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The loss of dopaminergic neurons in the substantia nigra and the abnormal 
accumulation of synuclein proteins and neurotransmitters in Lewy bodies 
constitute the primary symptoms of Parkinson’s disease (PD). Besides 
environmental factors, scholars are in the early stages of comprehending 
the genetic factors involved in the pathogenic mechanism of PD. Although 
genome-wide association studies (GWAS) have unveiled numerous genetic 
variants associated with PD, precisely pinpointing the causal variants remains 
challenging due to strong linkage disequilibrium (LD) among them. Addressing 
this issue, expression quantitative trait locus (eQTL) cohorts were employed 
in a transcriptome-wide association study (TWAS) to infer the genetic 
correlation between gene expression and a particular trait. Utilizing the TWAS 
theory alongside the enhanced Joint-Tissue Imputation (JTI) technique and 
Mendelian Randomization (MR) framework (MR-JTI), we  identified a total 
of 159 PD-associated genes by amalgamating LD score, GTEx eQTL data, 
and GWAS summary statistic data from a substantial cohort. Subsequently, 
Fisher’s exact test was conducted on these PD-associated genes using 5,152 
differentially expressed genes sourced from 12 PD-related datasets. Ultimately, 
29 highly credible PD-associated genes, including CTX1B, SCNA, and ARSA, 
were uncovered. Furthermore, GO and KEGG enrichment analyses indicated 
that these genes primarily function in tissue synthesis, regulation of neuron 
projection development, vesicle organization and transportation, and lysosomal 
impact. The potential PD-associated genes identified in this study not only offer 
fresh insights into the disease’s pathophysiology but also suggest potential 
biomarkers for early disease detection.

KEYWORDS

Parkinson’s disease, MR-JTI, GWAS, TWAS, Mendelian Randomization

1 Introduction

Parkinson’s disease (PD), the second most prevalent progressive neurodegenerative 
disorder globally, affects over 6 million individuals worldwide, and its prevalence continues 
to escalate rapidly. Projections indicate that it might even double within the next 30 years 
(GBD 2016 Neurology Collaborators, 2019). PD is recognized as a movement disorder 
characterized by symptoms such as rigidity, slowness, and tremor (Armstrong and Okun, 
2020). Most PD cases manifest in individuals aged between 85 and 89, with men being 
more susceptible than women (Tolosa et al., 2021). The main causes of PD are understood 
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to be a combination of environmental and genetic factors. Instances 
of severe brain injury, consumption of dairy products, and exposure 
to pesticides have all been associated with an increased risk of PD 
(Ascherio and Schwarzschild, 2016). Studies suggest that the 
complex interaction between environmental and hereditary factors 
affecting essential cellular processes is the major cause of PD (Kalia 
and Lang, 2015).

Through extensive cohort studies on PD employing Genome-
wide Association Studies (GWAS), a robust technique for 
detecting complex diseases, researchers have identified over 70 
common susceptibility genes associated with PD (Nalls et  al., 
2019). As early as 2009, a comprehensive genetic risk survey of 
Parkinson’s disease, using European population GWAS data, 
revealed numerous additional risk sites and provided essential 
insights into the pathogenesis of PD (Simón-Sánchez et al., 2009). 
While these findings have successfully linked numerous genetic 
loci to various complex features in PD, providing a significant 
framework for PD research, the presence of strong linkage 
disequilibrium (LD) often obscures the causal relationships 
between genes and phenotypes, posing challenges in interpreting 
GWAS statistics alone (Gallagher and Chen-Plotkin, 2018). To 
address this issue, many researchers have turned to the 
Transcriptome-wide Association Study (TWAS) approach, a 
valuable development that combines individual gene expression 
data with GWAS results. This allows for the quantitative 
prediction of gene expression levels in specific diseases, aiding the 
identification of genes with potential biological functions and 
enhancing the understanding of the relationship between 
genes and PD.

