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Multi-gate Weighted Fusion
Network for neuronal
morphology classification

Chunli Sun and Feng Zhao*

MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, University of Science and

Technology of China, Hefei, China

Analyzing the types of neurons based on morphological characteristics is pivotal

for understanding brain function and human development. Existing analysis

approaches based on 2D view images fully use complementary information

across images. However, these methods ignore the redundant information

caused by similar images and the e�ects of di�erent views on the analysis

results during the fusion process. Considering these factors, this paper proposes

a Multi-gate Weighted Fusion Network (MWFNet) to characterize neuronal

morphology in a hierarchical manner. MWFNet mainly consists of a Gated View

Enhancement Module (GVEM) and a Gated View Measurement Module (GVMM).

GVEM enhances view-level descriptors and eliminates redundant information by

mining the relationships among di�erent views. GVMM calculates the weights

of view images based on the salient activated regions to assess their influence

on the analysis results. Furthermore, the enhanced view-level features are fused

di�erentially according to the view weight to generate a more discriminative

instance-level descriptor. In this way, the proposed MWFNet not only eliminates

unnecessary features but also maps the representation di�erences of views into

decision-making. This can improve the accuracy and robustness of MWFNet for

the identification of neuron type. Experimental results show that our method

achieves accuracies of 91.73 and 98.18% on classifying 10 types and five types

of neurons, respectively, outperforming other state-of-the-art methods.

KEYWORDS

weighted fusion, hierarchical descriptors,morphological representation,multiple views,

neuronal morphology analysis

1 Introduction

Identifying and analyzing the types of neurons based on morphological features
is essential for understanding brain function and development (Parekh and Ascoli,
2013; Colombo et al., 2022), as well as their links to brain diseases (Mages et al.,
2018; Llorens-Martín et al., 2016; Caznok Silveira et al., 2024). The complexity
and variability of neuronal morphology make neuron type classification exceptionally
challenging (Rapti, 2022; Weis et al., 2021). Numerous studies are committed to
comprehensive representations of neuronal morphology and facilitate accurate analysis
of neuron types. Traditionally, these methods are conducted by computing predefined
morphometrics from the 3D neuron data (Mihaljević et al., 2018; Batabyal et al.,
2020; Li, 2021; Batabyal et al., 2018; Lin et al., 2018) or automatically extracting
deep features from the 2D view images (Li et al., 2018; Zhang et al., 2021).
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Neuronal morphologies are typically recorded in the SWC
format file (Stockley et al., 1993), which is a low dimension
yet unstructured file (as shown in Figure 1A). The neuron is
compressed as the structure of an un-strict binary tree (Gillette
and Ascoli, 2015; Gillette et al., 2015). Given these characteristics,
many methods (Mihaljević et al., 2018; Batabyal et al., 2020;
Li, 2021; Wan et al., 2015; Batabyal et al., 2018; Zhang et al.,
2019; Vasques et al., 2016) are developed to compute predefined
morphometrics (Polavaram et al., 2014; Uylings and Van Pelt,
2002; Scorcioni et al., 2008; Bird and Cuntz, 2019), such as the
number of branches, the number of compartments, the neuronal
width, height, and depth, as well as the Euclidean distance
of a compartment to soma. These predefined morphometrics
are then fed into traditional classifiers or neural networks to
analyze and identify neuron types (Lin et al., 2018; Yamashiro
et al., 2021; Lin and Zheng, 2019). Furthermore, some research
concentrates on the representation of the topological structure
of neuronal branches (Gillette and Ascoli, 2015; Gillette et al.,
2015; Hernández-Pérez et al., 2019; Kanari et al., 2018), which
simplifies the representation of neurons into the 1D data. While
these methods provide promising performance at some tasks,
predefined features fall short when characterizing neurons with
highly complex dendrites or axons (Fogo et al., 2021; Zhao et al.,
2022). To fully represent neuronal morphology, some researchers
turn to utilize 2D/3D neural networks to automatically and directly
extract deep features from 3D neuron data instead of predefined
morphometrics (Lin and Zheng, 2018; Zhu et al., 2023, 2022).
However, utilizing 3D neural networks to analyze neuron types
based on morphological characteristics presents several challenges.
Firstly, the sparsity of 3D neuron data degrades the performance of
these methods. Secondly, it requires more computing resources and
time to train 3D neural networks. Thirdly, since there are significant
differences in the number of nodes of neurons, it is hard to design a
unified framework for processing 3D neuron data. Therefore, how
to represent neuronal morphology with appropriate data format is
the basis of type analysis.

To address the limitations of analyzing neuronal morphology
using 3D networks, recent advances shift focus to analyze neural
morphology utilizing 2D view images and neural networks (Li
et al., 2018; Zhang et al., 2021; Schubert et al., 2019; Li et al.,
2021). In their works, neurons are depicted through 2D view
images, projected from one or more points of view (as shown
in Figure 1B). Besides, some methods capture more distinct
descriptors for neuronal morphology by directly combining
the features extracted from different 2D images and predefined
morphometrics, and then the combined features are fed into the
classifier to predict the neuron types (Li et al., 2018). Notably, Li
et al. (2018) proved that the deep features obtained from multiple
images and predefined morphometrics are complementary in
describing neuronal morphology. Furthermore, Zhang et al.
(2021) first extract features from 3D neuron data and 2D
images using tree–based recurrent neural network (TRNN)
and convolutional neural network (CNN), respectively. These
features are then directly fused to generate a comprehensive
descriptor. Their experimental results confirm that employing
the merged feature descriptor can produce better classification
results than using either feature alone. These methods take
advantage of the complementarities among view images

or different features to improve classification performance,
but they do not consider the differences in characterizing
neuronal morphologies and information overlap across view
images. Since 2D images may sometimes present similar
neuronal morphologies, there is a risk of retaining redundant
information in the morphological descriptors of neurons.
Moreover, the importance of different view images varies, since
they characterize different neuronal morphologies. Therefore,
improving classification performance by concatenating the
features of views differentially during the fusion process remains a
desirable goal.

To leverage the complementary information across 2D
view images while accounting for information redundancy and
morphological differences, we present a Multi-gate Weighted
Fusion Network (MWFNet) with multiple views (shown in
Figure 2). MWFNet builds more effective deep feature descriptors
for neuronal morphology in a hierarchical manner, treating
different view features in a differentiated way. Specifically, a Gated
View Measurement Module (GVMM) is developed to measure
the influence of each view on classification decisions. It computes
the discriminability scores of different views only based on the
salient activation regions, accounting for the sparsity of neuron
data. Additionally, a Gated View Enhancement Module (GVEM)
is implemented to explore the relationship between views and
enhance the view-level descriptors, utilizing different views more
efficiently while removing redundant information. Finally, the
instance-level descriptors of neurons are obtained by adaptively
assigning associated discriminability score to individual view
descriptor. In this way, a neuron can be effectively characterized
by the novel fused deep features, which capture the distinctness
and distinguishability of view images while containing less
redundant information.

