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Background: The development of Brain-Computer Interface (BCI) technology 
has brought tremendous potential to various fields. In recent years, prominent 
research has focused on enhancing the accuracy of BCI decoding algorithms by 
effectively utilizing meaningful features extracted from electroencephalographic 
(EEG) signals.

Objective: This paper proposes a method for extracting brain functional network 
features based on directed transfer function (DTF) and graph theory. The method 
incorporates the extracted brain network features with common spatial pattern 
(CSP) to enhance the performance of motor imagery (MI) classification task.

Methods: The signals from each electrode of the EEG, utilizing a total of 32 
channels, are used as input signals for the network nodes. In this study, 26 
healthy participants were recruited to provide EEG data. The brain functional 
network is constructed in Alpha and Beta bands using the DTF method. The 
node degree (ND), clustering coefficient (CC), and global efficiency (GE) of the 
brain functional network are obtained using graph theory. The DTF network 
features and graph theory are combined with the traditional signal processing 
method, the CSP algorithm. The redundant network features are filtered out 
using the Lasso method, and finally, the fused features are classified using 
a support vector machine (SVM), culminating in a novel approach we  have 
termed CDGL.

Results: For Beta frequency band, with 8 electrodes, the proposed CDGL method 
achieved an accuracy of 89.13%, a sensitivity of 90.15%, and a specificity of 
88.10%, which are 14.10, 16.69, and 11.50% percentage higher than the traditional 
CSP method (75.03, 73.46, and 76.60%), respectively. Furthermore, the results 
obtained with 8 channels were superior to those with 4 channels (82.31, 83.35, 
and 81.74%), and the result for the Beta frequency band were better than those 
for the Alpha frequency band (87.42, 87.48, and 87.36%). Similar results were also 
obtained on two public datasets, where the CDGL algorithm’s performance was 
found to be optimal.

Conclusion: The feature fusion of DTF network and graph theory features 
enhanced CSP algorithm’s performance in MI task classification. Increasing the 
number of channels allows for more EEG signal feature information, enhancing 
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the model’s sensitivity and discriminative ability toward specific activities in brain 
regions. It should be noted that the functional brain network features in the Beta 
band exhibit superior performance improvement for the algorithm compared to 
those in the Alpha band.

KEYWORDS

brain–computer interface, motor imagery, directed transfer function, graph, brain 
network

1 Introduction

Brain–computer interface (BCI) is a technology that directly 
connects the human brain to external devices, and it has gained 
significant attention in the fields of neuroscience and engineering 
(Värbu et  al., 2022). BCI technology provides a novel means of 
communication and operation for individuals facing challenges in 
motor function, neurological impairments, or other physical 
limitations, thus enabling them to overcome difficulties in normal 
communication and interaction (Cheng et al., 2020; Chen et al., 2022; 
Davis and Meschede-Krasa, 2022; Hu et al., 2023; Wang et al., 2023). 
The motor imagery (MI) paradigm holds significant potential in the 
field of BCI, particularly in rehabilitation medicine and assisted living 
technology, owing to its high feasibility and adaptability (Pichiorri 
et  al., 2015). In recent years, research on MI paradigms has been 
focused in two directions. One direction aims to improve the decoding 
algorithm, enhancing the accuracy of MI categorization tasks 
(Vallabhaneni et al., 2021). The other direction involves constructing 
a brain network model to investigate the associations and patterns of 
information transfer between different brain regions (Yu et al., 2022).

Despite the advancements in BCI technology for recognizing and 
decoding brain signals, there are still limitations in terms of accuracy 
and reliability. The decoding process of brain signals is prone to 
errors and uncertainties, resulting in less stable and reliable 
performance of BCI systems. While traditional algorithms like 
discrete wavelet transform (DWT) (Ji et  al., 2019) and common 
spatial patterns (CSP) (Blankertz et  al., 2008) are simple and 
convenient, they do not yield satisfactory classification results (Amin 
et al., 2015; Jin et al., 2021). The Filter Bank Common Spatial Pattern 
(FBCSP) algorithm, which combines band filtering and CSP analysis, 
aims to enhance the accuracy of MI recognition. However, individual 
differences and noise significantly impair its effectiveness. To address 
this problem, Mammone et al. (2023) proposed AutoEncoder-Filter 
Bank Common Spatial Patterns (AE-FBCSP), incorporating an 
autoencoder into the FBCSP algorithm, and Park et  al. (2018) 
introduced regularization in the Filter Bank Regularized Common 
Spatial Pattern (FBRCSP), both of which greatly improved the 
classification accuracy of FBCSP. However, these approaches 
primarily focus on the spatial domain features of EEG signals with a 
single attribute and do not consider the transmission mode of brain 
information during MI. Deep learning, as a powerful machine 
learning method, has garnered significant interest and research in the 
field of BCI (Amin et al., 2019; Dai et al., 2020). Convolutional neural 
networks (CNNs) have shown great potential in capturing 
information in BCI (Simões et al., 2020; Borra et al., 2022; An et al., 
2023). However, the performance of CNNs relies not only on the 