The traditional TWAS approach generally involves three steps 
(Gamazon et al., 2015; Gusev et al., 2016; Barbeira et al., 2018). (A) 
Model training, A model is fitted for the expression quantitative trait 
of the target gene based on reference data (e.g., GTEx database or 
other cohort data), with nearby genotypes such as Single Nucleotide 
Polymorphisms (SNPs) as predictive variables. (B) Gene expression 
filling, employing the training model to fill in missing gene 
expression data within large-scale GWAS cohorts. (C) Correlation 
analysis, the gene expression after filling is used to analyze the 
association between genes and disease traits (Luningham et  al., 
2020). However, researchers are continually advancing beyond the 
traditional TWAS approach to identify genes associated with 
complex pathological features that exhibit robust associations. 
Enhanced detection techniques include TIGAR (Nagpal et al., 2019), 
PrediXcan (Gamazon et al., 2015), PMR-Egger (Yuan et al., 2020), 
SMR/HEIDI (Pavlides et al., 2016; Zhu et al., 2016; Hauberg et al., 
2017), Sherlock (He et al., 2013), eCaviar (Hormozdiari et al., 2016), 
enloc (Wen et al., 2017), and RTC (Nica et al., 2010). In recent years, 
there has been an increasing trend in employing traditional or 
improved TWAS approaches to identify candidate causal genes for 
PD. For instance, Yao et al. (2021) integrated GWAS results with the 
eQTL data of 13 brain tissues for TWAS analysis to identify 
significant associated genes for PD. Similarly, Li et  al. (2019) 
conducted TWAS analysis based on RNA splicing or splicing QTL 
(sQTL) to uncover additional connections between genes and PD.

In 2020, Zhou and colleagues introduced MR-JTI as an 
enhanced version of the PrediXcan TWAS method. This innovative 
approach amalgamates the Joint-Tissue Imputation (JTI) technique 
with the Mendelian Randomization (MR) framework for causal 

inference (Zhou et al., 2020). Unlike conventional TWAS methods, 
JTI harnesses data from transcriptomes of various tissues (such as 
the GTEx V8 panel) and shared regulatory gene maps to elucidate 
the structure of the expressed genome and ascertain the association 
between expression and traits. For JTI, the prediction model was 
generated using a reference multi-tissue transcriptome panel, and 
the predictive performance was evaluated in each target tissue 
through cross-validation. When the transcriptional regulation of 
target genes exhibits specificity in simple tissues, it will automatically 
revert the model to a single-tissue PrediXcan prediction model. JTI 
significantly enhances prediction performance in a tissue-specific 
manner, surpassing traditional PrediXcan and UTMOST (multi-
organization interpolation method) methodologies (Zhou et al., 
2013). In trait mapping applications, prediction models can 
be applied to GWAS summary statistics to identify robust gene-level 
associations. In this study, we leveraged the JTI scheme, GWAS data 
and eQTL cohorts from GTEx (version 8) were utilized to perform 
tissue-specific TWAS analysis for PD-related genes in 13 brain 
regions, and the results were incorporated into the MR framework 
to identify the causal relationship between risk factors and PD to 
enhance the reliability of obtained results. The experimental flow 
diagram is shown in Figure  1. Our study will contribute to 
identifying more precise potential therapeutic targets and 
biomarkers for PD.

2 Materials and methods

2.1 GWAS data for PD

The GWAS data for PD involving 33,674 patients and 449,056 
control subjects were obtained from the study conducted by Nalls 
et  al. (2019). The data were downloaded from the European 
Bioinformatics Institute GWAS Catalog1 with GWAS ID number 
ieu-b-7. The data are accessible via https://gwas.mrcieu.ac.uk/. The 
comprehensive details regarding sample collection and analysis 
methods can be found in the original article published in The Lancet 
Neurology (Nalls et al., 2019).

2.2 TWAS analysis of PD using the JTI 
method

The GTEx database serves as a substantial repository of human 
genetic information and is continually updated to offer the latest 
insights. Its most recent iteration, GTEx V8, contains 
comprehensive sequencing data from 54 non-diseased tissue sites 
collected from 948 donors (available for download from the GTEx 
project website)2 (Battle et al., 2017). Through a comprehensive 
assessment of the shared regulatory architecture of gene expression 
across different tissues and the unique genetic regulation in specific 
tissue, the JTI approach developed by Zhou et  al. (2020) 
significantly enhances prediction performance while effectively 

1 https://www.ebi.ac.uk/gwas/

2 https://www.gtexportal.org/home/
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controlling type I  error rates. The pre-training JTI prediction 
models (eQTL models) for each tissue based on the JTI scheme and 
GTEx V8 data, alongside related eQTL summary statistics and 
SNP-SNP covariance matrices, all accessible via https://zenodo.org/
record/3842289#.Y9. A total of 13 brain region-specific pre-trained 
prediction models were obtained, encompassing areas such as the 
brain amygdala, anterior brain, caudate brain, cerebellar brain, 
cerebellum, cortex, frontal brain, hippocampus, hypothalamus, 
brain nucleus, putamen brain, spinal brain, and substantia brain.