The primary contributions of this work are given as,

• Our proposed MWFNet hierarchically establishes more
efficient feature descriptors for neuronal morphologies. The
MWFNet tactfully reduces the redundant information across
2D images and simultaneously measures the representation
difference among the view images.

• We provide a Gated View Measurement Module (GVMM),
which quantifies the impact of different views on analysis
results by generating discriminability scores from the salient
activation regions.

• We propose a Gated View Enhancement Module (GVEM)
that mines the relationship between view images to enhance
the distinct view descriptors and remove redundant
information.

• We report superior classification accuracies, including 91.73%
on the 10-type dataset and 98.18% on the 5-type dataset,
outperforming other methods.

2 Methodology

As shown in Figure 2, the proposed MWFNet characterizes
neuronal morphology in a hierarchical manner. View-level features
are first extracted from the 2D view images using the CNNs,
and then the instance-level descriptors of neurons are obtained
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FIGURE 1

Neuronal data in di�erent formats. (A) is the neuron data stored in the SWC file and (B) is the 2D/3D slice image.

FIGURE 2

The proposed Multi-gate Weighted Fusion Network (MWFNet) with multiple views. First, multiple 2D view images are obtained from the 3D neuron

geometry. Then, these images are fed to CNNs with Generalized-Mean (GeM) pooling to extract raw view-level descriptors (F and X). Next, the

discriminability score (D) of F is computed via the Gated View Measurement Module (GVMM) and the enhanced view-level descriptors (X
′
) is obtained

from X using the Gated View Enhancement Module (GVEM). Then, the instance-level descriptor (Xt) is derived by adaptively assigning D to the X
′
.

Finally, the instance-level descriptors Xt is fed to a classifier to predict neuron type.

via adaptively concatenating these view-level features. MWFNet
mainly consists of four modules, namely data preprocessing,
view descriptor generation, GVMM, and GVEM. During the
data preprocessing, 3D neuron data is transformed into multiple
2D view images. Subsequently, view-level descriptors of these
view images are generated via CNNs with Generalized-Mean
(GeM) pooling. Next, the GVMM quantifies the discriminability
of each view based on the represented neuronal morphology,
while the GVEM enhances the view feature and reduces redundant
information among views by mining the relationship between
them. Finally, the enhanced features learned from different views

are adaptively combined to obtain instance-level descriptors that
comprehensively characterize the neurons.

2.1 Data preprocessing

Directly training unified and suitable 3D neural networks with
3D neuron data is challenging due to the sparsity of neurons in
the 3D space and the variety of neuronal structures (Li et al.,
2018). While networks based on multi-view projection (Su et al.,
2015; Feng et al., 2018; Hamdi et al., 2021) and voxel- and point
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Input: one 3D neuron data V = {v1 . . . , vn}, the

interval angle φ

Output: 2D projection images

1: NormV = PCA(V)

2: θ = 0◦

3: while θ < 360◦ do

4: Rotation matrix (y-axis) My = M([0,1,0], θ)

5: Rotation matrix (z-axis) Mz = M([0,0,1], θ)

6: Rotation coordination (y-axis) Py = NormV*My

7: Rotation coordination (z-axis) Pz = Py ∗Mz

8: Capture and save the x-y plane projection

image from Pz

9: θ = θ + φ

10: end while

Algorithm 1. Generation 2D view images from 3D neurons.

cloud-occupancy (Wu et al., 2015; Qi et al., 2017; Zhang et al.,
2023) are used for 3D shape analysis, projection-based models can
match the performance of 3D networks. In our initial attempts, we
attempt to categorize neurons directly using 3D networks based on
voxelized or interpolated 3D neuron data. It yields the accuracy
of 63.78 and 64.45% on the 5-type dataset, respectively. These
classification performance is unsatisfactory and can be further
improved. Therefore, motivated by the success of projection-based
models in 3D objection shape recognition (Su et al., 2015; Feng
et al., 2018; Hamdi et al., 2021), we attemp to project the 3D neuron
data into multiple binary images from various angles to address
the challenges posed by varying neuronal structures and the sparse
nature of 3D neuron data.

For one 3D neuron sample (V = {v1 . . . , vn}) consisting of n
nodes, we first utilize the principal component analysis (PCA) to
align it along a normalized axis, as done in Li et al. (2018), Li et al.
(2021), and Sun et al. (2023). This ensures that similar 2D view
images are obtained from similar 3D neurons, regardless of their
original orientation. We then project the 3D neuron points into 2D
images from various angles of view to minimize the information
loss and capture more neuronal morphology details. To obtain
more 2D view images and additional view information, we rotate
the neuron data along the y-axis by an angle θ and then rotate
it around the z-axis by the same angle θ . Here, we simply set
the rotation angle along the y-axis and z-axis the same. Since the
morphological information along the z-axis is relatively limited,
we use the x–y plane as the projection plane to reserve as many
morphological characteristics as possible. The projection angle θ

is incremented at φ intervals within the range [0◦, 360◦). In this
way, each neuron sample can be projected into N 2D view images.
For details, the projection processing is shown in Algorithm 1.
It is worth noting that the raw 3D neuron data only contains
information on multiple discrete points of a neuron. Each point
is linked to its parent point to reflect the connectivity among
discrete points in the neuronal morphology. Both the points and
linked lines are depicted to present and preserve the morphology of
neuronal arbors in projected binary images (as shown in Figure 3).
Subsequently, these view images are fed into 2D neural networks to
effectively build informative feature representations.

2.2 View descriptor generation module

The proposed MWFNet framework extracts deep features at
both view and instance levels to comprehensively characterize
neurons. Given a set of view images projected from the original
3D neuron data, each view passes through a CNN to construct the
raw feature map (F ∈ RC×H×W) at the view level, as shown in
Figure 2. Then, following the approach of Ye et al. (2021), we adopt
the learned GeM pooling (Radenovic et al., 2019) to capture the
view-specific discriminative features, given by,

x = [f1, f2, · · · , fc, · · · , fC]T ,

fc =
(

1
|χc|

∑

xi∈χc
x
pc
i

)
1
pc ,

(1)

where C is the number of the feature map of the last convolutional
layer of the CNN, χc denotes the c-th feature map in the
F (c ∈ {1, 2, · · · ,C}), and fc represents the result of the χc after
pooling. The pooling hyper-parameter pc can be kept constant or
continuously optimized during the training (Radenovic et al., 2019;
Deng et al., 2019). Notably, GeM pooling becomes average pooling
when pc is 1 or max pooling when pc approaches ∞. In practice,
the performance of GeM pooling is better than that of max pooling
or average pooling in morphology-based neuron classification. A
batch normalization (BN) layer is used to normalize the features
to a unified data space, facilitating the fusion of features from
different views.

