
TYPE Original Research

PUBLISHED 04 March 2024

DOI 10.3389/fnins.2024.1307525

OPEN ACCESS

EDITED BY

Pablo Varona,

Autonomous University of Madrid, Spain

REVIEWED BY

Yan Fang,

Kennesaw State University, United States

Nicole Sandra-Ya�a Dumont,

University of Waterloo, Canada

*CORRESPONDENCE

Gyorgy Csaba

gcsaba@gmail.com

RECEIVED 04 October 2023

ACCEPTED 12 February 2024

PUBLISHED 04 March 2024

CITATION

Rudner T, Porod W and Csaba G (2024) Design

of oscillatory neural networks by machine

learning. Front. Neurosci. 18:1307525.

doi: 10.3389/fnins.2024.1307525

COPYRIGHT

© 2024 Rudner, Porod and Csaba. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Design of oscillatory neural
networks by machine learning

Tamás Rudner1, Wolfgang Porod2 and Gyorgy Csaba1*

1Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest,

Hungary, 2Department of Electrical Engineering, University of Notre Dame (NDnano), Notre Dame, IN,

United States

We demonstrate the utility of machine learning algorithms for the design

of oscillatory neural networks (ONNs). After constructing a circuit model

of the oscillators in a machine-learning-enabled simulator and performing

Backpropagation through time (BPTT) for determining the coupling resistances

between the ring oscillators, we demonstrate the design of associativememories

and multi-layered ONN classifiers. The machine-learning-designed ONNs show

superior performance compared to other design methods (such as Hebbian

learning), and they also enable significant simplifications in the circuit topology.

We also demonstrate the design of multi-layered ONNs that show superior

performance compared to single-layer ones. We argue that machine learning

can be a valuable tool to unlock the true computing potential of ONNs hardware.

KEYWORDS

neuromorphic computing, oscillatory neural networks, machine learning design, ring

oscillators, low-power computing

1 Introduction

The computing power of neuromorphic and artificial intelligence (AI) algorithms

is greatly limited by the lack of low-power, energy-efficient hardware to run AI

computing tasks. Outsourcing even the simplest AI processing primitives (such as pattern

classification) to energy-efficient, specific-purpose hardware would greatly increase the

prevalence and computational power of AI algorithms.

Neuromorphic analog computing elements are currently being intensely researched,

as they promise significant energy savings in artificial intelligence (AI) computing tasks

compared to their digital counterparts (Schuman et al., 2017). Among the many flavors of

analog computing, oscillatory neural networks (ONNs) received special attention (Csaba

and Porod, 2020a). This is due to the facts that (1) ONNs are realizable by very simple

circuits, either by emerging devices or conventional transistor-based devices, (2) phases

and frequencies enable a rich and robust (Csaba and Porod, 2020a) representation of

information, and (3) biological systems seem to use oscillators to process information

(Furber and Temple, 2007), likely for a reason.

Despite the significant current research efforts and the large literature, most ONNs

seem to rely on some version of a Hebbian rule to define attractor states for the oscillator

phases (Delacour and Todri-Sanial, 2021). The Hebbian rule is used to calculate the value

of physical couplings between oscillators—such as resistances or capacitances—that define

the circuit function. The reliance on the Hebbian rule turns most current ONNs into a

sub-class of classical Hopfield networks, which are not very powerful by today’s standards.

While there are a few ONN implementations not relying on basic Hebbian rules (notably

Vassilieva et al., 2011), it is likely that current ONNs do not fully exploit the potential of the

hardware—due to the lack of a more powerful method to design the interconnections.

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1307525
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1307525&domain=pdf&date_stamp=2024-03-04
mailto:gcsaba@gmail.com
https://doi.org/10.3389/fnins.2024.1307525
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2024.1307525/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Rudner et al. 10.3389/fnins.2024.1307525

In this study, we show, using computer simulations, that a

state-of-art machine learning method, namely Backpropagation

Through Time (BPTT), when applied to a circuit-level model

of the ONN, significantly enhances the computational power of

ONNs. Our studied system is an ONN made of resistively coupled

ring oscillators (Csaba et al., 2016; Moy et al., 2022), and its

circuit topology is described in Section 2.1. Next, in Section 2.2

we develop the differential equations describing the circuit and

show how a machine learning algorithm can be applied to design

the circuit parameters. In Section 3.1, we apply the machine-

learning framework for the design of an auto-associative memory

and compare it to a standard Hebbian rule-based device. Section

3.1.3 furthers this concept by the design of a multi-layered network,

which is a two-layer classifier and achieves superb performance

compared to a single-layer device.

An AI processing pipeline typically has to process a large

amount of input sensory data (such as audio, video, or text

streams). These operations consume significant power, due to the

sheer amount of sensory data. The ring oscillator-based ONN

present here can do classification tasks in an energy-efficient way,

and this way significantly increase the net power efficiency of the

computing pipeline.

Overall, our study presents a design methodology that unlocks

the true potential of oscillatory neural networks, overcoming

the limitations imposed by simple learning rules. Additionally,

the presented method allows for designing physically realizable

structures: our networks rely on nearest-neighbor interactions,

which is amenable to scaling, chip-scale realizations and uses

significantly fewer neurons than fully connected networks.

2 Materials and methods

2.1 Resistively coupled ring oscillators for
phase-based neuromorphic computation

It is well-established that the synchronization patterns of

coupled oscillators may be used for computation (Csaba and

Porod, 2020a). The idea of using phase for Boolean computation

goes back to the early days of computer science (Wigington,

1959) and is being rediscovered these days (Roychowdhury, 2015).

For neuromorphic computing, the original scheme of Izhikevich

(Hoppensteadt and Izhikevich, 1999, 2000) was studied using

various oscillator types and coupling schemes. A number of

computing models were explored, ranging from basic convolvers

(Nikonov et al., 2015) and pattern generators (Dutta et al., 2019)

to hardware for handling NP-hard problems (Chai Wah Wu, 1998;

Parihar et al., 2017; Moy et al., 2022).

Ring oscillators are among the simplest of oscillators. These

devices consists only of (odd number of) inverters, capacitances,

and resistances, see in Figure 1.