choice of convolutional kernels (Song et al., 2021) but also on the 
number of convolutional layers. On the other hand, recurrent neural 
networks (RNNs) process EEG time-series information more 
effectively and can be successful in classifying MI tasks (Bore et al., 
2021). Lawhern et al. (2018) proposed a lightweight deep learning 
approach which is called EEGNet for the task classifications of 
EEG-based BCIs. EEGNet exhibited an exceptional generalization 
ability for classifying both within-subject and cross-subject tasks, 
even when faced with limited training data. Across various tested 
paradigms, such as P300 Visual Evoked Potentials, Error-Related 
Negativity (ERN), Movement-Related Cortical Potentials (MRCP), 
and Sensory Motor Rhythms (SMR), the classification accuracies of 
the EEGNet algorithm have consistently been superior to those of 
many benchmark algorithms (Lawhern et  al., 2018). While deep 
learning has achieved remarkable results in BCI, it also faces common 
disadvantages, such as high data volume requirements and challenges 
in obtaining physiological interpretations. Brain network research 
methods offer a high degree of physiological interpretability. These 
methods view the brain as a complex network structure, where brain 
regions or electrodes are considered nodes, and the connections 
between them indicate functional or structural relationships. By 
applying concepts and methods from graph theory (de Vico et al., 
2014) and network science, researchers can uncover the topology of 
brain networks, information transfer properties, and interactions 
between brain regions (Rodrigues et  al., 2019). Most studies on 
functional brain networks have focused on functional connectivity 
metrics. Zhang et  al. (2016) constructed brain networks using 
Pearson correlation coefficients and observed significant differences 
in small-world network metrics during different MI periods. Gong 
et al. (2017) proposed a brain functional network modeling method 
based on time-frequency Cross Mutual Information (CMI) and 
found significant differences in small-world network metrics across 
different tasks. Additionally, they discovered significant differences 
in brain response levels, reaction times, and activation targets under 
different tasks. Wang et  al. (2022) used a phase-locked-value 
approach to construct functional brain networks, providing a better 
functional connectivity perspective for neurofeedback training. In 
the MI paradigm, directed causal connectivity provides insights into 
the causal interactions between nodes, making it more adept at 
uncovering hidden and overlooked connectivity compared to 
functional connectivity. Varsehi and Firoozabadi (2021) utilized 
Granger causality analysis (GC) to choose 8 channels from EEG 
signals, leading to enhanced model classification accuracy, specificity, 
and sensitivity. However, GC analysis is less suitable for non-linear 
signals despite its effectiveness in capturing the dynamics and 
temporal order of causality in EEG signals. Li and Zhang (2022) 
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constructed a brain functional network for MI data classification 
using continuous wavelet transform (CWT) and symbolic transfer 
entropy (TE). However, it should be noted that TE is dependent on 
data distribution and has a high computational time complexity (Li 
and Zhang, 2022). In the field of BCI, directed transfer function 
(DTF) outperforms other effective connectivity metrics due to its 
ability to capture frequency-specific causality, high temporal 
resolution, and model simplicity. Therefore, utilizing DTF to 
construct brain functional networks is advantageous. Ma et al. (2022) 
enhanced the classification accuracy of a MI task by incorporating 
DTF features into an Auto-Regressive (AR) mode. However, their 
study did not investigate the impact of different frequency bands on 
classification performance. Awais et al. (2021) combined DTF with a 
probabilistic neural network (PNN), achieving a classification 
accuracy of 82.81%, thereby validating the activation of multiple 
brain regions during MI tasks. However, their study lacked an 
exploration of graph theoretic features and the number of channels.