2.3 Gated View Measurement Module
(GVMM)

Different views affect the classification results differentially due
to the varying morphological information they represent (as shown
in Figure 3). Based on this, we build the GVMM to measure the
differences between view images, efficiently learning the neuronal
morphologies embedded within the projected view images. For
each view, we then use the GVMM calculates a discrimination
score as view weight to adaptively aggregate features into an
distinguishing neuron representation. Taking into account the
sparsity of neuron data and limited neuronal morphology in the
view images, we construct a masked view descriptor. This seeks
to identify the critical neuronal morphologies through the salient
feature regions, not the background or noise region. To this
end, we mask view descriptors below the threshold value (T1) by
multiplying a binary mask (M). The masked view descriptors (F

′
)

can be formulated as,

F
′

ij = Fij ∗Mij,

Mij =

{

1, if Fij ≥ T1

0, if Fij < T1

(2)

where i and j are the row and column of the raw view descriptors
F, respectively. The masked view descriptors activate the most
pertinent neural regions while suppressing the background and
low-reliability feature regions.

We then calculate the distinguishability of views based on this
masked view descriptors (F

′
). First, a convolution layer with a
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FIGURE 3

Neuron samples and their corresponding 2D images projected from multiple points of view. Here, each 3D neuron sample (shown in the first

column) is projected into eight 2D view images (shown in columns 2–9), with a projection interval of 45 degrees. The types of neurons are indicated

by the white text labels.

kernel size of 1×1 is employed to reduce the dimensionality of the
masked view descriptors to the half of the number of channels.
Next, a flatten operation, a bath normlization layer and a fully
connected (FC) layer are applied. The dimensionality of the output
of FC layer is 1. Subsequently, the discriminability of each view is
quantified by a function V (·), defined as,

d = V
(

F
′
)

= δ

(

log
(
∣

∣

∣
F
′
∣

∣

∣

))

, (3)

where δ is the sigmoid function and |·| is used to calculate the
absolute value of F

′
. When the input of the sigmoid function is <–5

or >5, its output will be close to 0 or 1 accordingly. Thus, the |·|

and log functions are added before the sigmoid function to avoid
this situation.

2.4 Gated View Enhancement Module
(GVEM)

As observed from Figure 3, some views exhibit similarities,
with overlapping morphological information across view images.
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FIGURE 4

The Gated View Enhancement Module (GVEM). It first calculates the paired similarity matrix (A) between the view features obtained from the feature

transform layers [L1(·) and L2(·)]. Based on A, two masks (M1 and M2) are generated to respectively select the paired views with higher and lower

similarity. Finally, the modified paired similarity matrix (A
′
) is generated and used to weaken the paired view features with high similarity while

enhancing the paired view features with low similarity.

Consequently, we introduce a GVEM (as shown in Figure 4) to fully
leverage the morphological information represented by different
views while reducing redundancies introduced by similar views.
The GVEM explores the relationships between different views and
utilizes these relationships to guide the enhancement of view-
level descriptors.

The extracted view-level descriptor (X ∈ RN×C×1×1) after
GeM pooling is utilized to obtain enhanced view features based
on the pairwise similarity matrix. Three feature transform layers
[L1(·), L2(·), and L3(·)], consisting of a 1×1 convolution layer and
a normalization layer, are employed to transform different view
descriptors into a unified space. Subsequently, the similarity matrix
(A) is attained based on the pairwise relations ai,j ∈ [0, 1] between
view features, where ai,j is computed as:

ai,j =
exp

(

L1 (xi)
T · L2

(

xj
))

∑

j exp
(

L1 (xi)
T · L2

(

xj
)) , (4)

where exp
[

L1 (xi) , L2(xj)
]

measures the similarity between the
features of i-th and j-th view images. L1 (xi) and L2

(

xj
)

are the
outputs of the first two feature transform layers. Note that the exp,
namely exponential function, is employed to enlarge the differences
between different view descriptors.

Since the difference between the two view descriptors may
be relatively small, leading to potential redundant information
in the final neuron instance descriptor, we utilize the gate-based
module to generate two selective masks. These masks are employed
to reasonably adjust the feature values of different views, further
enhancing the view descriptors. In more detail, we use a threshold

T2 to conduct two binary masks, which are formulated as,

M1 = I (A ≥ T2) ,
M2 = I (A < T2) ,

(5)

where I is the logical matrix, and the shape is the same as A. M1

and M2 will be 1 when the A is greater than T2 and lower than
T2, respectively. Based on these two masks, we modify the paired
similarity matrix by,

A
′
= 1

exp(A) ⊙M1 + exp (A⊙M2) . (6)

Then, the softmax function is utilized to normalize the
enhanced similarity matrix. Through the above process, we
reduce the ratio of the view features with high similarity in the
enhanced view descriptors while amplifying the view features with
low similarity.

The enhanced view descriptors are obtained as the product
of the learned view relation matrix A

′
and the output of L3 (X),

denoted by,

X
′

= A
′

∗ L3 (X) , (7)

where X is the view descriptors after the GeM pooling, the L3 is the
third feature transformer layer, and the A

′
is the masked relation

matrix of views. By this approach, information redundancy is
reduced, and the impact of view features comprising more distinct
morphology information is increased.

2.5 View fusion module

This study uses a weighted-view fusion strategy with residual
batch normalization to exploit the view-level descriptors properly
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and train the MWFNet robustly. The instance-level descriptor of
one neuron is then obtained by combining the enhanced view
descriptors generated by the GVEM based on the corresponding
view weights produced by the GVMM, which is formulated by,

Xt = DX
′

, (8)

where D =
{

dn |n = 1, 2, · · · ,N
}

is the learnable view weight
calculated by the GVMM, and X

′
is the enhanced view descriptors

obtained from the GVEM. Finally, the instance-level descriptors
of neurons are fed into the classifier to predict their types. Here,
the classifier includes two FC layers and a softmax layer. Each FC
layer reduces the feature dimension to 200. The predicted class for
neurons results from the softmax layer with the highest probability.

