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Background: Earlier neuroimaging investigations showed that abnormal brain 
activity in patients with alcohol use disorder (AUD) was frequency dependent. 
However, there is lacking of a comprehensive method to capture the amplitude 
of multi-frequency bands directly. Here, we  used a new method, the power 
spectrum slope (PSS) to explore abnormal spontaneous activity of brain in 
patients with AUD.

Methods: Thirty-three AUD patients and 29 healthy controls (HCs)  
enrolled in this study. The coefficient b and the power-law slope b’ were 
calculated and compared between two groups. We also used the receiver 
operating characteristic (ROC) curve to examine the ability of the PSS 
analysis to distinguish between AUD and HCs. We  next examined the 
correlation between PSS difference in the brain areas and the severity of 
alcohol dependence.

Results: Thirty AUD patients and 26 HCs were retained after head motion 
correction. The two metrics of PSS values increased in the left precentral gyrus in 
AUD patients. The area under the curve values of PSS differences in the specific 
brain area were respectively 0.836 and 0.844, with sensitivities of 86.7% and 
83.3% and specificities of 73.1% and 76.9%. The Michigan Alcoholism Screening 
Test (MAST) and Alcohol drinking scale (ADS) scores were not significantly 
correlated with the PSS values in the specific brain area.

Conclusion: As a novel method, the PSS can well detect abnormal local brain 
activity in the AUD patients and may offer new insights for future fMRI studies.
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1 Introduction

It is a serious public health problem that alcohol is the most prevalent addictive substance 
and has high incidence and death rates. Alcohol use disorder (AUD) is characterized by 
persistent, excessive, uncontrollable consumption of alcohol and compulsive drinking behavior 
(Witkiewitz et al., 2019). Long-term heavy drinking can cause damage to the cardiovascular 
system, digestive system and immune system, especially the central nervous system, including 
Wernicke’s encephalopathy (WE), which can progress to Korsakoff ’s syndrome (KS) if left 
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untreated; hepatic encephalopathy (HE); central pontine myelinolysis 
(CPM); and Marchiafava-Bignami disease (MBD). In addition to its 
direct effects, heavy alcohol consumption increases the risk of seizures, 
stroke, and traumatic brain injury (Carvalho et  al., 2019; Fritz 
et al., 2022).

Resting-state functional magnetic resonance imaging (rs-fMRI) 
is a non-invasive method, revealing the phenomenon of spontaneous 
neuronal activity at rest. One of its potential clinical applications is the 
exact localization of aberrant brain activity, which would aid in both 
the qualitative diagnosis and the direction of precise stimulation 
therapy, such as transcranial magnetic stimulation and deep brain 
stimulation (Zhao et al., 2022; Chang et al., 2023; Muller et al., 2023). 
Using rs-fMRI, (Abdallah et al., 2021) reported AUD patients existed 
abnormal connectivity between the cerebellum and both the 
frontoparietal executive control and ventral attention networks. 
Honnorat et al. (2022) suggested that functional connectivity between 
the anterior cingulate cortex and orbitofrontal cortex was lower in 
AUD patients, and functional connectivity between the anterior 
cingulate cortex and hippocampus was lower in AUD + HIV patients. 
The affected connections are associated with deficits in executive 
function, including increased impulsivity.

Among the myriad of rs-fMRI analysis methods, just few 
techniques have been developed for pinpointing aberrant brain 
activity and voxel-based meta-analyses. For instance, it has been 
proposed that amplitude of low-frequency fluctuation (ALFF) and its 
derivative fractional ALFF (fALFF) methods can be applied to analyze 
the local signal of rs-fMRI, which are widely used to evaluate 
spontaneous neuronal activity of certain areas under physiological or 
pathological conditions of the brain (Zang et al., 2007; Zou et al., 
2008). A study reported (Liu et al., 2018) that brain differences caused 
by alcohol-related were found in the left precuneus with lower ALFF 
values, and these specific brain regions showed excellent 
discrimination between AUD and heathy controls (HCs) based on 
ALFF differences. Reduced fALFF in some regions may be useful in 
interpreting certain illnesses, such as enhanced sensitivity to 
identifying information connected to alcohol, which is typical of 
people with severe alcohol dependency (Deng et al., 2022). Alcohol-
dependent patients showed abnormally increased spontaneous neural 
activity in the right cerebellum, which was more significant in alcohol-
dependent patients with depression (Sun et al., 2023). These findings 
may support a targeted intervention in this brain location for alcohol 
and depressive disorder comorbidity.