Traditional electroencephalogram (EEG) signal processing 
methods, such as DWT and CSP, are limited in obtaining a satisfying 
classification accuracy. FBCSP, as an improved version of CSP, yields 
an increased accuracy but still focuses primarily on EEG’s spatial 
characteristics, overlooking the brain’s intricate multidimensional 
dynamical information. Deep learning techniques, despite 
significantly enhancing classification performance, however, depend 
heavily on large datasets and struggle with physiological interpretation. 
Furthermore, some studies have utilized TE to measure brain network 
connectivity, forming TE-based functional brain networks. However, 
TE’s computational demand is high, especially with large datasets, 
presenting a significant challenge for the computational capability of 
devices. Addressing these aforementioned issues, the proposed fusion 
method combines graph theory features with DTF features to further 
improve classification accuracy. The fusion method, call 
CSP+DTF+Graph theory feature+Lasso (CDGL) method, combined 
DTF’s capability to detect frequency-specific causal links and graph 
theory’s potential for in-depth physiological analysis of EEG signals, 
aiming to enhance classification precision in BCI applications and also 
offering a novel insight for graphic characteristics of the MI-BCI tasks. 
Therefore, the objective of this study is to propose and validate a brain 
functional network feature extraction method based on DTF and 
graph theory. The proposed CDGL incorporating DTF network 
features and graph theory features together achieves the highest 
classification accuracy among the other feature fusion methods. 
Furthermore, the study aims to assess the effectiveness of this method 
in classifying MI tasks with different frequency bands and channels. 
The research presented in this paper aims to investigate the influence 
of brain network features on decoding algorithms. The specific 
objectives are as follows: (1) test the ability of CSP, DTF and graph 
theory features to classify MI-EEG data (left vs. right hand MI), (2) 
test the ability of combination of features to classify MI-EEG data (left 
vs. right hand MI), including the novel method proposed in the study, 
on EEG data collected from 26 healthy participants and on public EEG 
dataset. In each comparison the impact of the channel numbers and 
the frequency band (alpha and beta) was investigated.

The remainder of this paper is organized as follows: Section 2 
presents the classification algorithms of CSP, DTF and graph theory, 
the feature classification of Lasso algorithm, and the acquisition and 
processing method of EEG data. Section 3 shows the comparison 
experimental results with different feature incorporation and 

experimental setup. In Section 4, a thorough analysis and discussion 
of the results is provided. Finally, Section 5 presents the conclusions 
according to the aforementioned three objectives of this research.

2 Methods

2.1 Feature extraction methods

2.1.1 CSP
Common spatial pattern is a commonly employed feature 

extraction method in the classification of MI EEG signals (Sun et al., 
2022). Its fundamental concept involves projecting the data sequence 
onto a specific surface through the computation of a set of spatial 
filters. These filters aim to maximize the variance of the projections for 
the two categories on that surface, thereby accentuating the most 
distinctive features of each category. The CSP method is highly 
effective in extracting EEG signal features that exhibit exceptional 
discriminative capabilities among different categories, thereby offering 
robust performance for classification tasks.

The two types of EEG signal time series data, namely X1 and X2, 
were normalized. Subsequently, the covariance matrices of the 
normalized data were computed using Eq. 2.1.
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(2.1)

where XT  denotes the transpose of X and trace X( )  is the trace of 
the matrix.

For each series of data, its corresponding covariance matrix was 
calculated. Subsequently, the covariance matrices of the two series of 
data were separately averaged and then added together to obtain the 
mixed covariance matrix. This calculation is demonstrated in Eq. 2.2.

 R R R= +1 2, (2.2)

The resulting mixed covariance matrix was subjected to an eigen-
decomposition, as demonstrated in Eq. 2.3.

 R U UT= λ , (2.3)

where U represents the eigenvector matrix of the mixed covariance 
matrix R, and λ represents the diagonal array of eigenvalues.

Next, the whitening matrix is computed from the eigenvector 
matrix and the diagonal array of eigenvalues, as demonstrated in 
Eq. 2.4.

 P UT= −λ 1
, (2.4)

A whitening transformation is performed on the two types of 
mean covariance matrices, denoted as R1 and R2. The whitening 
matrices, denoted as S1 and S2, are computed using Eq. 2.5.