To give a simple example of how ring oscillators compute in

phase space, Figure 1 shows a two-oscillator system. Nodes that are

interconnected by a resistor will synchronize in phase. If identical

nodes (say V3, the 3rd voltage node of the ring oscillators) are

interconnected, the oscillators will run in phase. However, in a 7-

inverter ring oscillators, each node is phase-shifted by an angle of

2π/7 with respect to their neighbor. If, say, V3 of one oscillator

is connected to say V6 of the oscillators, the oscillators will pull

toward an anti-phase configuration. The waveforms of these two

cases are illustrated in the top part of Figure 2.

A larger network of oscillators with in-phase or out-of-phase

pulling resistors will converge toward an oscillatory ground state

configuration, which in fact maps to the solution of the Ising

problem (Moy et al., 2022). Simply put, the phase of each oscillator

will converge toward a value that optimally agrees to most of

the constraints imposed on the oscillator by other oscillators it is

coupled to. The dynamics of the coupled oscillator network will

approximate the solution of a computationally hard optimization

problem. For an Ising problem, the oscillator oscillator couplings

are part of the problem description, and there is no need to calculate

them.

While the Ising problem is important and shows the

computational power of ONNs, an Ising solver alone is not very

useful for solving most real-life, neuromorphic computing tasks. A

neuromorphic computing primitive (such as a classification task)

does not straightforwardly map to an Ising problem. So, if the

oscillator network is to be used as a neuromorphic hardware, then

the oscillator weights must be designed or trained to perform

certain computational functions.

Most ONNs are used as auto-associative memories, making

them applicable for simple pattern recognition/classification tasks.

The weights are designed based on the Hebbian learning rule

(Csaba et al., 2016; Delacour and Todri-Sanial, 2021), and this

is one of the cases when the Ising model easily maps to a

neuromorphic computing model. In fact, the connection between

Ising and Hopfield’s associative models (Hopfield, 1982; Michel

et al., 1989; Smith, 1999) was designed by Hopfield early on

Hopfield and Tank (1985). ONNs simply use oscillator phases as

the state variable of Hopfield neurons.

TheHebbian rule (and even its improved variants Righetti et al.,

2006; Tolmachev and Manton, 2020) has severe limitations: the

rule works best on all-to-all oscillator (neural) connections and it

does not trivially support learning on a set of training examples.

In addition, simple Hopfield models are not very powerful neural

networks by today’s standards—for example, a Hebbian-trained

Hopfield network achieves mediocre results in the standardMNIST

classification tasks (Belyaev and Velichko, 2020). This is why our

goal in this study is to go beyond these limitations and apply state-

of-the-art-learning techniques to trainONNweights. This allows us

to overcome the limitations of associative (Hopfield) type models

and design ONN versions of many other neural network models.

2.2 Machine learning framework for circuit
dynamics

Our methodology is to apply Backpropagation Through Time

(BPTT) (Werbos, 1990) to an in-silico model of the oscillators.

We constructed a circuit model of the coupled oscillator system;

the resulting ODEs are solved and the value of the loss function

is calculated at the end of the procedure. By backpropagating the

error, we can optimize the circuit parameters in such a way that the

ONN solves the computational task defined by the loss function.

Once the circuit parameters are determined via this algorithm, they

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2024.1307525
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Rudner et al. 10.3389/fnins.2024.1307525

FIGURE 1

Here, in the middle, we can see a two oscillator system, coupled together in every possible way with numbered voltage nodes. The oscillators are

built using seven inverters. The zoomed-in parts at the four corners are the di�erent node types we can have in a given system. In those four

schematics, the same colored nodes are at the same voltage levels and vprev and vnext are used as the node before vi and node after vi, respectively,

because of the circular design. The green arrows symbolize the currents flowing into the given node vi. The 0-labeled current is a symbol for 0

current, as by definition, the input current to inverters is 0. In addition, the vother,− and vother,+ is a symbol for the voltage node of another oscillator,

which is coupled to the particular oscillator negatively and positively, respectively. The Input-labeled waveform generators can be anything feeding

information into the system as external input currents.

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2024.1307525
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Rudner et al. 10.3389/fnins.2024.1307525

FIGURE 2

Phase-based computing by two ring oscillators: (top left) If R− (or the resistance between di�erent voltage nodes of two oscillators, say V3 and V6)

dominates in the coupling, the oscillators run in phase, while (top right) if R+ (or the resistance between same voltage nodes of two oscillators, say

V3) dominates, then anti-phase coupling is realised. The latter two are based on the criteria that coupling is realised by flowing currents and the

larger the current is, the more influence the oscillators will have on one another. (Bottom) If phases correspond to pixels of a grayscale image, the

phase dynamics may be used to converge to predefined patterns (Csaba et al., 2016). The illustrations of convergence to ‘A’ are taken from Csaba

and Porod (2020b).

can be ‘hard-wired’ into a circuit (ONN hardware) for an effective

hardware accelerator tool.

2.2.1 Computational model of resistively coupled
ring oscillators

For the sake of concreteness, we assume that our circuit

consists of n oscillators and each oscillator is composed

of seven inverters. The circuit has k input nodes. We

construct a simple ordinary differential equation (ODE)-

based circuit model based on the equations derived by

Lai and Roychowdhury (2005).

Each inverter is described on a behavioral level by a f (x) =

− tanh(ax) non-linearity connected to an RC delay element. This

way, a seven-inverter ring oscillator is modeled by seven first-order

non-linear ODEs.

The mathematical formulation consists of three parts: internal

dynamics of the oscillators (due to the inverters), dynamics due to

external signals (inputs), and the coupling’s dynamics.

In Figure 1, there can be seen the basis of the derivation of the

ODE of the circuit model. There are four types of nodes in the

system and for each of them, an ordinary, first-order differential

equation can be derived using Kirchoff’s current law as follows:

• Most nodes are inner-nodes (bottom right part in Figure 1) in

the oscillators (5 in each) and their equation is rather easy to

calculate:

C
dvi

dt
=

f (vprev)− vi

R

• There can also be negatively coupled nodes (top right part

on Figure 1), which are a little bit more complex than the

simple inner nodes. It also has another current component

flowing to vi, which is coming from the difference of the

voltage of a different node of another oscillator and the voltage

of the particular oscillator divided by the resistance between

the nodes. Here, the requirement for negative coupling is

that the two coupling nodes should be an odd even pair in

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2024.1307525
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Rudner et al. 10.3389/fnins.2024.1307525

terms of numbering of voltage nodes. Here, the equation is the

following:

C
dvi

dt
=

f (vprev)− vi

R
+

vother,− − vi

R−
.