Subsequently, utilizing the JTI method, we  employed the 
pre-trained model and GWAS data to conduct TWAS analysis, 
aiming to identify PD-related risk genes. All p-values for 
PD-related risk genes obtained through JTI underwent 
adjustment using the Bonferroni method via the p.adjust function 
in R (version 4.1.3) and the false discovery rate (FDR) method 
(genes with FDR < 0.05 were defined as being associated with PD).

2.3 JTI analysis method combined with MR

Though the relationship between gene expression and PD has 
been established by JTI, it is still uncertain whether the differential 
expression of these genes is the cause or consequence of 
PD. Therefore, the JTI results were then incorporated into the MR 
framework to evaluate the causal relationship between gene 
expression and PD. Initially, tackling the challenge of LD bias, 
we  addressed this issue by computing LD scores, using GCTA 
software. These LD scores were generated by imputing data from the 
1,000 Genomes Project into GCTA. The LD score matrices, which 
gauge the degree of association between loci based on allele 
frequency and correlation coefficients, were calculated using publicly 
available samples from individuals self-identified as healthy.3 
GCTA64 (Yang et al., 2011) was employed to compute LD scores 

3 https://ctg.cncr.nl/software/MAGMA/ref_data/

from the GTEx genotype data. Subsequently, the LD scores, effect 
size of eQTL (beta), standard error (SE) of eQTL effect size, eQTL 
p-value and GWAS beta, and GWAS p-value were then used as the 
input of MR. The primary outcome of MR-JTI was the “expression” 
significance, denoting the significance (p-value <0.05) of the causal 
relationship between gene expression and PD. Ultimately, the 
MR-JTI method was instrumental in identifying potential 
PD-related causal genes.

2.4 Fisher’s exact test for potential risk 
factors of PD

The Gene Expression Omnibus (GEO), an openly available 
genomic data repository4, offers a vast collection of genetic data, 
encompassing complete gene expression profiles, chips, and 
microarrays. In this study, we utilized the GEO database to retrieve 
and download the 12 publicly accessible datasets related to PD that 
were used (Table 1). According to the high consistency in gene 
expression patterns among these brain regions, we integrated 12 
GEO datasets, which provide a more comprehensive data 
foundation to screen PD risk factors identified by MR-JTI analysis 
conducted using Fisher’s exact test. Differentially expressed genes 
(DEGs) were screened based on p < 0.05 and |log2 fold-change 
(FC)| > 1. Annotation of the gene symbols in the datasets was 
performed using DAVID online software5. The potential risk 
factors of PD identified by MR-JTI and the DEGs related to PD 
were analyzed using Fisher’s exact test to further refine the 
selection of these risk factors.

4 http://www.ncbi.nlm.nih.gov/geo

5 https://david.ncifcrf.gov/tools.jsp

FIGURE 1

The experimental flow chart of this study. This study involved several key steps. Initially, GWAS data and JTI pre-training models were integrated for 
TWAS analysis. This process yielded 174 PD-related genes. Subsequently, through further analysis combining LD score, GTEx V8 eQTL data, and GWAS 
summary statistics, the MR approach identified 159 PD-associated risk factors. To enhance reliability, Fisher’s exact test was conducted on 5,152 DEGs 
(p  <  0.05 and |log2FC|  >  1) obtained from the GEO dataset of PD and 159 PD-associated risk factors, resulting in the identification of 29 significant PD-
related risk genes.

https://doi.org/10.3389/fnins.2024.1309684
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://zenodo.org/record/3842289#.Y9
https://zenodo.org/record/3842289#.Y9
https://ctg.cncr.nl/software/MAGMA/ref_data/
http://www.ncbi.nlm.nih.gov/geo
https://david.ncifcrf.gov/tools.jsp


Wu et al. 10.3389/fnins.2024.1309684

Frontiers in Neuroscience 04 frontiersin.org

2.5 Functional enrichment analysis of PD 
risk genes

Gene Ontology (GO) enrichment analysis, including biological 
pathways (biological process, BP), cellular components (CC), and 
molecular function (MF), and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG)6 were employed to conduct functional 
enrichment analysis of the genes associated with PD. These analyses 
were performed using the R package ClusterProfiler. The 
significantly enriched pathways (adjusted p < 0.05) were visualized 
using the R package Circlize.