A majority of studies examined conventional frequency band (Liu 
et al., 2018; Dai et al., 2023), but signal oscillations of the brain are 
integrated with multiple frequency bands (Buzsaki et al., 2013), and 
the result from one frequency band lacked frequency specificity. 
Different oscillation frequencies can be used to reflect various aspects 
of brain function (Zuo et  al., 2010), suggesting that the study of 
fluctuations in brain signals in different frequency bands is also crucial 
for revealing the neural basis of the brain. Therefore, the consequence 
of frequency bands difference on functional brain connectivity was 
investigated in an increasing number of studies (Gimenez et al., 2017; 
Qi et al., 2018; Tang et al., 2023). The segmentation approach put 
forward by Zuo has been used in the majority of rs-fMRI research 
with multiple frequency bands (Zuo et  al., 2010). Nevertheless, 
interpreting the results of group-level statistical analysis and the 
impact of varied frequency intervals may be challenging. There is a 
need for a comprehensive technique that can accurately capture the 
amplitude of multi-frequency bands. The distribution of the brain’s 

oscillations along the various frequency bands are various (Baria et al., 
2011; He, 2011). Consequently, the slope of the brain signal’s power 
decline may be a good indicator of the distribution of brain oscillations 
(Zang et al., 2022).

Therefore, we used a novel method, the power spectrum slope 
(PSS), to explore the abnormal spontaneous activity of brain in AUD 
patients, then correlated these changes with clinical and 
neuropsychological data. The ability of PSS analysis to differentiate 
AUD from HCs was tested by receiver operating characteristic (ROC).

2 Methods

2.1 Subjects

The study was approved by Medical Ethics Committee of Renmin 
Hospital of Wuhan University, and followed the Helsinki Declaration. 
The consent of all subjects was obtained in writing.

Thirty-three right-handed male AUD patients and 29 age-, sex-, 
handedness-, and education-matched HCs were recruited from the 
primary-care outpatient department of Renmin Hospital of 
Wuhan University.

AUD patients were met the criteria of the Diagnostic and 
Statistical Manual of Mental Disorders: Fifth Edition (DSM-5) (the 
ICD-10-CM code: F10.10/F10.20). Inclusion criteria of AUD patients: 
a history of alcohol dependence for no less than 10 years; Alcohol 
drinking scale (ADS) score ≥ 14 and Michigan Alcoholism Screening 
Test (MAST) score ≥6 (Pilatti et al., 2017); no prior treatment history 
for AUD. HCs were those who had never or very seldom consumed 
alcohol (<1 standard unit per time) (Conley, 2001).

Subjects were excluded if they had any of the following: (1) an 
individual who exhibits psychotic symptoms or whose first-degree 
relative has been diagnosed with psychosis; (2) history of addiction to 
substances other than alcohol; (3) with organic brain disease or severe 
physical disease; (4) a history of cranial trauma, cranial surgery, brain 
tumor and coma; (5) people with previous seizures or a family history 
of epilepsy; (6) patients who have been treated with antipsychotic 
medication or who are receiving medication; (7) claustrophobia or any 
MRI contraindications.

The time interval between the last alcohol consumption and MR 
examination was 3 weeks for all subjects in this study to exclude the 
effects of acute alcohol intake.

2.2 Cognitive and alcohol level evaluation

Before undergoing MRI scans, all subjects underwent the Mini-
Mental State Examination (MMSE) and Montreal Cognitive 
Assessment (MoCA); we only collected ADS and MAST scores from 
the AUD group to evaluate the level of alcohol dependence.

2.3 MRI acquisition

MRI scans were acquired using a 3.0 T MRI scanner (Discovery 
750 W Silent MR, GE Healthcare, Milwaukee, WI). To avoid subject 
head movement artifacts during the experiment, the matching rubber 
soft plugs were used to make the head fixed. We also use soft foam ear 
plugs to reduce equipment noise. All subjects were asked to be quiet and 
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relaxed, remain awake, keep their eyes closed and think of nothing in 
particular. Participants with lesions of brain were excluded from T2WI 
and T2-FLAIR images. High-resolution structural data were obtained in 
sagittal position: repetition time (TR) = 8.5 ms; echo time (TE) = 3.3 ms; 
field of view (FOV) = 240 mm × 240 mm; flip angle (FA) = 12°; matrix 
size = 256 × 256; slice thickness = 1.0 mm; no slice gap; and voxel 
size = 1 mm × 1 mm × 1 mm. The scanning parameters of fMRI data are 
as follows: TR = 2000 ms; TE = 25 ms; FOV = 240 mm × 240 mm; 
FA = 90°; slice thickness = 3.5 mm; no slice gap; matrix size = 64 × 64; 
interleaved axial slices = 40; and volumes = 240. Visual inspection of all 
MR images was carried out to make sure that none of the images 
included in the study had visible artifacts.