• There can be positively coupled nodes with inputs (top left

part on Figure 1). Positively coupled nodes are more complex

than the negative coupled nodes previously described, as it

not only has an incoming current from a different oscillator

but also has an external input indicated by the waveform

generators on Figure 1. Note that the requirement for positive

coupling between the two oscillators is to have an even even

or odd odd pairing of oscillators. The particular ODE for this

kind of arrangement is as follows:

C
dvi

dt
=

f (vprev)− vi

R
+

vother,+ − vi

R+
+ Buin,

where B effectively controls the amplitude of the input

waveform. It is worth mentioning that input is not necessarily

present for this node, so it is possible that a node only has extra

current coming from positive couplings without any kind of

external input.

• The most complicated node is the one having positive and

negative couplings and also some input (bottom left part on

Figure 1). It is basically the merger of the previous two items

which is manifested in the equations as well:

C
dvi

dt
=

f (vprev)− vi

R
+

vother,− − vi

R−
+

vother,+ − vi

R+
+ Buin.

Combining the previously presented knowledge, for the whole

system, we can arrive at the following ODE for the collection of

voltages at all the nodes, which describes all parts if we write a

differential equation for every node in the system using Kirchhoff’s

current law and assuming only resistors as couplings:

dV

dt
=

1

RC

(

f
(

PπV
)

− V
)

+
1

C
B
′u+

1

RcC
C
′V ,

where

f (x) = − tanh(ax),

is the simplified characteristic of an inverter with some a ∈ R.

Furthermore, π is a permutation, such that

π =

(

1 2 3 4 5 6 7

7 1 2 3 4 5 6

)

and P ∈ R
(7n)×(7n) is a block matrix in which for every 7x7

matrix block in the main diagonal there is a permutation matrix

corresponding to π . This orders the voltage nodes in the ring

oscillator to calculate the voltage differences arising between the

two endpoints of the resistors placed in between the two inverters.

B
′ ∈ R

(7n)×k is the connector matrix for the inputs. The inputs

are collected in u ∈ R
k. C′ ∈ R

(7n)×(7n) is the modified couplings

matrix which is to be constructed from the real, humanly readable

couplings matrix C ∈ R
n×n. The parameters R, C ∈ R

+ are fixed

for the oscillators; meanwhile, the Rc ∈ R
+ coupling parameters

are one of the two real, to-be-learnt parameters of the system

that govern the whole coupling dynamics. The other ones are the

parameters gathered in B
′, which directly relates to the amplitude

of the input signal (typically a sinusoidal current generator).

The Ci,j is related to the couplings between oscillators i and j

and the matrix is built the following way:

• All main diagonal entries are 0, as no oscillator is coupled to

itself.

• All entries in the upper triangle of the matrix are

corresponding to the positive (in-phase-pulling) couplings.

• All entries in the lower triangle of the matrix are

corresponding to the negative (anti-phase-pulling) couplings.

The construction of C
′ can be done easily from C

algorithmically. As every positive coupling is between 3-3

nodes of the oscillators and every negative connection is between

3-6 nodes of oscillators, the C
′ matrix is quite sparse. Similarly,

because inputs are only fed into the 3rd node of every oscillator,

the B′ matrix is sparse.

The ODEs are constructed for the circuit of Figure 3, in case

of a fully connected ONN. The oscillators are driven by sinusoidal

current generators, and the phase of these signals carries the input.

They define the initial states of the oscillators that is later changed

by the couplings between the oscillators.

Each oscillator is connected by two resistors, the value of which

has to be learned. The values of the coupling resistors are inversely

related to the coupling parameters, which are stored in the C

coupling matrix and the elements of this matrix are to be learned.

In the equations above, Rc is a predefined, constant value which

is the resistance scaling factor between two coupled nodes, usually

around 10 k�. The system learns the values in C. From this matrix,

the C′ modified coupling matrix is built. The real physical coupling

resistances’ values between nodes i and j is given by Rc
Ci,j

.

Similarly, the values in B
′ are related to the input current

generator’s amplitude, but they are directly proportional to the real

amplitude of input generators.

In the examples of the later sections, the grayscale pixel

colors will typically correspond to the input phases of the current

generators, and a pixel intensity from 0 to 1 is mapped to phases

φ ∈ [0,π]. Similarly, the output pattern is the stable, stationary

phase pattern of the oscillators.

The circuit model we use (Lai and Roychowdhury, 2005) is

simpler than a SPICE-level (Simulation Program with Integrated

Circuit Emphasis) circuit model, as it takes into account the

transistor characteristics by a behavioral curve. The internals of

the MOS transistors are neglected. This simplification is done to

facilitate learning as we will explain below.

2.2.2 Backpropagation for ONN circuit design
Backpropagation is the de facto standard algorithm used for the

training of neural networks (LeCun et al., 2015). After each run of

the neural network, the gradient of a properly defined loss function

is computed with respect to the trainable parameters of the system,

in an efficient manner.

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2024.1307525
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Rudner et al. 10.3389/fnins.2024.1307525

FIGURE 3

The circuit diagram of the entire computational layer. Input signal generators provide the sinusoidal signals with a phase that corresponds to an input

pattern, such as pixels of an image. These generators are connected to the computing oscillators, whose phase pattern provides the solution to the

problem. The 3–6 marks on the oscillators indicate the 3rd and 6th nodes in the ring oscillators’ circuit. The green, red, and blue colored circuit

elements’ values are learned during the learning process and the phases, indicated with orange are the inputs. On the schematic figure, the purple

connections indicate both the positive (red) and negative (purple) couplings. The grayscale pixel value is read from the image, converted to phase

information, then the sinusoidal current generators are connected to the oscillators one-by-one. The yellow arrows show that the output is read

from the oscillators and an image is formed.

BPTT (Backpropagation Through Time) is backpropagation

applied to a dynamic system (i.e., an ODE-based description).

The ODE is solved by a standard time-stepping technique, using

discrete time. This dicretized solution may be viewed as a many-

layer neural network such that one neural layer corresponds to a

temporal snapshot of the system dynamics. The BPTT algorithm

calculates and stores these layers (snapshots) in the forward pass

of the calculation, then calculates the derivatives of an objective

function with respect to trainable parameters in the backward pass.