3 Results

3.1 MR-JTI revealed 159 PD-related genes

Studies estimating PD heritability through twin and family 
analyses suggest a significant role for genetic factors in driving 
phenotypic variance, ranging between 27 and 60% (Do et al., 2011). 
To determine the risk loci connected to PD, utilizing GWAS statistic 
data for PD from Nalls et al., we conducted the JTI analysis using 
eQTL pre-training models to uncover risk genes linked to PD. After 
the elimination of duplicate genes, 174 candidate genes associated 
with PD risk (FDR < 0.05, Supplementary Table 1) were identified 
from 13 different brain regions, suggesting that their expression might 
be tied to the genetic risk of developing PD.

To determine whether the differential expression of these 
genes associated with PD is a cause or a consequence of PD 
development, we utilized the MR analysis approach. This involved 
integrating LD scores, eQTL data, and GWAS summary statistics 
into the MR analysis, aiming to evaluate the genes identified 
using the JTI method. Subsequently, 159 probable causative risk 
genes for PD (FDR < 0.05, Supplementary Table  2) were 
pinpointed across the 13 brain areas after the removal of duplicate 

6 https://www.genome.jp/kegg/

genes. The Manhattan plot represents the risk genes of PD 
screened by MR-JTI from 13 brain regions (Figure  2 and 
Supplementary Figure 1). Among PD-related genes in the brain 
substantia area, ARSA (Senkevich et  al., 2023), KANSL1-AS1 
(Lona-Durazo et al., 2023), FAM47E (Blauwendraat et al., 2019), 
and ARHGAP27 (Saeed, 2018) have been reported to be risk loci 
that contribute to the development of PD. The genetic alteration 
among NMRN1 (Fuchs et al., 2007), CRHR1 (Cheng et al., 2020; 
Rasmi et al., 2023), and HLA-DRB1 (Le Guen et al., 2023) in the 
brain cortex increased the risk of PD.

3.2 Gene enrichment for PD

To further understand the connection between these 159 genes 
and PD, we conducted enrichment analyses using GO and KEGG 
functional enrichment analysis. The results of GO enrichment 
analysis revealed significant enrichment in synaptic tissue pathways 
(such as synaptic vesicle exocytosis and endocytosis and presynaptic 
and postsynaptic regions), protein acetylation, kinase activity 
regulation, and lysosomal function. Notably, pathways related to 
neuronal projection development and vesicular tissue transport 
involving genes like CD38, EFNA1, STX1B, and SNCA were 
highlighted (Figure 3A and Supplementary Table 3). Furthermore, 
the KEGG functional enrichment analysis unveiled enrichments in 
lysosome, vesicular transport, signaling pathways, and hematopoietic 
cell lineage among the 159 genes associated with PD (Figure 3B and 
Supplementary Table 4).

3.3 Fisher’s exact test for DEGs and risk 
genes linked with PD

To increase the accuracy of identifying risk factors for PD, 
we performed Fisher’s exact test on 159 PD-associated genes and the 
integrated DEG datasets in PD. Performing DEG analysis on 12 
PD-related datasets sourced from distinct brain regions obtained from 
the GEO database (refer to Table 1), we identified a total of 5,152 
distinct DEGs meeting the criteria (p < 0.05 and |log2FC| > 1, 

TABLE 1 Details of PD-related datasets.

GEO accession Public date Tissues Control PD case References

GSE205450 May, 2023 Caudate and putamen regions of the striatum 80 70 Irmady et al. (2023)

GSE8397 Jan, 2008 Substantia nigra/Superior frontal gyrus 18 29 Duke et al. (2007)

GSE168496 Jan, 2023 Substantia nigra 8 8 Tranchevent et al. (2023)

GSE106608 May, 2021 Subthalamic nucleus 9 7 Not published yet

GSE163176 June, 2021 Brain slice 3 3 Lian et al. (2021)

GSE136666 Sep, 2020 Putamen/Substantia nigra 8 8 Xicoy et al. (2020)

GSE133101 June, 2020 Amygdala/Mediltemporal Gyrus/Substantia nigra 26 43 Hanan et al. (2020)