2.4 MRI data preprocessing and analysis

2.4.1 Data preprocessing
MRI data was preprocessed using RESTplus tools embedded in 

the MATLAB software. The main preprocessing steps were as 
follows: (1) remove the first 10 time points because of 
inhomogeneities in the magnetic field and subjects’ maladaptive 
interferences with the environment; (2) slice timing; (3) realign, 
subjects with head movement >2.0 mm or 2.0° were excluded; (4) 
normalizing the data to the Montreal Neurological Institute (MNI) 
space by the technique of DARTEL (Ashburner, 2007); (5) smooth 
with 6 mm × 6 mm × 6 mm Gaussian kernel; (6) nuisance covariates 
regression, including Friston-24 parameters, white matter and 
cerebrospinal fluid.

2.4.2 Power spectrum slope calculation
Following the aforementioned preprocessing steps, the Fast 

Fourier Transform was used to produce the power spectrum of each 
voxel time series. The frequency range was set to 0.01–0.25 Hz. Prior 
to fitting, the power of each voxel in brain was divided by the average 
amplitude, and the scale of power was normalized. We calculated the 
linear coefficient b and the power-law slope b’ according to the 
formula (Zang et al., 2022). For linear coefficient b, we used

 y bx a= +  (1)

For power-law fit b’, we used

 y a xb= ′ ′
 (2)

where y is the normalized amplitude of the signal power after FFT, 
x is the corresponding frequency bin (e.g., from 0.01 to 0.25 Hz), b is 
the linear coefficient and b’ is the power-law slope (Zang et al., 2022). 
The larger negative values of these two metrics indicated steeper decay 
of power from low to high frequencies. By using the Z-transform, 
we obtained PSS z-score maps for each subject.

2.5 Statistical analysis

2.5.1 Clinical information
Baseline clinical information was compared between the two 

groups using SPSS 26.0. Demographic and clinical data for both 

groups were tested by the Shapiro–Wilk test and independent samples 
t-tests. The threshold was p < 0.05.

2.5.2 PSS analysis
We compare spatial distribution maps of PSS values within groups. 

Then we conducted a two-sample t-test on the two metrics (coefficient 
b and power-law slope b’) to analyze PSS differences. The statistics were 
corrected with Alphasim method (voxel p < 0.001, cluster p < 0.05).

2.5.3 ROC curve and correlation analysis
To determine if the PSS values might be  used as a biological 

marker for differentiating AUD patients from HCs, the performance 
of the PSS on distinguish between AUD and HCs was examined by 
ROC curve.

To investigate the specific relationships between PSS values and 
MAST/ADS scores, the correlation between altered PSS values and the 
severity of alcohol dependence was evaluated. The significantly 
different areas from the PSS analysis described above were extracted 
and relationships between PSS values in these areas and the patients’ 
MAST/ADS scores were analyzed. Spearman’s correlation coefficient 
was calculated.

3 Results

3.1 Clinical information

Six participants (3 AUD patients and 3 HCs) were excluded 
following correction for head motion. Finally, 30 AUD patients and 
26 HCs were included in this research. Clinical information of the two 
groups were shown in Table 1. In terms of gender, age, education, and 
handedness, no statistically significant difference was found. 
Nonetheless, the MMSE and MoCA scores of the AUD group were 
considerably lower (p < 0.05) than the HCs group.

3.2 PSS analysis

We showed the spatial distribution maps of PSS values (linear 
coefficient b) in AUD group and control group in Figure 1. The bulk 

TABLE 1 Demographic and clinical characteristics.

