress patterns caused by driving. To predict 
EEG patterns based on subjects’ self-reported emotional state during 
various driving situations, they used Support Vector Machine, Neural 
Network, and Random Forest. This study demonstrated that the 
spectral power of differential hemispheric asymmetry set for five 
frequency bands, including alpha, low beta, high beta, gamma, and 
theta, is an appropriate metric for distinguishing brain dynamics in 
response to stressful stimuli. Hussain et al. (2021) investigated mental 
workload-induced neurological changes in 17 healthy male drivers 
using a portable EEG headset while driving in different driving 
scenarios. The extent of change varied depending on the type of road, 
speed and signal regulations, the behavior of surrounding vehicles, 
and the overall traffic situation. This study also interpreted EEG 
features in driving workload. Affanni et  al. (2022) presented a 
six-channel EEG wearable headband to measure discomfort related 
brain activity during driving. The spectral power of the beta wave was 
used as an indicator of discomfort. Prior research has predominantly 
concentrated on the mental stress experienced by drivers, with less 
attention given to that of passengers. Passengers, however, may face 
considerable stress owing to vibrations from road surface roughness, 
while a driver’s stress stems from the demands of the driving task 
itself. To our knowledge, there has yet to be  a published study 
investigating the mental stress of passengers caused by whole-body 
vibration (WBV), as analyzed through EEG.

In EEG measurement, WBV can cause movement artifacts. Due 
to difficulty of removing these artifacts, many studies may not have 
considered whole-body vibration in driving situations. However, in 
the field of gait analysis, several methods have been used to remove 
these artifacts. For instance, Gwin et al. (2010) used independent 
component analysis (ICA) and component-based template regression 
to remove gait movement artifacts. Some studies have used artifact 
subspace reconstruction (ASR) and ICA to remove artifacts that occur 
during walking (Bulea et  al., 2015; Oh et  al., 2021). ICA-based 
methods typically necessitate human intervention to identify and 
remove artifact components. Consequently, expert knowledge is 
requisite to discern movement artifacts for elimination, posing a 
challenge for real-time implementation. In contrast, adaptive filters 
can remove movement artifacts autonomously without human 
involvement, enabling automation as long as the acceleration signals 
corresponding to the movement artifacts are measured. Several 
studies have successfully employed adaptive filters to remove the 
fundamental frequency of contamination, synchronized with walking 
cadence, and its associated harmonics from EEG signals collected 
during ambulation (Mihajlović et  al., 2014; Kilicarslan and Vidal, 
2019; Rosanne et  al., 2021). However, no studies to date have 
addressed the removal of movement artifacts from EEG recordings of 
seated individuals exposed to vertical whole-body vibration.

In this study, we verified the performance of an adaptive filter for 
WBV-induced movement artifacts in the EEG signal when subjected 
to the vertical random vibration. Herein, we  used the reference 
channel of the adaptive filter as the vertical acceleration signal 
measured at the head. Moreover, to determine the optimal adaptive 
filter method, we compared the performance of a normalized least 
mean square (NLMS) adaptive filter and a recursive least square (RLS) 
adaptive filter for artificial movement artifacts. After artifact removal 
using an adaptive filter, the spatial characteristics of the EEG signal 
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were analyzed using topographic maps. We also analyzed the changes 
in the EEG signal of occupants with respect to the magnitude of the 
random vibration in terms of stress. For stress analysis, we used the 
frontal alpha asymmetry (FAA) and relative power indices. These 
indicators were compared and analyzed with results from the existing 
literature on stress analysis.