 S PR P S PR PT T
1 1 2 2= =, , (2.5)
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S1 and S2 are decomposed in Eq. 2.6.

 S B B S B BT T
1 1 1 1 2 2 2 2
= =λ λ, , (2.6)

where the eigenvectors of the S1 and S2 matrices are the same and the 
diagonal array λ1 and λ2 consisting of the two types of eigenvalues 
sums to a unit array, there is the expression of Eq. 2.7.

 B B B I1 2 1 2= = + =, ,λ λ  (2.7)

When the eigenvalue of matrix S1 is the largest and the eigenvalue of 
matrix S2 is the smallest, the two types of signals can be classified using 
the matrix B. This classification enables the derivation of the projection 
matrix W, which serves as the spatial filter. The formula is shown in 
Eq. 2.8.

 W B PT= , (2.8)

The feature matrix Z, obtained by applying the spatial filter W to 
the two types of data, is calculated using Eq. 2.9.

 Z WX Z WX
1 1 2 2= =, , (2.9)

The feature matrix Z is logarithmically computed for variance, and 
the resulting values are used as a new feature denoted as f. The 
calculation process is shown in Eq. 2.10.
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Z
Z
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∑ ( )
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(2.10)

The classification of the two types of signals can be achieved by 
inputting the feature vector f into the classifier. For a detailed 
mathematical discussion, see reference Koles et al. (1990).

2.1.2 Dtf
The DTF method, proposed by Kamiński et  al. (2001) is a 

universal multivariate approach for computing the directed 
connections between any pair of signals within a multidimensional 
dataset. DTF is developed based on GC theory, which has stronger 
robustness and directionality compared with GC analysis. The DTF 
algorithm is able to analyze signals in different frequency ranges, thus 
revealing the interaction of brain regions in different frequency 
bands, which is important for the study of brain activity and 
functional connectivity patterns in specific frequency bands.

The acquired multichannel EEG signal is denoted as 
X. Subsequently, the multivariate autoregressive model (MVAR) 
(Shibata et al., 2004) is used to fit the multichannel EEG data. This 
fitting process results in Eq. 2.11.

 k

p
k X t k E t

=
∑ ( ) −( ) = ( )
0

Λ ,

 
(2.11)

Here, the elements in the N*N matrix Λ k( )  represent the 
parameters of the MVAR model, where N is the number of channels. 

The vector E(t) represents the multivariate zero-mean white noise. The 
parameter p denotes the order of the MVAR model, which influences 
the fitting performance. To accommodate subsequent computational 
needs, Eq. 2.12. is transformed into the frequency domain.

 
X f f E f H f E f( ) = ( ) ( ) = ( ) ( )−Λ 1

,
 (2.12)

Among them, detailed information is shown in Eq. 2.13.
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(2.13)

H f( ) is the system transfer matrix. The value of element Hij  in 
H f( ) describes the strength of the connection between two leads 
with j as input and i as output (Kamiński et al., 2001). The DTF matrix 
can be constructed as follows (Kaminski and Blinowska, 1991). The 
DTF matrix can be constructed in Eq. 2.14.

 θij ijf H f2 2( ) = ( ) , (2.14)

To alleviate the impact of singular sample data, the DTF matrix is 
normalized (He et al., 2011). The feature matrix is then obtained using 
Eq. 2.15.

 
γ ij ij

m

N
imf H f H f2 2

1

2( ) = ( ) ( )
=
∑/ ,

 
(2.15)

where γ ij  represents the information inflow ratio from node j to node 
i, with a value ranging between 0 and 1. γ ij  value closer to 1 indicates 
that a larger proportion of information in node i originates from 
node j. Conversely, a value closer to 0 suggests that there is less 
information flow from node j to node i.

The normalized DTF matrix is vectorized and utilized as feature 
vectors in the classifier for the purpose of classifying the MI tasks. 
The coefficient matrix of the 15-channel DTF network features is 
depicted in Figure 1.

2.1.3 Graph theory method
The human brain, consisting of hundreds of millions of 

interconnected nerve cells, is widely regarded as one of the most 
complex systems in nature. This intricate neural network exhibits 
highly structured and functional characteristics. Through the 
application of graph theory, which is widely employed for the 
structural analysis of complex brain connectomes, we can uncover 
specific organizational patterns between brain structure and 
function. This approach provides a powerful tool to enhance our 
understanding of the structural connectivity networks within 
the brain.