To apply backpropagation or BPTT, a loss function (objective)

function has to be defined, and this assumes aminimum value when

the system is in the desired, computational state. The loss function

is typically defined on the end state of the ODEs; in our case, this is

the the stationary phase of oscillators at the end of the computation.

In this study, we apply BPTT to find out the circuit parameters

that enable the ONN to perform useful computation. After the

calculation of the gradient, a gradient descent method is used for

learning, in order to minimize the loss function. Each gradient

descent steps should bring the circuit parameters closer to their

optimal value.

We have written our simulation code in Pytorch (Paszke et al.,

2017)—the autograd feature of Pytorch makes the implementation

of backpropagation and BPTT straightforward. We also used the

torchdiffeq (Chen, 2018) package for implementing backward-

differentiable ODE solvers. This external, third-party library is

built upon PyTorch and provides various differentiable ODE

solvers implemented for PyTorch. A particularly useful feature of

torchdiffeq is that it can apply the adjoint method for the backward

step (Chen et al., 2018) and calculate the gradients with a constant

memory cost.

It must be noted that BPTT is computationally demanding for

a complex dynamic system such as our ONN. The time-domain

solution of a circuit model typically consists of thousands of time

steps. As BPTT works by unwrapping the time-domain solution

of an ODE to a many-layer neural network, the BPTT algorithm

must handle a many-thousand layer network and this may yield to

memory bottlenecks during the training.

Backpropagation through many layers inevitably suffers from

the vanishing gradient problem (Lillicrap and Santoro, 2019). We

found that our algorithm produces useful gradients up to a few

thousand time steps (layers). The ONN is constructed to safely

converge within this time frame.

The high computational demand of BPTT is the primary

reason we have chosen a simplified circuit model for the

simulation of ring oscillators. A typical Level 3 MOS model

contains hundreds of parameters; while a SPICE-level simulation

is straightforwardly possible even for larger circuits, learning

(backpropagation) becomes computationally demanding for

such models.

It is also important that BPTT supports only “in silico” training.

The design of the ONN (i.e., the learning) takes place on a different

hardware than the inference. The learning is done on a digital

computer model. Once the learning is finished, the inference is

done on a dedicated hardware that uses the computer-learned

circuit parameters. Online learning is not possible this way, but our

goal is to realize efficient, “hard wired” hardware for inference.

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2024.1307525
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Rudner et al. 10.3389/fnins.2024.1307525

FIGURE 4

On (A) we can see the simulation’s result for the positively coupled oscillators, meanwhile on (B), there is the same for the negatively coupled

2-oscillator system. The loss changed in both cases from high value to low value. In addition, the orange curves are indicating the learning

parameters’ values contained in C and not the real values of the resistors. Note that in (B), the parameter value corresponding to “R-” is going below

0, which would mean a negative resistance because of the connection of the parameters in C to the physical parameters, but this is only the

mathematical solution, for a given simulation, the parameters were clamped to be non-negative and if they hit zero, the connection removed. (A)

In-phase coupling learned. (B) Anti-phase coupling learned.

Figure 4 exemplifies the learning procedure for the two-

oscillator system of Figure 2. We selected the loss function of the

system as the dot product of the oscillator waveforms, which is

a standard choice for this type of problems. The loss should be

maximized (minimized) for in-phase (anti-phase) coupling. Such

mean-square machine learning algorithm adjusts the value of the

Ci,j parameters (and the coupling resistors) until this desired phase

configuration is reached.

This method can be straightforwardly generalized to achieve

convergence toward more complex patterns. If the loss function

aims to maximize the dot product of waveforms between same-

colored pixels and minimize them between different-colored ones,

then the phase pattern can converge toward any prescribed image.

If the phase pattern made to converge toward different patterns for

different inputs, then the ONN will act as an associative memory.

Since the Machine Learning (ML) technique is designing a

physical circuit, safeguards were taken not to arrive to unrealizable

circuit parameters such as negative resistances or exceedingly

strong couplings that would quench oscillations. This was done by

clipping the values after each learning step to a given interval.

3 Results

3.1 ONN-based pattern association on the
MNIST dataset

We have chosen the standard MNIST database for testing the

associative capabilities of our system. Since the BPTT algorithm

is computationally demanding, we made a few simplifications. We

downsampled the initially 28× 28 pixel-sized picture fromMNIST

to have either 14 × 14 or 7 × 7 size using average pooling. This

allowed us to have a reduced dimension for the input images, and

also keep the necessary information because of the average pooling.

In addition, 14x14MNIST images are still recognizable as a human,

so it allowed us to easily recognize if some patterns are easier for the

algorithm to distinguish from the others.

3.1.1 Baseline: ONN-based associative memory
with Hebbian learning

The simplest, well-studied ONN-based associative memory can

be designed by the Hebbian rule. If we want the phase pattern to

converge toward ξ or η for inputs resembling to ξ or η, then the

weights that realize this associative memory are:

C
cpl
ij =

1

2

(

ξiξj + ηiηj
)

,

where ξi and ξj is the i-th and j-th element of the pattern ξ , and

ηi and ηj is the i-th and j-th element of the pattern η, respectively.

The rule assumes all-to-all couplings, making a larger-scale

network hard to physically realize.

In our Hebbian learning scheme, the weights were determined

initially in a single-shot formula, and in our test case, we applied

the learning to optimize the value of base coupling resistances, Rc,

and the parameters in B′, which are the amplitudes of input current

generators.

The inner RC time constant of the ring oscillators was 2.0·10−10

s, which translates into a 500 MHz oscillation frequency (time

period T = 2 ns). The total simulation time for the network is 500

ns. The phase pattern is calculated from the last 300 ns window, so

convergence is achieved after less than 100 oscillation cycles or 200

ns.

3.1.2 ONN-based associative memories with
all-to-all and nearest-neighbor coupling

The same functionality that is realized by Hebbian learning can

be achieved by the BPTT method. The loss function we selected

was:

L =
1

n

n
∑

k=0

(Ok − Tk)
2,

where Ok is the pattern calculated from the output of the

oscillators for the k-th input in the batch and Tk is the ground truth

Frontiers inNeuroscience 07 frontiersin.org



Rudner et al. 10.3389/fnins.2024.1307525

for the same, which were ideal patterns of “0” and “1”. In the above

formula, n is the size of the batch used for learning.