2 Materials and methods

2.1 Participants

A total of 25 volunteers (13 males and 12 females, age: 22.64 ± 1.93) 
participated in this study. However, data from three participants (2 
males and 1 female) were excluded due to corrupted EEG recordings, 
leaving 22 participants (11 males and 11 females, aged 
22.68 ± 2.06 years) whose data were analyzed. These participants were 
selected as individuals without any physical or psychological issues. 
They were required to abstain from alcohol and to get sufficient sleep 
the day before the experiment, which could otherwise the 
experimental results. They were also instructed not to consume 
caffeine 3 h before the start of the experiment and provided a detailed 
explanation of the objectives and procedures of the experiment, in 
advance, after which all of them signed an informed consent. 
Monetary compensation was provided for their participation after the 
experiment. The overall experimental protocol was reviewed and 
approved by the institutional review board at Kyungpook National 
University (2023-0041), 27 January 2023.

2.2 Experimental environment

To explore the neurophysiological responses to random vibrations, 
the participants were exposed to the vibrations using a motion 
simulator, as depicted in Figure  1. The random vibrations were 
characterized by an approximately flat constant bandwidth spectrum, 
constrained by a Butterworth filter with cutoff frequencies set at 0.5 
and 25 Hz. The magnitude of the vibration was established at 1.0, 1.5, 
and 2.0 m/s2 based on the root mean square (r.m.s.). To mimic 

conditions similar to real-world vehicular operation, the participants 
watched a road-view video during the excitation of vibration.

To reduce non-vibratory stressors, several precautions were 
explained before the experiment. Participants were allowed a rest 
period to ensure they were well rested. The laboratory was maintained 
at a constant room temperature to provide a comfortable environment. 
In addition, to minimise the effects of ambient noise and discomfort 
due to sitting posture, participants were provided with earplugs and 
instructed to maintain an upright posture, ensuring that their backs 
were fully supported by the backrest.

The vibration test was organized into three sessions: a calibration 
session, a control session, and an experimental session as shown in 
Figure 2. During the calibration session, which was designed for the 
collection of EEG data for artifact removal, the participant watched a 
white fixation cross with a black background for 2 min. In the control 
session, which was designed to collect data as a baseline for subsequent 
comparisons, the participant watched a road-view video without any 
vibration for 2 min. In the experimental session, the participants 
watched the road-view video under a vertical random vibration for 
2 min and 10 s. The order of the vibrations was randomized to exclude 
any preconceptions about the magnitude of the excitation. Finally, a 
1 min rest interval was incorporated between each test to minimize 
the influence of the previous experiment on the next.

2.3 Data acquisition

EEG signals were recorded using actiCHamp Plus (Brain Vision, 
Morrisville, NC, United States) at a sampling rate of 500 Hz. The 32 
channel EEG electrodes were placed on the participant’s scalp 
according to the 10–20 international system to record EEG signals 
(Fp1, Fp2, F7, F3, Fz, F4, F8, FT9, FC5, FC1, FCz, FC2, FC6, FT10, T7, 
C3, C4, T8, TP9, CP5, CP1, CP2, CP6, TP10, P7, P3, Pz, P4, P8, O1, 
Oz, and O2) as depicted in Figure 3. The reference channel was FCz, 
and the impedance of all electrodes was maintained below 10 k©. 
Additionally, we  measured the head acceleration to eliminate the 
movement artifact caused by WBV.

2.4 Preprocessing

Data preprocessing was performed using MATLAB (MathWorks, 
Natick, MA, United States) and the EEGLAB toolbox (Delorme and 
Makeig, 2004) as illustrated in Figure 4. An initial segment of EEG 
data from 0 to 10 s was eliminated not to consider the transient 
response induced by the vibration. The EEG signals were down-
sampled from 500 to 250 Hz. The linear trends of EEG signals were 
subtracted from each EEG signal to remove signal drift. The EEG 
signals were then re-referenced to the common average of all channels 
to remove common noise and bandpass-filtered from 1 Hz to 50 Hz 
using a finite impulse response filter. To remove movement artifacts 
in the EEG signals, we used an adaptive filter. The adaptive filter was 
demonstrated in the following subsection E. Bad channels were 
detected and removed based on standard deviation and correlation 
between channels. Next, we used the artifact subspace reconstruction 
(ASR) algorithm (Mullen et al., 2013; Pion-Tonachini et al., 2018) to 
detect high-variance data epochs in each channel, and after removing 
them, we reconstructed the missing data by referring to the reference 