Characteristics AUD 
(n  =  30)

HCs 
(n  =  26)

p-value

Age (years) 53.03 ± 5.49 49.96 ± 6.08 0.052

Gender (male/female) 30/0 26/0 -

Education level (years) 11.17 ± 2.78 10.35 ± 3.07 0.299

Handedness (R/L) 30/0 26/0 -

MoCA 25.17 ± 2.83 26.65 ± 1.98 0.002

MMSE 26.73 ± 1.86 28.19 ± 1.34 0.002

MAST 8.83 ± 3.36 - -

ADS 17.03 ± 3.54 - -

Values are expressed as means ± standard deviations or frequencies. p < 0.05 was considered 
statistically significant. AUD, alcohol use disorder; HCs, healthy controls; MoCA, Montreal 
Cognitive Assessment; MMSE, Mini-Mental State Examination; MAST, Michigan 
Alcoholism Screening Test; ADS, Alcohol Drinking Scale.
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of the cerebral cortex in both the AUD and HCs groups displayed 
lower PSS values, particularly in the visual region with a steeper slope 
than the whole-brain average PSS. White matter was where higher PSS 
values were discovered.

Compared to HCs group, the linear coefficient b and the 
power-law slope b’ in the left precentral gyrus (PreCG) increased in 
the AUD group (Table 2; Figure 2).

3.3 ROC curve

According to our research, the area under the curve values of PSS 
differences in the left PreCG was, respectively, 0.836 and 0.844, with 
sensitivities of 86.7% and 83.3% and specificities of 73.1% and 76.9% 
(Table 3; Figure 3).

3.4 Correlation analysis

The MAST or ADS scores were not significantly correlated with 
the PSS values (coefficient b and power-law slope b’) in the 
left PreCG.

4 Discussion

In this study, we compared linear coefficient b and power-law 
slope b’ of AUD patients and HCs by using PSS method. PSS 
differences in the particular brain area could well distinguish AUD 
patients from controls with good AUC, sensitivities and specificities.

As an example, we  displayed the spatial distribution of 
Z-transformed PSS images with linear coefficient. Z-PSS values well 
displayed gray-matter and white-matter boundaries, respectively, 

FIGURE 1

The spatial distribution of Z-transformed PSS (linear coefficient b) in the AUD group (A) and the HCs group (B), where warm and cold color, 
respectively, represents the area with high and low PSS values. PSS, power spectrum slope; AUD, alcohol use disorder; HCs, healthy controls.

TABLE 2 The PSS difference between AUD and HCs.

Brain regions BA Cluster 
size

Peak MNI 
coordinates

T 
value

X Y Z

PSS: coefficient b

L-precentral gyrus 6 27 −48 6 36 4.2180

PSS: power-law slope b’

L-precentral gyrus 6 22 −45 −3 42 4.2243

PSS, power spectrum slope; MNI, Montreal Neurological Institute; BA, Brodmann area; 
AUD, alcohol use disorder; HCs, healthy controls; L, left.
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corresponding to negative and positive values. In addition, the gray 
matter voxels showed greater decline of signal strength than the white 
matter (larger absolute slope than the global mean), while the greatest 
power decay was found in the visual brain region.

The rs-fMRI signal’s amplitude declines with higher frequency 
bins in the frequency domain, however the decreasing rate differed 
between the AUD group and HCs group. As demonstrated in this 
study, no regions decayed more in the AUD group while signal 
power of the left PreCG decayed less in the AUD group than that in 
the HCs group. Both the linear coefficient b and the power-law slope 
b’ can detect the difference. The differences in PSS between the AUD 
and HCs groups may reflect different mechanisms of cortical 
physiological states. Larger power-law exponent indicates a higher 
time-lagged autocorrelation, suggesting that the past dynamics of 
the system has a greater influence on its future dynamics, i.e., the 
system has more long-range memory, while smaller power-law 
exponent indicates that the system has less temporal redundancy 
and is more efficient in online information processing (Eke et al., 
2002; He, 2011). Therefore, the region of “shallower” power decay in 
the AUD group indicating more redundant neural processing 
of information.