Figure 5 compares results from the Hebbian- and BPTT-

based designs. It is visually apparent that the BPTT-based design

associates to the right pattern from very much distorted patterns.

For the experiments seen in Figure 5, we downscaled the images

from 28 × 28 to 7 × 7 which distorted many of the inputs. It

helped speed up the computations, because an all-to-all coupled

728 oscillator system would result in almost 620000 resistors. This

is hard to physically realize.

Most importantly, the BPTT-based design allows the design of

sparsely interconnected circuit topologies. We used it to design the

Cij matrix of associative memory assuming only nearest neighbor

interconnections. The nearest-neighbor interconnected, BPTT-

designed network outperforms the fully interconnected Hebbian

network, even if the number of trainable parameters in the system

(≈ 8n vs. 1
2n

2) is significantly less. The qualitative results of this

comparison can be seen in Figure 5.

The result that a nearest-neighbor (NN) interconnected (BPTT-

designed) network outperforms the (Hebbian-designed) fully

connected network is important. In a fully connected ONN, the

number of connections grows quadratically with the number of

oscillators, making large, fully connected circuits unrealizable.

Only locally connected architectures yield to scalable, physically

realizable ONN circuits.

Quantitatively, the results of the different approaches for the

whole dataset S = {0, 1} can be seen in Table 1.

3.2 Multi-layered ONNs for classification
on the MNIST database

Single layer associative memories are not particularly efficient

for classifying all the 10 MNIST classes, as there are strong

TABLE 1 The MSEs of all the elements from the set and their respective

ground truths for the di�erent methods in case of the associative learning.

Method Hebbian Proposed
fully

connected

Proposed NN
connected

#Params 1,176 2,352 312

MSE 0.068 0.020 0.047

It is apparent that the fully connected network performed the best but even the nearest

neighbor connected layer is good enough to beat the Hebbian learning in terms of quantitative

association.

FIGURE 5

Here, we can see the comparison of the results of the fully connected, nearest neighbor connected, and the Hebbian-learned based networks. The

two blocks of five inputs are shown side-by-side. The first column in each block corresponds to the input digit, the next three is the output of the

systems (in order from left to right: fully coupled, nearest neighbor coupled and Hebbian-based). The last column in both blocks shows the target

digit. It is apparent that the fully connected system worked best, but even our proposed, nearest neighbor connected topology was outperforming

the Hebbian-based architecture.

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2024.1307525
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Rudner et al. 10.3389/fnins.2024.1307525

FIGURE 6

A simple two-layer classifier showing also the patterns forming in the hidden layer.

correlations between the different digits. The BPTT method does

not require the oscillators of the network to converge to a

prescribed phase pattern so there is no need to use associative

memory for classification. For this reason, we investigate a simple

multilayer ONN, where the second layer is a single oscillator

connected to all oscillators of the input layer as illustrated in

Figure 6.

We used architecture in Figure 6 in various ways: for binary

classification, one hidden layer and a single output yielded decent

results, as described in Section 3.1.3.1. For classifying all 10 digits,

we trained 10 blocks (Figure 6), each responsible for recognizing

one particular digit, and evaluated them with a winner takes all

decision (see Section 3.1.3.2). Finally, we swapped the “winner takes

it all” method for a small, MLP (multi-layered perceptron) model,

composed of just a few neurons. This architecture is shown in

Figure 7 and discussed in Section 3.1.3.3.

3.2.1 Binary classifiers with a single output
The two-layer classifier is shown in Figure 6. The phase of

the output oscillator carries the classification result: we compare

the output oscillator’s phase with a reference oscillator’s phase and

maximize (minimize) their phase difference for one (or the other)

pattern.

Since the optimal oscillator couplings are discovered by the

BPTT algorithm, this device does not necessarily work as an

associative memory. The phase patterns appearing in the hidden

layer are non-intuitive, albeit occasionally they vaguely resemble

the images to be recognized.

That having been said, without any apparent, clearly visible

structure in the hidden layer, the network was predicting the two

classes at a 98% success rate. The predictions made on some images

are present in Figure 6.

3.2.2 10-digit classifier using a winner takes it all
output

Classifying all 10 digits is a significantly more difficult

task than the basic binary classifier and requires many more

oscillators. Training a large number of oscillators simultaneously is

prohibitively difficult with ourmethod. Instead, training everything

at once, we trained 10 separate blocks (subnetworks), each being

responsible for recognizing one particular digit - as seen on

Figure 7. The blocks themselves are nearest-neighbor connected.

The individually trained networks are connected to a winner-takes-

all circuit that decides the result of the 10-class classification.

The results of the distribution of average values of the

predictions of each individual, competitive network can be seen

in Figure 8. After further training, the output probabilities of the

individual networks were improving, but still not aligned perfectly

to the desired distributions as can be seen on Figure 9. Some digits

predicts a high likelihood for the wrong classes. Using the winner

takes it all algorithm (i.e., the decision is made by the ONNs using

the 10 output likelihoods from the architectures and the highest one

is the winner), we achieved an accuracy around 70%. To put this

number in context, random guessing would be 10 %, but the state

of art for MNIST digits is above 99%.

3.2.3 10-digit classifier using a trained second
layer

Instead of the winner takes it all decision, we used a simple

multilayered perceptron at the end to improve classification

accuracy. It consists of 2 layers: one hidden layer and one output

layer. The hidden layer has 15 and the output has 10 neurons.

The structure of this new setup can be seen on Figure 10. This

means that only 325 extra parameters are introduced, which is

negligbly small compared to the roughly 16000 parameters of the

ONN layers.

The reason we have chosen a traditional Feed Forward Neural

Network (FFNN) layer to improve accuracy are entirely practical:

such FFNN is easy to train and we could train it straightforwardly

after all the ONN blocks were designed. We emphasize that this

conventional NN layer does not alter our conclusions, and the vast

majority of the computation is still done by the ONN network. It

is worth to note that there are very few multi-layered ONNs in the

literature [a few examples are Karg et al. (2021), Abernot and Aida

(2023), or Velichko et al. (2019)].