3 Experimental results

In this section, we present a comprehensive evaluation of
the proposed MWFNet through a series of experiments. First,
we introduce the validation dataset and the experiment setups.
We then report the performance of our method and compare
it with other existing methods. Additionally, the robustness and
generalization capabilities of the MWFNet are verified in this
section. Finally, we conduct ablation experiments to analyze the
influence of the individual components of the proposed MWFNet
on the final classification performance.

3.1 Datasets

NeuroMorpho.org (Ascoli et al., 2007) is one of the largest
web-accessible repositories for digitally reconstructed neurons. It
contains 183,740 neurons (version 8.2.36) from multiple brain
regions, species, and types, contributed by over 900 laboratories
worldwide. It is important to note that the quality of digitally
reconstructed neurons varies. While some neurons contain
complete dendrites and axons, others only have partial dendrites
or lack axons entirely. Moreover, neurons of different types
can exhibit similar morphologies, while neurons of the same
type can differ in morphology (Li et al., 2021). This makes the
identification of neurons more challenging. To ensure an objective
and fair comparison between our method and existing methods, we
randomly selected all neuron data from NeuroMorpho.org (Ascoli
et al., 2007) without considering the physical integrity of neurons.

3.1.1 Dataset 1
As presented in Table 1, this dataset consists of 10 classes

of neurons belonging to multiple brain regions and species. It
contains pyramidal cells (from the chimpanzee, mouse, rat, and
human), pyramidal cells from rat neocortex and hippocampus, as
well as rat GABAergic and nitrergic interneurons. Besides, granule
and medium spiny neurons belonging to various species are also
considered. There are 500 neurons for each type.

TABLE 1 The considered neuron classes of Dataset 1.

ID Neuron class Number

C1 Chimpanzee principal pyramidal 500

C2 Various principal granule 500

C3 Human principal pyramidal 500

C4 Various principal medium spiny 500

C5 Mouse principal ganglion 500

C6 Mouse principal pyramidal 500

C7 Rat interneuron gabaergic 500

C8 Rat interneuron nitrergic 500

C9 Rat principal pyramidal hippocampus 500

C10 Rat principal pyramidal neocortex 500

3.1.2 Dataset 2
To verify the generalization of our method, the dataset only

considering neuronal type also serves as a validation dataset. It
consists of 1,802 digitally reconstructed neurons belonging to five
classes, namely ganglion, granule, motor, Purkinje, and pyramidal
cells. The number of samples per class is 500, 500, 95, 208, and 499,
respectively. For clarity, these five neuron types are denoted as GA,
GR, MO, PU, and PC, respectively.

3.2 Experiment settings

3.2.1 Implementation details
In the data prepossessing, the φ is set to 45◦. Consequently, the

number of view images N is 8, and each view image is resized to
224 × 224 pixels. In the view descriptor generation module, the
ResNet-50 is employed to extract raw view features. The learnable
GeM pooling parameter pc is initialized to 3. Besides, T1 and
T2 in GVMM and GVEM are set as 0.9 and 0.8, respectively.
The MWFNet framework is implemented using PyTorch and two
NVIDIAGTX 2080Ti GPUs are employed to train the model with a
batch size of 16. The Adam optimizer with a learning rate of 0.001 is
adopted to optimize the cross-entropy loss, while other parameters
are set to their default values.

Besides, we employ the 10-fold cross-validation method to
assess the performance of our MWFNet. Therefore, the dataset
is randomly divided into 10 equal-sized folds. In each validation
iteration, one fold serves as the test set while the remaining nine
serve as the training set. This process is repeated 10 times, ensuring
that each subset is used as a test set. Consequently, our MWFNet is
trained on 10 distinct training sets and evaluated on 10 separate test
sets. Finally, we calculate the average of these 10 validation results
to estimate the overall performance of our MWFNet.

3.2.2 Evaluation metrics
Overall accuracy is naturally utilized to evaluate the

classification performance of our method. Besides, the F1
score serves as an evaluation metric to verify the effectiveness of
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FIGURE 5

Classification performance of MWFNet on both datasets. (A, B) are the F1 scores of each type evaluated on Dataset 1 and Dataset 2, respectively. (C,

D) are the confusion matrices of classification on Dataset 1 and Dataset 2, respectively.

FIGURE 6

Visualization of the instance-level feature vectors using the t-SNE. (A, B) are the feature distributions of Dataset 1 and Dataset 2, respectively.

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2024.1322623
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Sun and Zhao 10.3389/fnins.2024.1322623

the proposed approach. Classification confusion matrices are also
provided to clearly demonstrate the effectiveness of our method.

3.3 Classification performance of MWFNet

The proposed method is evaluated on Dataset 1 and Dataset
2, and the classification performance is shown in Figure 5. Our
method achieves satisfactory results on the 10-class classification
task, with an average accuracy of 91.73% and an F1 score value
of 0.917. It is noteworthy that the F1 scores of all classes on
Dataset 1, except C6, exceed 0.890, implying that the extracted deep
features can effectively represent the differences among neuron
classes (as shown in Figure 5A). We observe that our method has
some limitations in distinguishing rat pyramidal cells (i.e., C6 type),
only with an F1 score of 0.766. 10% of mouse pyramidal cells
are misclassified as rat pyramidal cells (i.e., C10 type; as shown
in Figure 5C). There are some morphological similarities between
these pyramidal cells, such as apical dendrites, basal dendrites,
and soma. While our method is good at capturing the overall
structure of neuronal morphology, it currently has some limitations
in identifying subtle morphological nuances, such as dendrite size
and branching patterns. Our future work will focus on improving
the ability of our method to represent subtle differences so that it
can accurately describe the morphological properties of neurons
both globally and locally. When evaluated on Dataset 2 with 5
neuron types, ourmethod exhibits better classification performance
with an average F1 score of 0.971 (as presented in Figure 5B). The
confusion matrices report a high true prediction rate for neuron
types (as shown in Figures 5C, D), indicating that our method can
precisely distinguish neurons with the instance-level descriptors.

To further illustrate the effectiveness of our method, t-
stochastic neighbor embedding (t-SNE) (Van der Maaten and
Hinton, 2008) is employed for the analysis of the distribution
of high-dimensional features. Figure 6 depicts the distribution
of the instance-level features extracted from the MWFNet on
both datasets. Despite the great inter- and intra-class variation in
neuronal morphology, our method clearly separates each category
into a distinct cluster. By enhancing the raw view feature and
reducing redundant information among views, the instance-level
features learned from the MWFNet contribute to the accurate
identification of different neurons. Both visual and qualitative
experimental results demonstrate the superiority of our method in
neuronal morphology analysis.