GSE134390 Feb, 2020 Putamen 0 20 Not published yet

GSE114517 Apr, 2020 Substantia Nigra/Amygdala/Mediltemporal Gyrus 29 46 Simchovitz et al. (2020)

GSE42966 Sep, 2021 Substantia nigra 6 9 Quan et al. (2021)

GSE28894 Sep, 2021 Frontal Cortex/Cerebellum/Medulla 59 55 Chis et al. (2021)

GSE7621 June, 2007 Substantia nigra 9 16 Lesnick et al. (2007)
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Supplementary Table 5). Using Venn analysis to compare the 159 
PD-related genes with the 5,152 DEGs found in different brain 
regions, we  identified 29 significant genes associated with PD 
(Figure 4A). We evaluated the correlation between the 29 genes and 
PD by manually retrieving published literature, providing suggestions 
for future research on the role of these significant genes in PD. The 
functions of these 29 genes involved in PD pathophysiology are 
detailed in Table 2. Moreover, from the pool of 29 genes, we randomly 
selected ABCB9, CCDC62, CTSB, E2F1, and SNCA to serve as 
representative genes, illustrating their expression trends in PD cases 
and normal control subjects (Figures 4B–F).

4 Discussion

Given the complex etiology of PD and the lack of effective drug 
targets, there is a lack of effective treatment options and intervention 
strategies in clinical practice. In this study, we  conducted TWAS 
utilizing JTI to uncover potential PD risk factors. Across 13 distinct 
brain areas, this analysis identified a total of 174 potential genes 
associated with PD risk. Subsequent causal inference using MR 
revealed 159 genes strongly linked to PD. The prevailing theory 
regarding PD pathophysiology underscores the depletion of 

dopaminergic neurons in the substantia nigra and the accumulation 
of α-synuclein and other neurotransmitters in the Lewy body as key 
factors (Hirtz et al., 2007; Kalia and Lang, 2015). Interestingly, among 
the 159 identified risk genes for PD, several are enriched in these 
PD-related pathways. For example, genes such as SCNA, CDC42 
(Ying et al., 2022), EFNA1, MAPT (Aarsland et al., 2017), and LZTS3 
(Li et al., 2023). Specifically, overexpressed SCNA, which codes for the 
protein alpha-synuclein, displayed aberrant synaptic nucleoprotein 
aggregation, causing neurotoxicity and neuronal death in PD (Rocha 
et al., 2018). EFNA1 has been observed to influence dopaminergic 
neurogenesis and angiogenesis in PD rat models, potentially affecting 
PD risk (Jing et al., 2012). It was worth noting that many genes were 
enriched in mitochondrial-related pathways, mainly involving 
mitochondrial outer membrane permeability, such as HIP1R and 
NMT1 (Barbu et al., 2020). Concurrently, genes like GAK (Nalls et al., 
2014; Ma et al., 2015; Miyazaki et al., 2021) and PLEKHM1 (Barbu 
et al., 2020; Xu et al., 2020) have reported associations with PD via the 
lysosomal functional pathway.

Fisher’s exact test was conducted on 159 PD-related risk genes 
to ascertain more reliable genes associated with PD. As a result, 
29 genes were identified from samples across 13 brain regions. In 
the progression of PD pathology, the loss of dopaminergic neurons 
in the substantia nigra can lead to oxidative stress (Trist et al., 

FIGURE 2

Manhattan maps from MR-JTI results of different brain regions. The Manhattan maps derived from MR-JTI results illustrated the relationship strength 
between genes and PD in different brain regions. The “-log (p-value)” of each gene in the JTI result is represented on the vertical axis; the higher values 
indicated a stronger association between the gene and PD. Brain cortex (A) and substantia nigra (B). The dashed lines on each graph represent a 
significance cutoff threshold of 5e-20.
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2019), while α-Synuclein may trigger mitochondrial dysfunction 
(Rocha et al., 2018). Both these characteristics contribute to the 
neurodegenerative cascade reaction of PD. Additionally, ARSA, 
E2F1, SCNA, and other risk genes that are connected to the 
aforementioned two pathological characteristics have also been 
found. ARSA (Lee et al., 2019), acting as a molecular chaperone 
of SCNA (Dehay et al., 2015; Ferese et al., 2015; Du et al., 2020), 
plays a protective role in PD pathogenesis (Lee et al., 2019). DNA 
damage induces cell cycle reactivation and heightened E2F1 
expression prompts neuronal apoptosis. Inhibiting cyclin 
activation, a potential drug target, demonstrates neuroprotective 
and anti-apoptotic effects in experimental models, suggesting the 
potential of the application of E2F1 in PD treatment (Verdaguer 
et al., 2007; Folch et al., 2012). Neuroinflammation is a significant 
player in PD pathology, with studies on numerous peripheral 
blood and cerebrospinal fluid samples from PD patients indicating 
that changes in immune function may exacerbate PD-related 
inflammation (Tansey et al., 2022). For instance, HLA-DRB1 (Le 
Guen et al., 2023) has been identified as an immune-related PD 
gene. Additionally, polymorphisms in STX1B (Wang et al., 2015) 
and CCDC62 (Lauterbach, 2012; Yi et al., 2023) are connected to 
PD. Numerous other DNA methylations, such as CRHR1 (Cheng 