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2024.1307525
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Rudner et al. 10.3389/fnins.2024.1307525

FIGURE 7

Two of the three tested architectures for the time-independent MNIST classification are shown. Both consist the individually trained,

nearest-neighbor-connected subnetworks which were designed to distinguish between a single class and the rest of the classes using binary

cross-entropy loss function. The top block diagram describes the algorithm where to pick the prediction, we took the maximum of individual

network output probabilities. The more sophisticated version can be seen on the bottom block diagram. Here, we took the output probabilities of the

individual classifiers and fed them as inputs to a small, regular FFNN and trained it as if it were a 10-class classification problem using cross-entropy.

Using the outputs of the competitive networks as inputs to

this small neural network, we managed to reach 96.7% predictive

accuracy. This is excellent accuracy for a network of this size.

We implemented feedforward (perceptron) neural networks with

identical number of parameters, and such networks typically reach

93–95% accuracy. While the MNIST problem is solved with fairly

trivial networks with accuracy approaching 100%, these networks

are using hundreds of thousands of parameters and we only

had 20000 parameters in our training scheme.

We emphasize that in terms of computation workload, the

heavy lifting in this architecture is done by the ONN-based

preprocessing layer—the output layer contains a small number

of parameters and it is a very small-scale neural network by any

standard. The output layer is there since it is easily trainable so

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2024.1307525
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Rudner et al. 10.3389/fnins.2024.1307525

FIGURE 8

The distribution of predicted average probabilities for the individual, competitive networks in the winner takes it all model. The red-circled bars are

those that on average were too high as probabilities because the given subnetwork should not have high values for that specific digit. The green

arrows indicate which bar should be the highest. The yellow, orange, and red dots near the plots indicate how well the subnetwork managed to solve

its task. It can be seen that this had to be improved.

FIGURE 9

The distribution of the predicted average probabilities after extensive training. It is evident that the distributions improved, but there are still some

outliers where the non-target digits are having too high probabilities.

it can maximize network performance at low training cost. The

power consumption of the network is dominated by the ONN,

and so the entire architecture benefits from the energy-efficient

ONN operation. This result hints that ONNs excel as first layers

(preprocessing layers) in an AI pipeline.

Integrating oscillatory neural networks (ONNs) with compact

traditional neural networks, resembling perceptrons, presents a

promising avenue to leverage their combined strengths. ONNs can

perform complex, dynamic computation but they are difficult to

train. Perceptrons (what we used here) can be easily trained to

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2024.1307525
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Rudner et al. 10.3389/fnins.2024.1307525

FIGURE 10

A network architecture with ONN layers as preprocessors and a traditional neural network postprocessing the results. The easy-to-train output layer

significantly improves classification accuracy.

TABLE 2 The quantitative comparisons of binary and multi-class classifiers with the parameter count indicated.

Binary classifiers Multiclass classifiers with oscillators Benchmark

Method Fully NN FFNN-like Winner takes all Augmented Perceptron FFNN

#Param 38,416 1,600 40,180 16,000 16,325 16,363

Perf. (%) 98 98 72.3 (70–75) 66.7 (65–70) 95.1 (93–97) 94.4 (93–95)

The “Augmented” network is the MLP-augmented network, using the two-layered MLP as the last function instead of the “Winner takes all”. For the binary classifiers, the 98% performance is

the worst case scenario. The multiclass classifiers and the benchmark model have ranges between the worst and best performances. The differences are the random initial values for the learning

parameters.

specific tasks, but they have limited computational might. Putting

ONNs close to sensory inputs, where most input data has to be

handled (and where most power is consumed), and refining the

computing function, a higher level with an easily trainable layer

could harness the best of both worlds and yield the best overall

power efficiency for the network.

3.3 Comparison of ONN classifier
architectures

The Table 2 quantitatively summarizes some key findings of

our study. Most importantly, the ONN-based network outperforms

a standard FFNN with the same amount of parameters. This is

not entirely surprising for two reasons: one is that ONNs are

recurrent neural networks, exhibiting complex dynamics, unlike an

FFNN. The other reason is that ONNs carry information in the

phase, frequency, and amplitude of their signals, while a standard

neuron outputs only one value (which is usually a static voltage in a

hardware realization). So one may expect that an ONN, if properly

trained, may be able to performmore complex functions with same

number of neurons (processing units).

As a back-of-envelope calculation, if we assume a hardware

similar to Moy et al. (2022), a single ring oscillator in our circuit

would consume about a picojoule of power per inference, so the net

power consumption of the competitive multi-layered device (with

20,000 ring oscillators) is estimated to be 4×10−8 joules/inference.

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2024.1307525
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Rudner et al. 10.3389/fnins.2024.1307525

Highly optimized lightweight hardware neural networks achieve

in the ballpark of 1µ J/inference for a similar problem (Dressen,

2023). GPU-based networks are usually designed to achieve higher

accuracy at much higher power consumption, even if state-of-art

GPU chips are manufactured using a much more advanced

technology node than the work of Moy et al. (2022). Overall,

these numbers suggest that building the ONN we studied here

by simulations would give orders-of-magnitude improvements in

power efficiency compared to state-of-art solutions.

In conclusion, the ONN is not only more economical in terms

of parameters but does its job with a significantly higher power

efficiency than the equivalent digital or software implementation.

4 Discussion

In this study, we introduced an in-silico method to design

ONNs. We build a computational model of the ONN, apply

BPTT techniques on this model and determine circuit parameters

automatically using the BPTT training algorithm.

In the current literature of ONNs, Hebbian learning rules

are used almost exclusively to realize associative memories or

classifiers. The reader is referred to Núñez et al. (2021), Abernot

and Aida (2023), Delacour and Todri-Sanial (2021), and Nikonov

et al. (2015) and to the references therein. The performance and

the capabilities of a simple Hebbian rule is quite limited when

compared to modern ML algorithms. One may suspect that if an

ONN is designed by Hebbian rules, the capabilities of the ONNwill

bemore likely constrained by the learning rule, and not by theONN

hardware itself.

The BPTT-based design allowed us to use simulations for

exploring the limits of ONN hardware without the limitations

imposed by the simplicity of the training algorithm. We indeed

found that the state-of-art learning method significantly increased

the accuracy of the ONN classification, and this is one main result

of this study.

Another key benefit of our method is that it allows the design

of ONNs that is amenable to circuit realization. For example,

we have shown that a nearest-neighbor-connected ONN that is

designed by BPTT can outperform a fully connected Hebbian-

trained device. Since only locally connected ONNs are scalable

to meaningful problem sizes, this discovery opens the door to

physically realizable ONNs, which perform complex processing

functions without an unfeasibly high number of interconnections.