3.4 Comparison with other methods

We compare our method with various methods evaluated
on two datasets to demonstrate its efficacy, including
Morphometrics (Vasques et al., 2016), 3D CNN (Lin and
Zheng, 2018), DRNN (Lin et al., 2018), LCCDNN (Lin and Zheng,
2019), TRNN (Zhang et al., 2021), SCAEs (Li et al., 2018), and
TreeMoCo (Chen et al., 2022). Especially, the Morphometrics is
evaluated by using 43 predefined morphometrics computed by
L-Measure (Scorcioni et al., 2008) as feature descriptors. Then,
various supervised algorithms and training settings are utilized as

the previous work (Vasques et al., 2016), and the best performance
is reported. Additionally, we evaluate the performance of our
method, using only three orthogonal views (namely x–y, y–z,
and x–z planes) projected from the 3D neuron data as input.
This configuration is referred to as MWFNet-3 Views. For other
methods, to make a fair comparison, we train these models using
the same dataset and train-test split as our method. Moreover, we
utilize the default parameter of these compared models to optimize
them. The best results are reported.

As presented in Table 2, the proposed method yields the best
classification performances with an accuracy of 91.73% and an
F1 score of 0.917 on Dataset 1. Our method has a striking
accuracy improvement by 10.45% over Morphometrics (Vasques
et al., 2016). This indicates that the novel feature representations
produced by the MWFNet are more effective at characterizing
neurons with complex morphology structures. Compared with
the 3D CNN (Lin and Zheng, 2018) based on the voxelized
3D data, our method makes full use of the complementary
information across views while enhancing the view-level feature
of each view to compensate for the information loss caused by
projection. Therefore, our method can comprehensively depict
neuronal arbors and precisely identify the type of neurons. By
considering the impact of different views on the classification
results, ourmethod gains a 6.73% accuracy improvement compared
with TRNN (Zhang et al., 2021), which directly connects different
view features to generate the instance-level descriptor. Although
TreeMoCo (Chen et al., 2022) constructs the neuron as a
tree graph and designs many features, it involves neuron node
sampling during the data preprocessing, so its performance
can be further improved. Besides, MWFNet performs better
when takes multiple views as input instead of three orthogonal
projection views.

Table 2 also reports the classification performance of different
methods evaluated on Dataset 2. Our method achieves an
accuracy of 98.18% and an F1 score of 0.971 on Dataset
2, outperforming other methods on all evaluation metrics.
Compared with the 3D CNN (Lin and Zheng, 2018), our method
improves the classification accuracy by 34.4%. The information
loss of part neuronal arbors caused by the voxelization and the
sparsity of neuron data negatively affects the performance of
3D CNN (Lin and Zheng, 2018). Despite possessing an average
F1 score of 0.950, the TRNN (Zhang et al., 2021) performs
2.1% worse than our method. This is because it ignores the
distinctions between view features and their influence on analysis
outcomes. Conversely, our approach measures the discriminability
of various view images and treats view features differentially.
Consequently, ourmethod can effectively improve the performance
of neuron classification.

3.5 Validation of robustness

The proposed MWFNet is evaluated on the dataset, randomly
downloaded from NeuroMorpho.org (Ascoli et al., 2007). It is a
comprehensive database, contributed to by over 900 laboratories
worldwide, presenting a wide array of experimental conditions
and data quality. To thoroughly assess the capabilities of
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TABLE 2 Comparison of di�erent methods.

Method Input Dataset 1 Dataset 2

F1 Acc. (%) F1 Acc. (%)

Morphometrics (Vasques et al., 2016) 1D 0.803 81.28 0.859 88.33

DRNN (Lin et al., 2018) 1D 0.502 54.00 0.841 84.53

LCCDNN (Lin and Zheng, 2019) 1D 0.534 55.20 0.855 85.64

SCAEs (Li et al., 2018) 2D 0.623 62.76 0.664 73.48

3D CNN (Lin and Zheng, 2018) 3D 0.429 45.82 0.605 63.78

TreeMoco (Chen et al., 2022) 3D 0.753 75.70 0.922 92.19

TRNN (Zhang et al., 2021) 2D+3D 0.836 85.00 0.950 94.00

MWFNet-3 Views (Ours) 2D 0.881 88.20 0.962 96.69

MWFNet (Ours) 2D 0.917 91.73 0.971 98.18

The best results are highlighted in bold.

TABLE 3 Classification accuracy of our method evaluated on datasets

with di�erent physical integrity of neuronal dendrites.

Dataset F1 Acc. (%)

I 0.882 89.77

M 0.907 90.83

C 0.941 94.36

C+M 0.919 92.00

I+C+M 0.917 91.73

I, M and C denote the datasets only including neurons with incomplete, moderate, and

complete dendrites, respectively. The C+M dataset includes neurons with moderate and

complete dendrites. The I+C+M dataset includes neurons with incomplete, moderate, and

complete dendrites.

MWFNet, diverse selection criteria based on neuronal dendrites
are utilized to generate the evaluation dataset. Specifically,
10 types of neurons within Dataset 1 are first categorized
based on the physical integrity of their dendrites, labeled as
complete, moderately complete, or incomplete. Subsequently, they
are organized into multiple sub-datasets: neurons only with
complete dendrites (C), neurons only with moderately complete
dendrites (M), neurons only with incomplete dendrites (I),
neurons with dendrites that are at least moderately complete
(C+M), and a comprehensive group including all neuron
types (I+C+M).

Table 3 shows the classification performance of the proposed
MWFNet evaluated on these sub-datasets, evidencing its robust
classification efficacy. Notably, our MWFNet attains an impressive
accuracy of 94.36% in classifying neurons with complete dendrites
(C dataset). For the M dataset, including neurons with moderately
complete dendrites, MWFNet achieves an accuracy of 90.83%.
Remarkably, it also yields an accuracy of 89.77% on the I dataset,
despite the significant challenges involved in classifying neurons
with exclusively incomplete dendrites. When evaluated on the
C+M dataset, MWFNet achieves satisfactory performance with
an accuracy of 92.00%. Crucially, it proves its comprehensive
applicability by correctly identifying 91.73% of neurons across all

categories. These findings confirm that MWFNet delivers high-
quality analysis across neuron datasets with variable reconstruction
quality, showcasing its reliability as an effective tool for large-scale
and diverse neuron type analysis.