In this study, alcohol-triggering brain differences mainly located 
in the left PreCG (Brodmann’s area [BA] 6), which was generally 
consistent with earlier work of our team and previous research (Tu 
et al., 2018; Ruan et al., 2023). The PreCG is in the frontal lobe of the 
cerebral cortex and is the primary motor center, involved in the 
integration of information related to the sensory, motor, attention, and 
reward circuits (Stinear et  al., 2009; Gardini and Venneri, 2012; 
Squeglia and Gray, 2016). Our finding of altered PSS in the left PreCG 
region of AUD patients further enriched the evidence that chronic 
alcohol consumption may lead to functional changes in the PreCG 
that affect sensory, motor, and attentional functions as well as brain 
reward mechanisms. A Reho study showed that compared with 
healthy controls, the left PreCG (BA 6) of alcohol-dependent patients 
exhibited a significantly higher ReHo area, and higher Reho values in 
the supplementary motor area (BA 6) may be a brain compensatory 
mechanism or hyperactivation (Tu et al., 2018). Alcohol-dependent 
individuals often exhibit compulsive drug-seeking behaviors, which 
may be related to abnormal brain activity in the supplementary motor 
area (BA 6), showing an excessive motor response in human addiction 
processing. The resting-state degree centrality analysis method also 
found male AUD patients had significantly higher degree centrality 
values in the left PreCG (BA 6) than HCs, and they also found a strong 
unilateral lateralization in male AUD patients, showing that the 
number of different degree centrality values in the left side of the brain 
regions of AUD patients was higher than in the right side, and that this 
laterality was also reflected in the total number of voxel volumes with 
different degree centrality values in the brain regions (Luo et al., 2017). 
The PreCG are important and specific in impeding episodic memory 
(Fama et al., 2021), and larger power-law exponent suggests more 
long-range memory (Eke et al., 2002), which also well explains the PSS 
change in the left precentral gyrus of AUD patients in our study. 
Aberrant functional connectivity between the PreCG and left anterior 
insula was associated with processing of stressful experiences 

FIGURE 2

Differences of individual-level PSS (Z-transformed coefficient b and power-law slope b’) in brain regions between AUD and HCs. Red denotes higher 
PSS values in AUD patients than HCs. PSS, power spectrum slope; AUD, alcohol use disorder; HCs, healthy controls.

TABLE 3 ROC curves for distinguishing PSS in PreCG of AUD patients 
from that of HCs.

Brain area AUC Sensitivity, 
%

Specificity, 
%

Cutoff 
point

L-PreCG 

(coefficient b)

0.836 86.7% 73.1% −0.623

L-PreCG  

(power-law slope b’)

0.844 83.3% 76.9% −0.547

ROC, receiver operating characteristic; AUC, area under the curve; PSS, power spectrum 
slope; AUD, alcohol use disorder; HCs, healthy controls; PreCG, precentral gyrus; L, left.
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(Goodman et al., 2022). According to our research, the left PreCG was 
functionally implicated in saccade execution and may play a role in 
determining an individual’s antisaccade cost (Jin et al., 2022).

This study also investigated the feasibility of PSS method in 
differentiation of abnormal spontaneous activity of brain in AUD 
patients from healthy volunteers. ROC curve revealed good AUC 
values of the specific brain area, and further diagnostic analysis 
demonstrated that the specific brain area alone discriminated the 
AUD patients from the healthy subjects with high degree of 
sensitivities and specificities. The diagnostic efficiency of the 
coefficients b and power-law slopes b’ in the left PreCG was, 
respectively, 0.836 and 0.844, with sensitivities of 86.7 and 83.3% and 
specificities of 73.1 and 76.9%. The diagnosis performance of PSS was 
good. Correlation analysis showed that the MAST or ADS scores were 
not significantly correlated with the PSS values in the specific brain 
area. In conclusion, for the time being, the present study fills the 
research gap of the PSS method in the study of brain activity 
abnormalities in patients with AUD. Our results confirmed that this 
approach is feasible and offers new insights for AUD studies.

There were some limitations in our study. Firstly, the sample size 
is small. However, rs-fMRI studies with more than 16 subjects per 
group are acceptable (Friston, 2012). Secondly, the results may not 
apply to female AUD subjects due to the fact that only men were 
included. Thirdly, this study was only preliminary to determine if 
there were differences in cognitive functioning between AUD and 

HCs groups, so more complex neuropsychological assessments were 
not conducted. More detailed neuropsychological assessments will 
be  further explored in future studies. Finally, this study is cross-
sectional, and dynamic changes of PSS in AUD patients could not 
be observed at various stages, which may require further longitudinal 
studies to address. Our results confirmed that PSS method may be a 
useful biological indicator for the detection of regional brain activities 
in patients with AUD, and offers new insights for AUD studies.

5 Conclusion

Our study demonstrated that the linear coefficient b and 
power-law slope b’ of the PSS method could well detect abnormal local 
brain activity in the AUD patients and may become a complement 
method in detecting localized spontaneous activity.
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FIGURE 3
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