Vibration Exciter

EEG Recording 
System

FIGURE 1

Experimental environment to collect EEG data with respect to 
vertical whole-body vibration.
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Remove transient period

Down-sampling

Re-reference by common 
average reference

Bandpass filtering
(1 – 50 Hz)

Linear detrending

Adaptive filtering

Artifact subspace 
reconstruction

Interpolation of bad 
channels

Remove bad channels

Independent
component analysis

FIGURE 4

EEG preprocessing pipeline for artifact removal.

data. In this study, 20 standard deviation was used as a variance 
threshold. Herein, the reference data is the EEG data measured in the 
calibration session. Thereafter, the previously removed channel was 

interpolated using the data of adjacent channels. Finally, we performed 
an extended ICA (Jung et al., 1997; Zhou and Gotman, 2004) for the 
extraction and removal of extraneous artifacts (eye blink, eye 
movement, muscle activity, and heartbeats) from the EEG data. The 
type of independent component (brain, eye, muscle, heartbeat, etc.) 
was determined automatically using EEGLAB’s ICLabel (Pion-
Tonachini et  al., 2019). A specific type was removed when the 
probability of that type was greater than 80%, except for the brain.

2.5 Movement artifact removal using 
adaptive filters

Movement artifacts caused by body and head movements during 
signal measurement are a major obstacle in EEG analysis. These 
artifacts are predominantly distributed within the frequency range 
below 10 Hz, overlapping with the EEG frequency band (Mihajlović 
et al., 2014; Kilicarslan and Vidal, 2019; Rosanne et al., 2021). Therefore, 
to remove the artifacts induced by WBV, we adopted an adaptive filter, 
which is a linear filter whose transfer function is controlled by variable 
parameters and a system that can adjust these parameters according to 
an optimization algorithm. The architecture of the adaptive filter 
utilized in this study was designed in the block diagram depicted in 
Figure 5. The adaptive filter can be represented as follows Equation (1):

 
y n w x n k

k

L
k[ ] = −[ ]

=
∑

0  
(1)

where y [n] indicates the movement artifact estimated by the filter, L 
denotes the order of the filter, and x [n] is the reference signal, which 
corresponds to the head acceleration measured during WBV. Also, wk 
represents the filter coefficient. The error for optimizing the filter is defined 
as the difference between the noisy EEG signal, d [n], and the estimated 
movement artifact, y [n] can be expressed as follows Equation (2):

 e n d n y n[ ] = [ ] − [ ] (2)

In this study, we used NLMS and RLS algorithms to identify the 
optimal weights of the filter that minimizes the error (Haykin, 2014). 

Control 
Session

Static 
(Road View)

Experimental 
Session

Random WBV
(Road View)

Static 
(Cross 

Fixation)

Calibration
Session

1.5 m/s2 Rest 1.0 m/s2 Rest 2.0 m/s2

FIGURE 2

Illustration of the experimental paradigm: calibration, control, and experimental sessions.

FIGURE 3

EEG channel layout based on the 10–20 international system. The 
reference channel is FCz.
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The noise cancellation performance of the two methods was 
compared under various noise conditions, as described in the 
Results section.