3.6 Validation of generalization

Here, we utilize the digitally reconstructed neurons provided
by the Janelia MouseLight (JML, http://mouselight.janelia.org/) to
verify the generalization of our approach. We use the same dataset
as Chen et al. (2022) tomake a fair comparison and give the optimal
results reported in Chen et al. (2022). We eliminate neurons that
exhibit clear reconstruction errors. Furthermore, although some
samples have both dendrites and axons, we simplify our analysis by
retaining only the dendritic arbors as done in Chen et al. (2022).
Consequently, the selected JML-4 dataset used in this section
includes 369 neurons belonging to L2/3, L5, L6, and VPM. Each
class consists of 64, 179, 114, and 12 neurons. We employ the same
training-test split as the work (Chen et al., 2022) and utilize the
data preprocessing method described in Section 2.1 to obtain the
2D view images (as shown in Figure 7) as the input of our method.

As shown in Table 4, our method yields the best results,
with an accuracy of 71.88%, outperforming other methods. It
should be noted that this dataset exhibits data imbalance, with the
number of samples for each class ranging from 10 to 200, and
it suffers from a shortage of overall training data, totaling only
369 samples. Furthermore, neurons of different types often share
similar morphologies, as seen in the neurons from layers L5 and L6
(as illustrated in Figure 7). These factors make neuron classification
particularly challenging, resulting in relatively low performance
across all comparison methods applied to this dataset. Despite
these challenges posed by this dataset, our method delivers robust
results. MWFNet effectively captures the complex morphologies
of neurons through multiple projection images and sophisticated
feature representation, enhancing its efficacy even with limited data
availability. Furthermore, the proposed MWFNet can be used to
effectively identify neurons from various resources.

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2024.1322623
http://mouselight.janelia.org/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Sun and Zhao 10.3389/fnins.2024.1322623

FIGURE 7

Neuron samples of the JML-4 dataset and their corresponding 2D images projected view images. Each 3D neuron sample (shown in the first column)

is projected into eight view images (shown in columns 2–9), with a projection interval of 45 degrees. The types of neurons are labeled with white text

labels.

TABLE 4 Classification accuracy of di�erent approaches evaluated on the

JML-4 dataset.

Method Acc. (%)

MorphoVAE (Laturnus and Berens, 2021) 40.00

TRNN (Zhang et al., 2021) 51.43

GraphCL (You et al., 2020) 54.29

TreeMoCo (Chen et al., 2022) 67.14

MWFNet (Ours) 71.88

The best results are highlighted in bold.

3.7 Ablation studies

To verify the importance of each module of the proposed
MWFNet, we perform ablation experiments. Firstly, we verify the
effectiveness of GVMM and GVEM, respectively. Next, we analyze
the representation differences of different views and explore the
impact of such differences on the final results. Finally, we examine
the effect of using different thresholds in the GVMM and GVEM.

3.7.1 Validation of di�erent modules
Here, we first verify the influences of GVMM and GVEM.

The baseline method adopts ResNet-50 and GeM pooling as the
feature extractor, concatenating different view features directly to
generate the instance-level descriptors of neurons (see the first row
of performance in Table 5). In our method, the GVMM aims to

calculate the importance of views based on salient feature regions,
eliminating the influence of background regions. As shown in the
Table 5, incorporating the GVMM improves the accuracy by 9.2%
and 2.7% over the baseline on both datasets while the number of
parameters of GVMM is almost negligible. The GVEM mines the
relationships between different views and enhances the view-level
descriptors, further reducing redundant information among views
and improving the performance of our method. The introduction
of GVEM improves the accuracy of our method by 9.48% and
3.04% on the two datasets, respectively. When introducing both
GVMM and GVEM, the accuracies of our method evaluated on
both datasets gain 11.53% and 3.15% over the baseline, respectively.

3.7.2 Validation of di�erent views
Here, we investigate how each projection image affects

the categorization results. Figure 8 shows the projected view
images of neurons and the related weights produced by the
GVMM. As presented in Figure 3, neurons exhibit comparable
morphologies from the view images projected from the same
projection angles. View images projected at different rotation
angles showmorphological distinctions. Additionally, the projected
view images containing varying morphological details contribute
differentially to the classification results. Here, the weight
estimations of different views are shown in Figure 8 with white font.
It is observed that the view image with more morphological details
usually has a larger weight score, indicating that the view has more
distinct morphological information and would strongly impact the
classification decision, and vice versa. Therefore, it is sensible that
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TABLE 5 Performance of MWFNet with di�erent modules.

GVMM GVEM Inc. of Param. (M) Dataset 1 Dataset 2

F1 Acc. (%) F1 Acc. (%)

– – – 0.796 80.20 0.898 95.03

X – 0.002 0.893 89.40 (9.20↑) 0.975 97.73 (2.70↑)

– X 12.600 0.896 89.68 (9.48↑) 0.969 98.07 (3.04↑)

X X 12.620 0.917 91.73 (11.53↑) 0.971 98.18 (3.15↑)

Inc. of Praram. represents the increment of parameters and the ↑ represents the improvement of accuracy (%).

FIGURE 8

Neuron samples randomly selected from both datasets and the corresponding projected images. The discriminability score for each projected image

is marked in white font.

our method treats the features from different views differentially
by assigning adaptive weights in the fusion process. If the view-
level features are treated equally, the instance-level descriptors of
neurons are not sufficiently differentiated among different classes
and may contain more redundant information, hindering effective
neuronal morphology classification.

To further validate the efficacy of our method in treating
different view images distinctly, we conduct experiments on
Dataset 1 by manually assigning equal weights to view features.
Table 6 presents the classification results of MWFNet with
manual and adaptive weight assignment. It is evident that
when each view is assigned the same weight manually (such
as 0.2, 0.4, 0.6, 0.8, and 1.0), the classification performance is
relatively poor, showcasing a notable disparity compared to the
performance achieved by adaptively assigning weights computed
by GVMM to different views. This highlights the effectiveness
of our MWFNet in treating views differentially based on their
morphology representation for neurons. Moreover, we also explore
the impact of manually assigning varying weights to each view
based on their representation differences in neuronal morphology.
When setting corresponding weights to views, the results are

comparable to the adaptive weight assignment. Interestingly, when
opposite weights are manually assigned to views according to
the morphology representation of each view for neurons, a slight
decrease in classification performance can be observed. These
results further demonstrate the validity of our method in utilizing
the corresponding weights generated by GVMM for different
view images.

3.7.3 Threshold selection
Here, we explore the effects of different T1 and T2 for the

GVMM and GVEM, respectively. All experiments are carried out
on Dataset 1, consisting of more types of neurons.

We first investigate the influence of different T1 values on
GVMM. We conduct experiments with different T1 to select the
optimal value. As illustrated in Figure 9A, when the value of T1 is
relatively small, the feature area used by GVMM to measure view
confidence is wider. This makes the distinguishabilitymeasurement
of each view less precise. To gauge the significance of the view
for analysis results, GVMM selects high-confidence feature areas
as the T1 value increases. This lessens the influence of background
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TABLE 6 Classification accuracy of our method with di�erent view weight assignment methods.