Functional brain networks based on graph theory encompass 
crucial network features that quantify network performance. Binarizing 
the effective connectivity matrix, however, can lead to the loss of 
significant network information. In this study, the method described 
in Filho et al. (2018) is employed to compute characteristic parameters 
of the weighted network. The DTF coefficient matrix is utilized as a 
weighted directed graph to facilitate graph theory analysis. The graph 
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theory metrics used in this article are as follows (Bullmore and 
Bassett, 2011):

(1) The calculation of ND is shown in Eq. 2.16.

 
S wi

j
ij=∑ ,

 
(2.16)

where wij  is the connectivity between node i and node j, and Si is the 
node strength, which is calculated by summing up the individual 
weights connected to that node. The greater the node strength, the 
stronger the connectivity between that node and other nodes.

(2) The calculation of CC is shown in Eq. 2.17.

 

C
w w w

w w
i

j k ij jk ki

j ij j ij

=
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∑ ∑

∑ ∑
2

2

,

 

(2.17)

The clustering coefficient is a metric used in graph theory to 
measure the degree of node aggregation within a network. It quantifies 
the extent to which neighboring nodes of a given node are connected 
to each other, thus indicating the presence of community structures 
in the network. A higher clustering coefficient indicates a more 
interconnected network.

(3) The calculation of GE is shown in Eq. 2.18.

 
G

n n di j ij
=

−( ) ≠
∑1

1

1
,

 
(2.18)

where n is the number of nodes, dij  is the shortest path length 
between node i and node j. Global efficiency is a metric used to 
quantify the effectiveness of information dissemination in a 
network. It provides a measure of how efficiently information is 
transferred and spread across the network. A higher global 

FIGURE 1

The DTF coefficient matrix of left hand and right hand MI tasks for different frequency bands. Panel (A) shows the DTF coefficient matrix for left hand 
MI in the Alpha frequency band. Panel (B) shows the DTF coefficient matrix for right hand MI in the Alpha frequency band. Panel (C) shows the DTF 
coefficient matrix for left hand MI in the Beta frequency band. Panel (D) shows the DTF coefficient matrix for right hand MI in the Beta frequency band.
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FIGURE 2

The flowchart of the 10-fold cross-validation.

efficiency indicates a more efficient and rapid dissemination of 
information within the network.

2.2 Feature selection and classification 
methods

2.2.1 Lasso
Feature selection is a crucial aspect in the field of BCI. Its 

objective is to identify the most relevant and discriminative 
features from EEG signals, facilitating accurate classification and 
control of EEG signals (Lin et al., 2022). The Lasso algorithm is 
employed to reduce the dimensionality of the original feature space 
by selecting and compressing the variables (Zhang et al., 2021). The 
basic concept of the Lasso algorithm involves imposing a constraint 
on the sum of absolute values of regression coefficients, ensuring 
it remains below a specified threshold during the construction of 
a linear regression model. By applying this constraint, the Lasso 
algorithm effectively compresses regression coefficients with 
smaller absolute values to zero, thereby achieving feature sparsity 
and interpretability. The cost function associated with the Lasso 
algorithm is Zhang et al. (2021). The formula is shown in Eq. 2.19:

 

J y y
i

m

i i
j

n
jβ λ β( ) = −









 +

= =
∑ ∑1

2
1

2

1
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(2.19)

In the context of the Lasso algorithm, the variables are defined as 
follows: m represents the number of training samples, n represents the 
dimensionality of the original spatial features. Additionally, the cost 
function includes two important components: λ, which represents the 
weight of the penalty term and controls the dimensionality of feature 
selection and compression, and β , which denotes the parameter in the 
regression model.

2.2.2 SVM
Support vector machine (SVM) is a robust machine learning 

algorithm that has gained significant popularity in the field of BCI in 

recent years (Wang et al., 2021). SVM effectively performs classification 
task by identifying the optimal hyperplane that separates samples 
belonging to different classes. It exhibits strong generalization ability 
and can handle high-dimensional data effectively. The underlying 
model of SVM is Jia et al. (2019). The formula is shown in Eq. 2.20:

 
f x a y k x x b

i

L
i i i( ) = ⋅( ) +











=

∑sgn ,

1  
(2.20)

where sgn is the sign function, k x xi ⋅( ) is the kernel function, and ai  
and b are the parameters that determine the optimal classification 
plane. The kernel function takes the RBF kernel function.