3 Results

3.1 Application of adaptive filters to 
artificial noise signal

To evaluate the performance of the adaptive filters, we generated 
the artificial noise signal which is expressed as a linear combination of 
a pure EEG and measured head acceleration signals. The mathematical 
representation of the noisy EEG signal is given by Equation (3)

 d n s n N n


[ ] = [ ] + [ ]λ  (3)

where d


[n] denotes the EEG signal artificially contaminated by 
the movement artifact, and s[n] and N[n] denote the pure EEG signal 
as ground truth and movement artifact, respectively. The movement 
artifact used in this study is the vertical head acceleration with a 
magnitude of 2.0 m/s2 r.m.s. Also, λ represents the hyperparameter to 
modulate the signal-to-noise ratio (SNR) in the contaminated signal. 
The SNR can be mathematically expressed as follows Equation (4):

 
SNR

RMS

RMS
=

( )
( )

10 log
s
Nλ  

(4)

where RMS indicates the root mean square of a signal. The smaller 
the SNR, the higher the noise level. In this study, we evaluated the 
performance of the adaptive filter for the noisy EEG signals of two 
different SNRs: −8 dB and 4 dB.

We then qualitatively evaluated the performance of the adaptive 
filters using the relative root mean squared error (RRMSE) in the 
temporal and spectral domains, the correlation coefficient (CC), and 
the relative band power as follows Equation (5), (6) (Zhang et al., 2021):
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RMS

RMS
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(5)
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where the function f (•) and PSD (•) denote the filtered signal by 
the adaptive filter and the power spectral density of an input signal. 
PSD was estimated using Welch’s method (Welch, 1967). The window 
length was set to 2 s, and the overlap was set to 50%. The frequency 
range of PSD is 1–50 Hz. The CC is Equation (7)

 

CC

,

Var Var

=







































 ( )

cov f d s

f d s





 

(7)

A correlation close to unity implies that the filtered signal and the 
ground truth are exactly coincident. The relative band power (RP) is 
expressed as the power of the specific band divided by the total power 
of all bands and calculated as follows Equation (8):

 
RP

power selected band

power total bands
=

( )
( )  

(8)

The RP can minimize the bias that is caused by differences in the 
conductivity of the skull and scalp between individuals 
(Bronzino, 2000).

The results of NLMS and RLS adaptive filters were compared 
with those without adaptive filters in terms of quantitative metrics 
(RRMSEtemporal, RRMSEspectral, and CC) as shown in Figure 6. All 
these three cases followed the same preprocessing procedure shown 
in Figure 4, except for the adaptive filter. The window length was set 
to 1 s. The results showed that the adaptive filters, regardless of the 
noise level, presented lower temporal and spectral RRMSE values 
and smaller deviations than the values obtained when adaptive 
filters were not employed. On the other hand, in the case of CC, the 
results of the NLMS adaptive filter were lower than when no 
adaptive filter was used. However, the results of the RLS adaptive 
filter showed the highest value with the smallest deviation for 
CC. These results indicated that the RLS adaptive filter exhibits the 
greatest robustness and superior performance across the 
three benchmarks.

We finally assessed the performance of the different methods 
by calculating the RP over different frequency bands as follows: 
delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), 
and gamma (30–50 Hz) bands. In the case without the adaptive 
filter, a significant difference was observed in all bands compared 
with the ground truth, irrespective of the noise level, as 
demonstrated in Figure  7. In contrast, the RLS adaptive filter 
showed the closest results to those of the ground truth in all 
bands, irrespective of the noise level. Therefore, the comparison 
of the performance of the adaptive filters using the three 
quantitative metrics and relative power indices revealed that the 
RLS adaptive filter is superior in terms of accuracy and  
robustness.

FIGURE 5

Block diagram of an adaptive filter to remove movement artifacts.
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FIGURE 7

Comparison of relative band power with and without adaptive filters: 
(A) when SNR  =  4  dB and (B) when SNR  =  −8  dB.