et al., 2020; Rasmi et al., 2023) and ABCB9 (Chuang et al., 2017) 
have implications on PD development. CRHR1 signaling regulates 
embryonic neural stem cells, affecting brain development (Kwon 
et  al., 2023). Furthermore, CRHR1 is involved in modulating 
glutamatergic and dopaminergic circuits, impacting 
neurotransmitter transmission and dopamine (Refojo et al., 2011), 
all of which contribute to PD development. Out of the 29 
significant genes identified, 18 are involved in PD pathogenesis 
through multiple mechanisms.

We have discovered new risk genes for PD (Table 2), but their 
specific functions in PD remain unclear. Our exploration of significant 
genes and enrichment pathways can provide insights for future 
research on these genes’ roles in PD. These pathways, encompassing 
neuronal projection histogenesis, vesicle formation and transport, 
mitochondrial outer membrane permeability control, insulin secretion 
regulation, and Golgi tissue and functional pathways, have connections 
to PD pathology or have been previously described. Future PD research 
should therefore pay particular attention to these pathways. For 
instance, previous studies have shown that inhibition of CDC42 
reduces various microglial activation properties, including increased 
cell body size, number of filopodia, and size of the Golgi apparatus. 
This reduction ultimately leads to a decrease in the unnecessary 

FIGURE 3

Functional enrichment analyses of PD-related risk factors. (A) GO enrichment analysis of the 159 PD-related genes, including molecular biological 
process (BP), cellular component (CC), and function (MF). (B) Analysis of KEGG enrichment associated with the 159 PD-related genes.
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elimination of dopamine neurons. Therefore, CDC42 inhibitors hold 
promise as a potential alternative for the treatment of PD (Surviladze 
et al., 2010; Barcia et al., 2012; Ying et al., 2022). These findings provide 
valuable clues for in-depth research into their association and role in 
PD, indicating the need for further comprehensive investigation into 
PD risk factors.

Despite the numerous PD-associated targets unearthed 
through GWAS, high-throughput sequencing, molecular 
epidemiology, and other methodologies in recent decades, our 
understanding remains merely a fraction of the comprehensive 
knowledge necessary for diagnosing and treating PD. Leveraging 
the advanced TWAS approach, MR-JTI, a total of 159 genes 

linked to PD were identified. Fisher’s exact test was employed to 
validate more reliable PD risk genes. The discovery of these genes 
not only reaffirms previously documented PD-associated genes 
but also presents novel potential PD biomarkers warranting 
further investigation. Furthermore, future researchers could even 
analyze the 159 genes obtained in this study by integrating data 
from other omics, such as proteomics or epigenomics. By 
integrating data from different omics levels, genes involved in PD 
development through alternative mechanisms (post-translational 
modifications or epigenetic levels) could be identified, thereby 
gaining a more comprehensive understanding of the 
pathogenesis of PD.

FIGURE 4

Significant genes linked with PD. (A) Venn analysis highlights 29 significant genes shared between the pool of 159 PD-related genes and the 5,152 
DEGs obtained from brain regions. (B–F) Boxplots displayed the expression trends of ABCB, CCDC62, CTSB, E2F1, and SNCA in two datasets (p  <  0.05). 
PD, PD cases; control, normal control cases.
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TABLE 2 The specifics of the significant genes of PD.