This paper evaluates the generalization ability of the 
classification models using a 10-fold cross-validation, a typical 
statistical method for assessing machine learning models’ 
generalization capability. This method is particularly useful in 
situations where limited data is available for model evaluation. In 
10-fold cross-validation, the division ratio of training and test sets 
is consistent, with each fold involving a 90% training data and 10% 
test data. Upon completing 10 iterations, an array of performance 
metrics is obtained, and their average is calculated to gauge the 
overall model performance. Figure 2 illustrates the process of the 
10-fold cross-validation.

2.2.3 CDGL classification method
A method incorporating CSP, DTF, graph theory feature, and 

Lasso regularization (CDGL) is proposed in this paper, which 
innovatively integrates five features with the aim of enhancing 
classification accuracy in MI-BCI applications. The choices of CSP, 
DTF, ND, CC, and GE features were made in order to provide a 
comprehensive representation of brain activity. In this study, these five 
features were initially combined, and subsequently selected by a Lasso 
method to eliminate redundant features. The resulting integrated 
features were then fed into the SVM classifier. Each of these features 
adds a unique dimension to the analysis, facilitating the exploration 
of different temporal, spatial, frequency, and connective information 
of EEG signals. The amalgamation of these diverse features 
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significantly enhances the robustness and accuracy of the SVM 
classifier. The flowchart of the CDGL method is shown in Figure 3.

To assess the efficacy of the CDGL algorithm, this study conducts 
a comparative analysis with EEGNet, a widely recognized deep 
learning algorithm for EEG signal processing. EEGNet is a specialized 
lightweight convolutional neural network, which is tailored for EEG 
signal processing. Its architecture encompasses standard convolutional 
layers, depthwise convolutional layers, and separable convolutional 
layers, which can integrate spatial and temporal features effectively. 
This integration renders EEGNet adept at various EEG analysis tasks. 
This paper adopted a standard architecture of EEGNet, consistent with 
the framework presented in the reference literature (Lawhern et al., 
2018), without any modifications. The training and testing sets were 
divided into 80 and 20%, respectively. The loss function was chosen to 
be Cross Entropy Loss, and the optimizer selected was Adam. The 
number of epochs was set as 100, and the batch size was set as 16. The 
‘kernLength’ was set to 32, and the dropout rate was established at 0.5. 
The dimension of input for EEGNet was # of trials × # of channels × 
sampling time, where # of channels was set to 4 or 8.

2.3 Evaluating metric

Three evaluation metrics: accuracy, sensitivity, and specificity, are 
primarily utilized in this paper for testing classification results. These 
metrics provide a comprehensive framework for assessing 
model performance.

(1) The calculation of accuracy is shown in Eq. 2.21.

 
accuracy TP TN

TP TN FP FN
=

+
+ + +

,
 

(2.21)

where TP is the number of samples that are actually positive and have 
been classified as positive by the classifier. TN is the number of 
samples that are actually negative and have been classified as negative 

by the classifier. FP is the number of samples that are actually negative 
but have been classified as positive by the classifier. FN is the number 
of samples that are actually positive but have been classified as negative 
by the classifier. Accuracy is the most intuitive performance metric, 
representing the overall proportion of correct predictions for both 
positive and negative classes by the model.

(2) The calculation of sensitivity is shown in Eq. 2.22.

 
sensitivity TP

TP FN
=

+
,
 

(2.22)

where sensitivity is a measure of a classifier’s ability to correctly 
identify positive samples, with the advantage of being able to 
accurately capture positive samples.

(3) The calculation of specificity is shown in Eq. 2.23.

 
specificity TN

TN FP
=

+
,
 

(2.23)

where is a measure of a classifier’s ability to correctly identify negative 
samples, enabling accurate exclusion of these instances and reducing 
false positives.