Weights for 8 views Setting method F1 Acc. (%)

[0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2] Manual assignment 0.881 88.11

[0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4] Manual assignment 0.886 88.67

[0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6] Manual assignment 0.889 88.93

[0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8] Manual assignment 0.884 88.51

[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] Manual assignment 0.885 88.55

[0.1, 0.1, 0.55, 0.2, 0.5, 0.1, 0.5, 0.1] Manual assignment 0.883 88.51

[0.5, 0.3, 0.01, 0.2, 0.1, 0.3, 0.1, 0.3] Manual assignment 0.899 90.12

Adaptive weights generated by GVMM (Ours) Adaptive assignment 0.917 91.73

There are eight view images and their corresponding view weights. All experiments are conducted on Dataset 1 and the best results are highlighted in bold.

FIGURE 9

Performance of our method under di�erent T1 on the GVMM (A) and under di�erent T2 on the GVEM (B).

or noisy areas, allowing for improved categorization results. Our
method yields the best performance across all three metric values
when T1 is equal to 0.9. Therefore, we set the T1 to 0.9 for
other trials.

The GVEM employs the threshold T2 to assess the similarity
among the view images, reducing the weight of the highly similar
view features while strengthening the less similar ones. Figure 9B
displays the experimental results of our method based on various
T2 values. We can observe that our method achieves the best
classification performance when T2 is equal to 0.8. The highest
performance (an F1 score of 0.917) presents a 2.02% gain compared
to when T2 is 0.1. This demonstrates that GVEM can enhance
view features and reduce redundancy, facilitating the learning of
instance-level feature descriptors.

4 Discussions

Identifying and analyzing neuron types based on morphology
are important to understanding the neuronal function and
activity (Li et al., 2021; Parekh and Ascoli, 2013). However,
it is challenging due to the significant differences in neuronal
morphology among intra- and inter-classes (Li et al., 2021).
Recently, automatic analysis methods (Zhu et al., 2022; Lin and
Zheng, 2018, 2019) based on morphological characteristics mainly
employ 3D CNNs or 2D CNNs to extract feature representations
from 3D neuron data or 2D images, respectively. However, the

sparsity of neuronal morphology makes it not easy to build a
unified 3D network for various datasets (Li et al., 2018). While the
method (Zhang et al., 2021) based on 2D images obtains a unified
framework and saves computing resources, it does not account
for the limitations and specificity of 2D views in characterizing
neuronal morphology.

In this work, we propose the MWFNet, which hierarchically
describes neuronal morphology based on multiple 2D view images.
The MWFNet considers the differences between 2D views in
representing neuronal morphology, as well as the similarity and
repeatability among views. The obtained instance-level descriptors
contain salient features learned from multiple-view images and
reduce the redundant information induced from similar views.
Therefore, our method can fully represent neuronal morphology
and accurately reflect the characteristics of different categories.

As Figure 8 illustrates, different view images depict neuronal
morphology differentially. Consequently, their influence on the
analysis results varies. The GVMM employs threshold T1 to select
high-confidence and salient feature regions to assess the impact of
each view. Experimental results show that the GVMM effectively
improves the performance of our method in identifying 10 types
and 5 types of neurons. The ablation study on the selection
of T1 shows that our method produces the best classification
results (accuracy of 91.73% and 98.10% on Dataset 1 and
Dataset 2, respectively) when the threshold T1 is equal to 0.9.
However, the threshold T1 value is manually selected and set
in this work. In future work, we will explore adjusting the T1
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adaptively during the learning process to analyze the neuronal
morphology conveniently.

We observe similarities between views (see Figure 8) when
utilizing the multi-view method to describe neuronal morphology.
However, if all view descriptors are used to form the instance-
level descriptor, it leads to information redundancy. The GVEM
is designed to improve the effectiveness of view-level features and
retain dissimilar features. It enhances the feature representation of
the views different from others while weakening the characteristics
of these extremely similar views. According to experimental results,
GVEM increases classification accuracy by 9.48% and 3.04% on
Dataset 1 and Dataset 2, respectively. However, our method sets
a high threshold T2 to retain as many view features as possible
while removing redundant information to some extent. In our
future work, we will consider removing redundant features to a
greater extent while maintaining the classification performance of
our method. Additionally, we will investigate setting the threshold
T2 more flexibly.

5 Conclusions

This paper proposes a novel feature representation for neuronal
morphology using the Multi-gate Weighted Fusion Network
(MWFNet). The MWFNet first utilizes a Gated ViewMeasurement
Module (GVMM) to assess the impact of each view on the
classification results according to the salient feature regions and
a Gated View Enhancement Module (GVEM) to enhance view-
level descriptors based on the paired similarity. After that, the
discriminative instance-level descriptors for neurons are obtained
by adaptively assigning the corresponding discrimination score
generated by GVMM to the enhanced view features obtained
from the GVEM. Experimental results show that our method
achieves high accuracies of 91.73% and 98.18% on 10-type and 5-
type neuron classification tasks, respectively, outperforming other
methods. Moreover, the MWFNet has good generalization and
robustness when evaluated on other datasets.

In the future, we will further optimize the proposed MWFNet
and apply it to analyze large-scale datasets. While MWFNet
yields significant performance, its GVMM and GVEM manually
set thresholds. In future work, we will explore approaches to
automatically adjust and set these thresholds during the feature
extraction process. This will enable more automatic and scalable
neuronal morphology analysis. Additionally, neuron data is
increasing dramatically thanks to continuous advances in high-
precision microscopic imaging and reconstruction techniques.
Therefore, we plan to apply the proposed MWFNet to analyze
larger-scale datasets. Our goal is to develop a robust and efficient

tool for large-scale neuron analysis that will significantly advance
the field of neuroscience.

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

Author contributions

CS: Conceptualization,Methodology, Validation, Visualization,
Writing – original draft. FZ: Funding acquisition, Writing – review
& editing, Supervision.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by the Anhui Provincial Natural Science Foundation
under Grant 2108085UD12.

Acknowledgments

We acknowledge the support of GPU cluster built
by MCC Lab of Information Science and Technology
Institution, USTC.