3.2 Application of adaptive filters to real 
EEG signal

The RLS adaptive filter was applied to the actual EEG signal 
contaminated by the WBV. Figure 8 presents the results of applying 
the adaptive filter to the EEG on the FC1 channel of one subject when 
the magnitude of the random vibration is 2.0 m/s2 r.m.s. As highlighted 
blue box in Figure 8A, when the vertical head acceleration fluctuated 
severely due to head movement, we also observed a spike in the EEG 
for the case of without adaptive filter. On the other hand, the EEG 
signal filtered by the adaptive filter showed no spike. Considering this 
result in terms of the frequency domain (see Figure 8B), we observed 
a peak around 3.4 Hz in the head acceleration and EEG signal without 
the adaptive filter. Interestingly, this peak is similar to the natural 
frequency of the human body (Fairley and Griffin, 1989; Cho and 
Yoon, 2001; Zhou and Griffin, 2014). Meanwhile, the peak did not 

appear in the EEG signal filtered by the adaptive filter. Therefore, 
we  confirmed that the adaptive filter successfully removed the 
movement artifacts corresponding to the resonance phenomenon of 
the human body.

In addition, to examine the correlation between head movement 
signals and EEG, we  compared the performance of conventional 
artifact removal methods on all 22 participants with and without 
adaptive filters in terms of coherence. Coherence is defined as follows 
Equation (9) (Bendat and Piersol, 2011):

FIGURE 6

Comparisons of three methods, NLMS, RLS, and without adaptive filter, in the presence of artificial noise where low and high indicate when SNR  =  4  dB 
and SNR  =  −8  dB, respectively: (A) temporal RRMSE, (B) spectral RRMSE, and (C) correlation coefficient.

FIGURE 8

Head acceleration and EEG signals at FC1 channel in (A) time and 
(B) spectral domain with and without adaptive filters.
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γ xy

xy

xx yy

S f
S f S f

2
2

=
( )

( ) ( )  
(9)

where S fxy ( )  is the cross-spectral density of the signals. Also, 
S fxx ( )  and S fyy ( ) are the PSDs of x(t) and y(t), respectively. A 
coherence of 0 indicates that no correlation exists between the two 
signals, whereas a coherence of 1 indicates that the two signals are 
fully correlated. In this study, we calculated the coherence between the 
vertical head acceleration and preprocessed EEG signals. Therefore, a 
higher coherence between the two reflects a significant inclusion of 
movement artifacts in the EEG signal.

Figure 9 shows the mean and 95% confidence interval of PSD and 
coherence at the C3 channel of the EEG, according to the magnitude 
of the vibration. In the absence of adaptive filter applications 
(bandpass filter and ICA after ASR), an increase in the magnitude of 
the excitation results in a larger peak near 4 Hz in the PSD as well as 
an increase in value in the 3–5 Hz range in coherence, due to 
movement artifacts. Although ASR and ICA can eliminate EOG 
artifacts below 4 Hz (Fatourechi et al., 2007) and EMG artifacts above 
20 Hz (Muthukumaraswamy, 2013), they failed to remove the 
movement artifacts caused by WBV. Meanwhile, the adaptive filter 
successfully removed the movement artifact that occurred near 4 Hz 
and showed near-zero coherence, regardless of the magnitude of 
the excitation.

Furthermore, we  considered the maximum coherence in the 
frequency range of all channels to verify the performance of the 
adaptive filter in terms of the spatial domain, as depicted in Figure 10. 
In the topographic maps, the color indicated average coherence for all 
participants. Herein, the blue and yellow colors indicated zero and 
high coherence, respectively. The methods without an adaptive filter 
showed high coherence near the center of the head. As the magnitude 
of the vibration increased, the region of high coherence expanded with 
increasing the coherence. Meanwhile, the methods with adaptive 
filters showed significantly near-zero coherence for all spatial domains 

regardless of vibration magnitude. Therefore, we confirmed that the 
adaptive filter successfully removed the movement artifacts caused by 
random WBV in temporal, spectral, and spatial aspects.