In addition to that, the BPTT method may also be used to design

higher-interconnected networks (such as all-to-all connected ones)

that greatly outperform their Hebbian counterparts.

Another result of the study was the design of multi-layered

ONN devices, of which very few exist in literature. The ONN first

layer (preprocessing layer) is followed by a simple perceptron-

based layer, and classification accuracy of 95 % is reached. In line

with expectations, we find that multiple layers significantly enhance

the capabilities of the network. We also find that the number of

circuit parameters we had to train is smaller than the number of

parameters of a similarly performing standard FFNN. This means

that the ONN is more economical in terms of parameters. This

benefit appears on top of the benefit in power efficiency: the analog

ONN circuit dynamics does its job from the fraction of the power

of a number-crunching digital solution.

Our design method is not without hindrances. One of its

drawback is that it is not applicable to online training, the

ONN must be trained on its computer model (in silico) and

then the weights are hard-wired into a hardware circuitry.

This is acceptable for an edge-AI accelerator, where energy-

efficient operation is the main figure of merit. Further research is

required to find training methods that would allow continuous,

online learning.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

TR: Conceptualization, Investigation, Methodology, Software,

Visualization, Writing – original draft, Writing – review & editing.

WP: Conceptualization, Funding acquisition, Supervision, Writing

– review & editing. GC: Conceptualization, Funding acquisition,

Methodology, Supervision, Writing – original draft, Writing –

review & editing.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article. This

study was partially supported by a grant from Intel Corporation,

titled HIMON: Hierarchically Interconnected Oscillator Networks.

This project has received additional funding from the European

Union’s Horizon EU research and innovation programme under

grant agreement No. 101092096 (PHASTRAC). The funder (Intel

Corporation) had the following involvement with the study:

helping to discover relevant literature and motivate the study. The

funder was not involved in the study design, collection, analysis,

interpretation of data, the writing of this article or the decision to

submit it for publication.

Acknowledgments

The authors are grateful for regular and fruitful discussions

with the Intel team, in particular Narayan Srinivasa, Dmitri

Nikonov, and Amir Khosrowshahi.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2024.1307525
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Rudner et al. 10.3389/fnins.2024.1307525

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abernot, M., and Aida, T.-S. (2023). Simulation and implementation of two-layer
oscillatory neural networks for image edge detection: bidirectional and feedforward
architectures. Neurom. Comput. Eng. 3, 014006. doi: 10.1088/2634-4386/acb2ef

Belyaev, M., and Velichko, A. (2020). “Classification of handwritten digits using the
hopfield network,” in IOP Conference Series: Materials Science and Engineering (Bristol:
IOP Publishing), 052048.

Chen, R. T. Q. (2018). torchdiffeq. Available online at: https://github.com/rtqichen/
torchdiffeq

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. (2018). Neural
ordinary differential equations. Advances in Neural Information Processing Systems.

Csaba, G., and Porod, W. (2020a). Coupled oscillators for computing: a review and
perspective. Appl. Phys. Rev. 7, 011302. doi: 10.1063/1.5120412

Csaba, G., and Porod, W. (2020b). Noise immunity of oscillatory computing
devices. IEEE J. Explorat. Solid-State Comp. Dev. Circuits 6, 164–169.
doi: 10.1109/JXCDC.2020.3046558

Csaba, G., Ytterdal, T., and Porod, W. (2016). “Neural network based on
parametrically-pumped oscillators,” in 2016 IEEE International Conference on
Electronics, Circuits and Systems (ICECS) (Monte Carlo, Monaco: IEEE), 45–48.

Delacour, C., and Todri-Sanial, A. (2021). Mapping hebbian learning rules to
coupling resistances for oscillatory neural networks. Front. Neurosci. 15, 694549.
doi: 10.3389/fnins.2021.694549

Dressen, O. (2023). Hardware Conversion of Convolutional Neural Networks:
What Is Machine Learning. Available online at: https://www.analog.com/en/resources/
analog-dialogue/articles/hardware-conversion-of-cnns-what-is-machine-learning-
part-3.html

Dutta, S., Parihar, A., Khanna, A., Gomez, J., Chakraborty, W., Jerry, M.,
et al. (2019). Programmable coupled oscillators for synchronized locomotion. Nat.
Commun. 10, 3299. doi: 10.1038/s41467-019-11198-6

Furber, S., and Temple, S. (2007). Neural systems engineering. J. Royal Soc. Interf. 4,
193–206. doi: 10.1098/rsif.2006.0177

Hopfield, J. J. (1982). Neural networks and physical systems with emergent
collective computational abilities. Proc. Nat. Acad. Sci. 79, 2554–2558.
doi: 10.1073/pnas.79.8.2554

Hopfield, J. J., and Tank, D. W. (1985). “neural” computation of decisions in
optimization problems. Biol. Cybern. 52:141–152. doi: 10.1007/BF00339943

Hoppensteadt, F. C., and Izhikevich, E. M. (1999). Oscillatory
neurocomputers with dynamic connectivity. Phys. Rev. Lett. 82, 2983–2986.
doi: 10.1103/PhysRevLett.82.2983

Hoppensteadt, F. C., and Izhikevich, E. M. (2000). Synchronization of laser
oscillators, associative memory, and optical neurocomputing. Phys. Rev. E 62,
4010–4013. doi: 10.1103/PhysRevE.62.4010

Karg, S. F., Menges, F., and Gotsmann, B. (2021). Multi-Layer Oscillating Network.
Patent 11,157,792, US. Washington, DC: Patent 11,157,792, US.

Lai, X., and Roychowdhury, J. (2005). “Analytical equations for predicting injection
locking in lc and ring oscillators,” in Proceedings of the IEEE 2005 Custom Integrated
Circuits Conference, 2005 (San Jose, CA: IEEE).