Conflict of interest

The authors declare that the research was conducted
in the absence of any commercial or financial relationships
that could be construed as a potential conflict
of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ascoli, G. A., Donohue, D. E., and Halavi, M. (2007). Neuromorpho.
org: a central resource for neuronal morphologies. J. Neurosci. 27, 9247–9251.
doi: 10.1523/JNEUROSCI.2055-07.2007

Batabyal, T., Condron, B., and Acton, S. T. (2020). Neuropath2path: classification
and elastic morphing between neuronal arbors using path-wise similarity.
Neuroinformatics 18, 479–508. doi: 10.1007/s12021-019-09450-x

Batabyal, T., Vaccari, A., and Acton, S. T. (2018). “Neurobfd: size-independent
automated classification of neurons using conditional distributions of morphological
features,” in Proc. Int. Symp. Biomed. Imaging (Washington, DC: IEEE), 912–915.
doi: 10.1109/ISBI.2018.8363719

Bird, A. D., and Cuntz, H. (2019). Dissecting sholl analysis into its functional
components. Cell Rep. 27, 3081–3096. doi: 10.1016/j.celrep.2019.04.097

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2024.1322623
https://doi.org/10.1523/JNEUROSCI.2055-07.2007
https://doi.org/10.1007/s12021-019-09450-x
https://doi.org/10.1109/ISBI.2018.8363719
https://doi.org/10.1016/j.celrep.2019.04.097
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Sun and Zhao 10.3389/fnins.2024.1322623

Caznok Silveira, A. C., Antunes, A. S. L. M., Athié, M. C. P., da Silva, B. F.,
Ribeiro dos Santos, J. V., Canateli, C., et al. (2024). Between neurons and networks:
investigating mesoscale brain connectivity in neurological and psychiatric disorders.
Front. Neurosci. 18:1340345. doi: 10.3389/fnins.2024.1340345

Chen, H., Yang, J., Iascone, D., Liu, L., He, L., Peng, H., et al. (2022). TreeMoCo:
contrastive neuron morphology representation learning. Proc. Adv. Neural Inf. Process.
Syst. 35, 25060–25073. doi: 10.5555/3600270.3602087

Colombo, G., Cubero, R. J. A., Kanari, L., Venturino, A., Schulz, R., Scolamiero,
M., et al. (2022). A tool for mapping microglial morphology, morphomics,
reveals brain-region and sex-dependent phenotypes. Nat. Neurosci. 25, 1379–1393.
doi: 10.1038/s41593-022-01167-6

Deng, Y., Lin, X., Li, R., and Ji, R. (2019). “Multi-scale gem pooling with n-pair
center loss for fine-grained image search,” in Proc. IEEE Int. Conf. Multimedia Expo
(Shanghai: IEEE), 1000–1005. doi: 10.1109/ICME.2019.00176

Feng, Y., Zhang, Z., Zhao, X., Ji, R., and Gao, Y. (2018). “GVCNN: group-view
convolutional neural networks for 3d shape recognition,” in IEEE Conf. Comput. Vision
Pattern Recognit. (Salt Lake City: IEEE), 264–272. doi: 10.1109/CVPR.2018.00035

Fogo, G. M., Anzell, A. R., Maheras, K. J., Raghunayakula, S., Wider, J. M., Emaus,
K. J., et al. (2021). Machine learning-based classification of mitochondrial morphology
in primary neurons and brain. Sci. Rep. 11:5133. doi: 10.1038/s41598-021-84528-8

Gillette, T. A., and Ascoli, G. A. (2015). Topological characterization of neuronal
arbor morphology via sequence representation: I-motif analysis. BMC Bioinform. 16,
1–15. doi: 10.1186/s12859-015-0604-2

Gillette, T. A., Hosseini, P., and Ascoli, G. A. (2015). Topological characterization
of neuronal arbor morphology via sequence representation: II-global alignment. BMC
Bioinform. 16, 1–17. doi: 10.1186/s12859-015-0605-1

Hamdi, A., Giancola, S., and Ghanem, B. (2021). “MVTN: multi-view
transformation network for 3d shape recognition,” in Proc. IEEE Int. Conf. Comput.
Vis. (Montreal, QC: IEEE), 1–11. doi: 10.1109/ICCV48922.2021.00007

Hernández-Pérez, L. A., Delgado-Castillo, D., Martín-Pérez, R., Orozco-Morales,
R., and Lorenzo-Ginori, J. V. (2019). New features for neuron classification.
Neuroinformatics 17, 5–25. doi: 10.1007/s12021-018-9374-0

Kanari, L., Dłotko, P., Scolamiero, M., Levi, R., Shillcock, J., Hess, K., et al. (2018). A
topological representation of branching neuronal morphologies. Neuroinformatics 16,
3–13. doi: 10.1007/s12021-017-9341-1

Laturnus, S. C., and Berens, P. (2021). “Morphvae: generating neural morphologies
from 3D-walks using a variational autoencoder with spherical latent space,” in Proc. Int.
Conf. Mach. Learn. 6021–6031. doi: 10.1101/2021.06.14.448271

Li, L. (2021). Neuron classification with a data-driven workflow. Int. J. Phys.: Conf.
Ser. 1883:012122. doi: 10.1088/1742-6596/1883/1/012122

Li, Z., Butler, E., Li, K., Lu, A., Ji, S., Zhang, S., et al. (2018). Large-scale exploration of
neuronal morphologies using deep learning and augmented reality. Neuroinformatics
16, 339–349. doi: 10.1007/s12021-018-9361-5

Li, Z., Fan, X., Shang, Z., Zhang, L., Zhen, H., Fang, C., et al. (2021). Towards
computational analytics of 3d neuron images using deep adversarial learning.
Neurocomputing 438, 323–333. doi: 10.1016/j.neucom.2020.03.129

Lin, X., and Zheng, J. (2018). A 3D neuronal morphology classification approach
based on convolutional neural networks. Int. Symp. Comput. Intell. Design 2, 244–248.
doi: 10.1109/ISCID.2018.10157

Lin, X., and Zheng, J. (2019). A neuronal morphology classification approach
based on locally cumulative connected deep neural networks. Appl. Sci. 9:3876.
doi: 10.3390/app9183876

Lin, X., Zheng, J., Wang, X., and Ma, H. (2018). “A neuronal morphology
classification approach based on deep residual neural networks,” in Proc. Int. Conf.
Neural Inf. Process. (Cham: Springer), 336–348. doi: 10.1007/978-3-030-04212-7_29

Llorens-Martín, M., Rábano, A., and Ávila, J. (2016). The ever-changing
morphology of hippocampal granule neurons in physiology and pathology. Front.
Neurosci. 9:526. doi: 10.3389/fnins.2015.00526

Mages, B., Aleithe, S., Altmann, S., Blietz, A., Nitzsche, B., Barthel, H., et al.
(2018). Impaired neurofilament integrity and neuronal morphology in differentmodels
of focal cerebral ischemia and human stroke tissue. Front. Cell. Neurosci. 12:161.
doi: 10.3389/fncel.2018.00161
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