3.3 Mental stress with variations in 
vibration levels

Most studies on discomfort caused by WBV demonstrated that 
the level of discomfort increases with increasing magnitude of the 
vibration (Griffin, 2007). To confirm this, we  investigated the 
frequency characteristics of the EEG signal when the magnitude of the 
vibration varied. Herein, we used only the final 30 s of the EEG signals 
measured during the 2 min for the stress assessment. Moreover, 
we considered the FAA, which is a reliable estimator of stress (Gatzke-
Kopp et  al., 2014). FAA is the difference in alpha’s power natural 
logarithm between the left and right frontal regions of the brain 
(Giannakakis et al., 2015), which is defined as follows Equation (10):

 
Alpha asymmetry

F3 F4
= ( ) − ( )ln lnα α

 
(10)

Channels F3 and F4 are the regions directly affected by stress 
conditions and are commonly used to calculate alpha asymmetry (Qin 
et al., 2009).

It is well known that the frontal lobe of the brain is associated with 
emotional regulation (Chayer and Freedman, 2001). As shown in 
Figure 11, this study also showed that the activities detected in the 
frontal electrodes exhibits the largest difference between the static and 
vibration conditions in each frequency band. Therefore, 
we investigated the changes in alpha asymmetry and RP in the frontal 
electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8) between the no vibration 
(static) and vibration conditions, as shown in Figure 12. To analyze 
statistically significant differences between the static and vibration 
conditions, the Friedman test was performed first, followed by 

FIGURE 9

Power spectral density and coherence at the C3 channel when various artifact rejection methods are applied for the case of magnitude of random 
excitation are, respectively, (A) 1  m/s2 r.m.s., (B) 1.5  m/s2 r.m.s., and (C) 2  m/s2 r.m.s. The bold line indicates mean values, and the shaded area represents 
95% confidence intervals of 22 participants.
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pairwise comparisons using the Durbin-Conover test. Jamovi software 
(version 2.3.18) was used for this purpose (The Jamovi Project, 2023). 
For FAA, as the magnitude of the excitation increased, the alpha 
asymmetry decreased, going negative. The static and 1.5 m/s2 r.m.s. 
conditions (p < 0.05) and the static and 2.0 m/s2 r.m.s. conditions 
(p < 0.01) were statistically different, respectively. For delta and theta 
bands, there was an increasing trend with increasing magnitude of the 
vibration, but this result was not statistically significant. For alpha 
band, the relative alpha band power decreased as the magnitude of the 
excitation increased. The static condition was statistically different 
from the 1.0 m/s2 r.m.s. condition (p < 0.05), and the difference 
between the static and vibration conditions significantly increased 
with increases in magnitude, e.g., when the magnitude is 2.0 m/s2 
r.m.s., the p-value was less than 0.01. For beta band, there was a 
decreasing trend with increasing magnitude of the vibration, but this 
trend was not statistically significant. For gamma band, there was a 
trend of statistically increasing relative gamma band power with 
increases in magnitude (p < 0.05).

4 Discussion

4.1 Performance of adaptive filters on 
movement artifact

Vertical random vibration can contaminate the EEG signal by 
generating movement artifacts. We employed an adaptive filter to 
remove the movement artifacts. In order to find a suitable adaptive 
filter for our problem, we  compared the performance of the 
normalized least mean square (NLMS) and recursive least square 
(RLS) adaptive filters in removing artificial movement artifacts in view 

of the relative root mean squared error (RRMSE) in the temporal and 
spectral domain, as well as the correlation coefficient (CC), and the 
relative power (RP). As shown in Figure 6, the RLS adaptive filter was 
the best and most robust across all matrices for both low and high 
noise levels. Without adaptive filters, the delta (1–4 Hz) and theta 
(4–8 Hz) band powers were higher than those of the ground truth, as 
shown in Figure 7. These two bands could be amplified due to the 
movement artifact caused by the vibrational resonance of the human 
body (Fairley and Griffin, 1989; Bronzino, 2000; Zhou and Griffin, 
2014) when a seated person is subjected to random vibrations (see 
Figure 8). This implies that the relative powers of the other bands are 
significantly lower than the ground truth, as the sum of the relative 
powers does not change. The NLMS adaptive filter showed a lower 
value than that of the ground truth in the delta band, which can 
be considered to have removed both brain activity and movement 
artifacts. On the other hand, the RLS adaptive filter showed similar 
results to those of the ground truth in all bands. Therefore, 
we recommend the use of an RLS adaptive filter when analyzing the 
characteristics of EEG according to random vibration using RP.