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi: 10.1038/nature14539

Lillicrap, T. P., and Santoro, A. (2019). Backpropagation through time and the brain.
Curr. Opin. Neurobiol. 55, 82–89. doi: 10.1016/j.conb.2019.01.011

Michel, A., Farrell, J., and Porod,W. (1989). Qualitative analysis of neural networks.
IEEE Trans. Circ. Syst. 36, 229–243. doi: 10.1109/31.20200

Moy, W., Ahmed, I., Chiu, P.-,w., Moy, J., Sapatnekar, S. S., and Kim,
C. H. (2022). A 1,968-node coupled ring oscillator circuit for combinatorial
optimization problem solving.Nature Electron. 5, 310–317. doi: 10.1038/s41928-022-00
749-3

Nikonov, D. E., Csaba, G., Porod, W., Shibata, T., Voils, D., Hammerstrom,
D., et al. (2015). Coupled-oscillator associative memory array operation for
pattern recognition. IEEE J. Explorat. Solid-State Comput. Dev. Circuits 1, 85–93.
doi: 10.1109/JXCDC.2015.2504049

Nú nez, J., Avedillo, M. J., Jiménez, M., Quintana, J. M., Todri-Sanial, A., Corti, E.,
et al. (2021). Oscillatory neural networks using vo2 based phase encoded logic. Front.
Neurosci. 15, 655823. doi: 10.3389/fnins.2021.655823

Parihar, A., Shukla, N., Jerry, M., Datta, S., and Raychowdhury, A. (2017). Vertex
coloring of graphs via phase dynamics of coupled oscillatory networks. Sci. Rep. 7, 911.
doi: 10.1038/s41598-017-00825-1

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al. (2017).
Automatic Differenation in PyTorch. Available online at: https://openreview.net/pdf?
id=BJJsrmfCZ

Righetti, L., Buchli, J., and Ijspeert, A. J. (2006). Dynamic hebbian learning
in adaptive frequency oscillators. Physica D: Nonlinear Phenomena 216, 269–281.
doi: 10.1016/j.physd.2006.02.009

Roychowdhury, J. (2015). Boolean computation using self-sustaining nonlinear
oscillators. Proceedings of the IEEE 103:1958–1969. doi: 10.1109/JPROC.2015.24
83061

Schuman, C. D., Potok, T. E., Patton, R. M., Birdwell, J. D., Dean, M. E., Rose, G. S.,
et al. (2017). A survey of neuromorphic computing and neural networks in hardware.
arXiv [Preprint]. doi: 10.48550/arXiv.1705.06963

Smith, K. A. (1999). Neural networks for combinatorial optimization: a
review of more than a decade of research. INFORMS J. Comput. 11, 15–34.
doi: 10.1287/ijoc.11.1.15

Tolmachev, P., and Manton, J. H. (2020). “New insights on learning rules
for hopfield networks: Memory and objective function minimisation,” in 2020
International Joint Conference on Neural Networks (IJCNN) (Glasgow: IEEE), 1–8.

Vassilieva, E., Pinto, G., Acacio De Barros, J., and Suppes, P. (2011). Learning
pattern recognition through quasi-synchronization of phase oscillators. IEEE Trans.
Neural Netw. 22, 84–95. doi: 10.1109/TNN.2010.2086476

Velichko, A., Belyaev, M., and Boriskov, P. (2019). A model of an oscillatory neural
network with multilevel neurons for pattern recognition and computing. Electronics 8,
75. doi: 10.3390/electronics8010075

Werbos, P. (1990). Backpropagation through time: what it does and how to do it.
Proc. IEEE 78, 1550–1560. doi: 10.1109/5.58337

Wigington, R. (1959). A new concept in computing. Proc. IRE 47, 516–523.
doi: 10.1109/JRPROC.1959.287311

Wu, C. W. (1998). Graph coloring via synchronization of coupled oscillators. IEEE
Trans. Circ. Syst. I: Fundam. Theory Appli. 45, 974–978. doi: 10.1109/81.721263

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2024.1307525
https://doi.org/10.1088/2634-4386/acb2ef
https://github.com/rtqichen/torchdiffeq
https://github.com/rtqichen/torchdiffeq
https://doi.org/10.1063/1.5120412
https://doi.org/10.1109/JXCDC.2020.3046558
https://doi.org/10.3389/fnins.2021.694549
https://www.analog.com/en/resources/analog-dialogue/articles/hardware-conversion-of-cnns-what-is-machine-learning-part-3.html
https://www.analog.com/en/resources/analog-dialogue/articles/hardware-conversion-of-cnns-what-is-machine-learning-part-3.html
https://www.analog.com/en/resources/analog-dialogue/articles/hardware-conversion-of-cnns-what-is-machine-learning-part-3.html
https://doi.org/10.1038/s41467-019-11198-6
https://doi.org/10.1098/rsif.2006.0177
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1007/BF00339943
https://doi.org/10.1103/PhysRevLett.82.2983
https://doi.org/10.1103/PhysRevE.62.4010
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.conb.2019.01.011
https://doi.org/10.1109/31.20200
https://doi.org/10.1038/s41928-022-00749-3
https://doi.org/10.1109/JXCDC.2015.2504049
https://doi.org/10.3389/fnins.2021.655823
https://doi.org/10.1038/s41598-017-00825-1
https://openreview.net/pdf?id=BJJsrmfCZ
https://openreview.net/pdf?id=BJJsrmfCZ
https://doi.org/10.1016/j.physd.2006.02.009
https://doi.org/10.1109/JPROC.2015.2483061
https://doi.org/10.48550/arXiv.1705.06963
https://doi.org/10.1287/ijoc.11.1.15
https://doi.org/10.1109/TNN.2010.2086476
https://doi.org/10.3390/electronics8010075
https://doi.org/10.1109/5.58337
https://doi.org/10.1109/JRPROC.1959.287311
https://doi.org/10.1109/81.721263
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Design of oscillatory neural networks by machine learning
	1 Introduction
	2 Materials and methods
	2.1 Resistively coupled ring oscillators for phase-based neuromorphic computation
	2.2 Machine learning framework for circuit dynamics
	2.2.1 Computational model of resistively coupled ring oscillators
	2.2.2 Backpropagation for ONN circuit design


	3 Results
	3.1 ONN-based pattern association on the MNIST dataset
	3.1.1 Baseline: ONN-based associative memory with Hebbian learning
	3.1.2 ONN-based associative memories with all-to-all and nearest-neighbor coupling

	3.2 Multi-layered ONNs for classification on the MNIST database
	3.2.1 Binary classifiers with a single output
	3.2.2 10-digit classifier using a winner takes it all output
	3.2.3 10-digit classifier using a trained second layer

	3.3 Comparison of ONN classifier architectures

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