Gene symbol Full name Function in PD References
ABCB9 ATP binding Cassette Subfamily B 

member 9

ABCB9 methylation associated with PD Chuang et al. (2017)

AK7* Adenylate Kinase 7 N/A Not published yet

ARHGAP27* Rho GTPase Activating Protein 27 N/A Saeed (2018)

ARL17A* ADP Ribosylation Factor like GTPase 17A N/A Not published yet
ARL17B ADP Ribosylation Factor like GTPase 17B ARL17B was associated with negative control of neuron 

projection development.

Tian et al. (2023)

ARSA Arylsulfatase A ARSA variations may be linked to PD and serve as a 

molecular chaperone for SNCA.

Senkevich et al. (2023) and Lee et al. (2019)

CCDC62 Coiled-coil Domain Containing 62 CCDC62 gene polymorphisms have a statistically 

significant connection with PD. Using psychotropic drugs 

may decrease PD risk through CCDC62 transcription.

Yi et al. (2023) and Lauterbach (2012)

CFAP119* Cilia and Flagella Associated Protein 119 N/A Not published yet
CRHR1 Corticotropin Releasing Hormone 

Receptor 1

CRHR1 is a recognized therapeutic target and its 

methylation may introduce potential pathophysiology of 

PD.

Cheng et al. (2020) and Rasmi et al. (2023)

CTSB Cathepsin B CTSB is involved in lysosomal autophagy, which 

demonstrates that cellular clearance system malfunction 

plays a role in the etiology of PD.

Bellomo et al. (2020) and Senkevich and 

Gan-Or (2020)

E2F1 E2F Transcription Factor 1 An increase in the expression of E2F-1 after the cell cycle 

has been initiated may cause neuronal apoptosis, which is 

a characteristic of PD.

Folch et al. (2012) and Verdaguer et al. 

(2007)

EFNA3 Ephrin A3 EFNA3 took part in neurodevelopment. Appropriate 

dopaminergic (DA) neuron development from 

transplanted cells and accurate axon growth are two 

fundamental concepts behind effective cellular treatments 

for PD. Varying expression levels of EFNA3, which direct 

axon growth and aid in DA neuron differentiation, offer a 

novel concept for the therapy of PD.

Tirozzi et al. (2023) and Wang et al. (2016)

FAM47E family with sequence similarity 47 

member E

FAM47E was a known PD risk locus, exhibited a 

significant effect after Bonferroni correction.

Blauwendraat et al. (2019)

FBXO34* F-box protein 34 N/A Not published yet
FMNL1 Formin like 1 FMNL1 was identified as a biomarker linked to PD Hu et al. (2022)
HLA-DRB1 Major Histocompatibility Complex, Class 

II, DR beta 1

Spontaneous PD has been linked to polymorphisms in the 

HLA-DR region. By potentially working against tau, an 

adaptive immune response mediated by HLA-DRB1 

lowers the risk of PD and AD and opens up prospective 

treatment options.

Le Guen et al. (2023)

HOPX* HOP Homeobox N/A Not published yet

ITGA3* Integrin Subunit alpha 3 N/A Not published yet
KANSL1-AS1 KANSL1 Antisense RNA 1 KANSL1-AS1 has a negative correlation with adaptive 

immune cells in PD.

Lona-Durazo et al. (2023)

LAT Linker for Activation of T cells Carrier of SGK1, which aids in the development of PD. Lang et al. (2010)
LINC01102* Long Intergenic Non-protein Coding 

RNA 1102

N/A Not published yet

MMRN1 Multimerin 1 MMRN1 causes early-onset PD. Fuchs et al. (2007)
NSF N-ethylmaleimide Sensitive Factor NSF protein aggregation is a characteristic of PD. Pischedda et al. (2021)
PDLIM2* PDZ and LIM domain 2 N/A Not published yet
PRSS36 Serine Protease 36 PRSS36 was reported as a risk factor for PD. Dang et al. (2022)
SEC23IP SEC23 interacting protein SEC23IP was reported as a risk factor for PD. Gaare et al. (2020)
SNCA Synuclein alpha SNCA expression is the main contributor to neurotoxicity 

and protein aggregation, which are neuropathological 

hallmarks of PD.

Du et al. (2020), Ferese et al. (2015), and 

Dehay et al. (2015)

SPPL2C Signal Peptide Peptidase Like 2C SPPL2C variations in the MAPT gene raise a fresh 

hypothesis for further research into PD.

Soto-Beasley et al. (2020)

STX1B Syntaxin 1B STX1B polymorphisms are associated with PD. Wang et al. (2015)

*New potential PD-related gene has not been reported as a function of PD.
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