We also compared the performance for 4 different cases in the 
presence of actual movement artifacts. As shown in Figures 9, 10, the 
coherence without employing the adaptive filter was significantly 
higher than that with the adaptive filter. Note also that, comparing 
Figures  10A,C, ICA with ASR did not play a role in removing 
movement artifact in this study. This is because the ICA decomposition 
alone is not capable of detecting movement artifacts when random 
vibrations causing movement artifacts generate spikes, as shown in 
Figure  8A. The ICA is generally less effective for transient and 
nonbiological artifacts (Chang et al., 2019). However, in gait analysis 
there are several studies that have used ICA after ASR to remove 
movement artifacts (Bulea et al., 2015; Oh et al., 2021). To remove 

1.0 m/s2

r.m.s.

1.5 m/s2

r.m.s.

2.0 m/s2

r.m.s.

A B C D

FIGURE 10

Grand mean coherence across all participants between head acceleration and EEG signals filtered by artifact rejection methods for all channels: 
(A) bandpass filter, (B) adaptive filter, (C) ICA with ASR, and (D) ICA with ASR after adaptive filter.

https://doi.org/10.3389/fnins.2024.1328704
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Song and Kang 10.3389/fnins.2024.1328704

Frontiers in Neuroscience 09 frontiersin.org

movement artifacts, they used a variance threshold of 3 standard 
deviation, which is stricter than the case of the variance threshold of 
ASR in this study. However, Chang et al. (2019) demonstrated that a 
variance threshold below 7 standard deviations may remove too much 
brain activities. For these reasons, we can conclude that the removal 
of the movement artifacts using the RLS adaptive filter is better to 
minimize the loss of the EEG signal, and the use of adaptive filtering 
was successful in the case of WBV.

4.2 Mental stress analysis under random 
vibration

We assessed mental stress using the changes in FAA and relative 
power indices under static and random vibration conditions. First, the 
FAA decreases and becomes negative as the magnitude of the random 
vibration increases, as shown in Figure  12A. According to the 
literature (Giannakakis et al., 2022), a decrease in FAA is the most 

consistent stress indicator in stress studies. This is because the left 
anterior region of the brain is associated with approach-type emotions 
(positive emotion), and the right anterior region is associated with 
avoidance-type emotions (negative emotion). Therefore, the right 
alpha activity is generally greater than the left alpha activity during 
stress. Therefore, based on the decrease in FAA, it is reasonable to 
conclude that random vibration induces mental stress. We  also 
conclude that the greater the magnitude of the random vibration, the 
more severe the mental stress.

Among the relative power indices, the alpha and beta band power 
in the frontal region are known to be the major indicators when an 
individual is under stress (Giannakakis et al., 2022). The alpha band is 
prominent in a calm and relaxed state and is characterized by a 
decrease under stressed conditions. Our results are consistent with the 
existing literature and also show the largest changes when an individual 
is subjected to vibration compared with other frequency bands, as 
shown in Figure 12D. The beta band is generally activated during a 
state of high alertness or attention and tends to increase during stress. 
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FIGURE 11

Grand mean topographic distribution of relative band powers across all participants as the magnitude of the vibration increases.
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However, our study did not reveal any statistically significant 
differences between the static and vibration conditions, as shown in 
Figure 12E. Furthermore, the mean of beta band power decreases 
slightly under vibration. In this study, the screen remained stationary 
in the vibration conditions while the motion simulator moved up and 
down. As visual attention is reduced during vibration, it is natural that 
the visual attention can lead to a slight decrease in beta band power. 
For the delta and theta bands, no significant difference was observed 
between the static and vibration conditions. For the gamma band, there 
is a study showing that gamma band power increases in stressful 
situations (Minguillon et al., 2016), and our study also showed that 
gamma band power increased with increasing vibration magnitude. 
However, it should also be noted that the gamma band is not as crucial 
an indicator of stress as the alpha or beta bands.

When a random vibration was applied to the human body, the 
FAA and alpha band power, which are the major known indicators of 
a stress situation, showed a decreasing tendency. The greater the 
magnitude of the vibration, the more these two indicators decrease, 
indicating that the stress is more severe. On the other hand, beta band 

power, another known key indicator, showed no statistically significant 
difference between the static and vibration conditions. Finally, a slight 
increase in gamma band power was observed in this study as the 
magnitude of vibration increased. In a future study, we will analyze the 
mental stress for different frequencies of sinusoidal vibration using 
EEG, similar to the frequency-dependent discomfort analysis in the 
vibration field. We also plan to measure and quantify stress in different 
aspects using EEG and other physiological signals [e.g., 
electrocardiogram (ECG), electromyography (EMG), and galvanic 
skin response (GSR)]. Finally, we will analyze the correlation between 
self-reports and physiological signals.

While the present study offers a novel contribution and notable 
advantages, certain limitations should be  acknowledged. Our 
investigation was confined to stress induced by random vibration, 
without considering potential diversity factors such as gender, health 
status, vibration sensitivity, or long-term effects. Nonetheless, the 
findings may be applicable to scenarios involving passengers engaged 
in non-driving related activities (NDRA) and/or urban air mobility 
(UAM) operations.

B CA
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*
*
**

D E F

*
*

FIGURE 12

Mean and confidence intervals of alpha asymmetry and relative band power for all participants in the frontal lobe: (A) frontal alpha asymmetry (B) delta 
(C) theta (D) alpha (E) beta (F) gamma (* indicates p  <  0.05 and ** indicates p  <  0.01).
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5 Conclusion

In this study, we demonstrated the necessity of the adaptive filter 
by comparing the effect of the artifact in the EEG signal influenced 
by head movement, and successfully removed the artifacts. Using the 
EEG signals, we analyzed 22 occupants subjected to whole-body 
vibration in spectral and spatial aspects. As a result, we found that 
the activities detected in the frontal electrodes showed significant 
differences between the static and vibration conditions. In addition, 
we  assessed mental stress for 3 different levels of the random 
vibration using EEG, and found that frontal alpha asymmetry (FAA) 
and alpha band power, which are key indicators of stress, decreased 
when exposed to vibration. Based on the literature, which states that 
stress increases with a decrease in FAA and alpha band power, it can 
therefore be concluded that random vibration causes mental stress, 
and that the stress increases with the magnitude of the vibration. The 
analysis of stress using EEG under random vibration is expected to 
improve the reliability of ride comfort assessment by complementing 
the shortcomings of the acceleration method and the survey method. 
For example, the acceleration method cannot assess stress from 
other stressors in the vehicle, such as noise, ventilation, scent, and 
temperature changes, and the survey method is not suitable for real-
time assessment. However, EEG provides excellent temporal 
resolution, allowing real-time monitoring and the assessment of 
stress changes caused by various factors. Therefore, the stress 
assessment using EEG can provide a more comprehensive and 
reliable assessment of ride comfort alongside acceleration and 
survey methods. In addition, while the literature on vehicle stress 
using physiological signals has mostly focused on the driver, the 
current study analyzed the stress experienced by non-driving 
passengers. From a practical point of view, this research has 
implications for the development of autonomous driving technology, 
reducing the need to drive and increasing the importance of 
in-vehicle infotainment.
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