2.4 Statistical analysis methods

In this study, ANOVA and dependent sample t-test are used as the 
statistical analysis methods. To avoid errors associated with repeated 
measurements, the Bonferroni correction method is also employed 
here. Specifically, if five comparisons were made, the significance level 
was adjusted from the nominal α  = 0.05 to α  = 0.01 (0.05/5), thus 
maintaining a very stringent criteria for statistical significance. In 
ANOVA, this study employed both one-way ANOVA and two-way 
ANOVA. The two-way ANOVA was used to compare the effects of 
two factors on the experimental outcomes, as well as to determine 

FIGURE 3

The flowchart of the CDGL method.
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whether there is an interaction effect between these factors. The 
ANOVA can analyze the significant changes of means across multiple 
groups effectively, whereas the dependent sample t-test is more 
suitable for comparing means within the same group under varying 
conditions, offering sensitivity for detecting changes within the group. 
Actually, this paper performed the within-subjects test. To 
demonstrate the authenticity of the study, this research utilizes a 
paired t-test and Bonferroni correction method on a public dataset to 
discern the notable differences between CDGL and EEGNet.

To be aligned with the research objectives, this study organized 
the statistical analysis methods. For objective 1, one-way ANOVA, 
two-way ANOVA, and paired t-test were employed to analyze and 
compare the capabilities of different features in classifying MI-EEG 
data. For objective 2, one-way ANOVA was used to assess the effect of 
feature combinations and to investigate the impact of the number of 
channels and frequency bands. Additionally, paired t-tests and 
Bonferroni correction methods were utilized to validate the differences 
between CDGL and EEGNet on public datasets.

2.5 Data acquisition and preprocessing

2.5.1 Data acquisition instructions
In this paper, an EEG signal acquisition experiment was 

conducted on a MI tasks involving 26 subjects aged between 23 and 
27. The MI task is described as the mental simulation of hand grasping 
action being performed by an individual without the actual execution 
of the action. In the experiment, a 32-lead EEG equipment from Brain 
Products (BP) Inc. was used to collect EEG data from the MI BCI, and 
the sampling frequency was set at 500 Hz. Prior to the experiment, 
various steps were taken to ensure the suitability of the subjects. 
Firstly, all subjects underwent vision correction to ensure normal 
visual acuity. Additionally, a thorough examination was conducted to 
verify their mental health and overall well-being. The subjects were 
informed about the purpose and significance of the experiment 
beforehand. Following this, the subjects wore an EEG cap and were 
seated in front of a computer as instructed by the experimenter. The 
experimenter applied the conductive paste to the EEG cap, reducing 
the resistance to less than 5 kΩ. Throughout the experimental period, 
the subjects were instructed to maintain a stable mental state and 
avoid intense emotional fluctuations, ensuring data integrity. The 

electrode positions were set based on the international 10–20 lead 
standard, as shown in Figure 4. The AFz electrode (marked in black 
in Figure 4) serves as the ground electrode, and the FCz electrode 
(marked in blue in Figure 4) is used as the reference electrode, and the 
IO electrode (marked in red Figure  4) is used as the 
Electrooculography electrode.

During the acquisition process, the subjects performed 
corresponding tasks based on the interface displayed on the computer 
screen. Each experiment had a duration of 10 s, consisting of different 
stages. Firstly, there was a 2-s period where the screen would display 
a blank interface, and subjects were expected to be in a relaxed state. 
Following this, a 2-s period followed where a cross interface appeared, 
indicating the preparation state for the MI tasks. Lastly, the screen 
displayed either a left hand fist or a right hand fist for 6 s, during which 
subjects were required to carry out the MI tasks corresponding to the 
displayed hand. The flow of the experiment is summarized in Figure 5.

FIGURE 4

The distribution diagram of electrode positions.

FIGURE 5

The flow of the MI experiment.
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Each subject performed two sets of experiments, one set of 
experiments performed a left hand MI tasks 40 times, and one set of 
experiments performed a right hand MI tasks for a total of 80 
experiments, obtaining EEG data in the shape of 32*3000*80 (32 
represents the number of EEG channels, 3,000 represents the data 
length sampled over 6 s at a sampling frequency of 500 Hz, and 80 
represents the number of trials).

2.5.2 Data preprocessing
EEG signal preprocessing is a crucial process that involves 

applying a series of steps to raw EEG data. The goal is to purify the 
signal, eliminate noise, and prepare the data for subsequent analysis. 
Pure EEG signals are of crucial importance for accurate analysis. In 
the pre-processing phase, an 8 Hz to 40 Hz bandpass filter was 
applied to extract the study’s key frequency components and 
eliminate potential low-frequency artifacts and high-frequency 
noises. With a Finite Impulse Response (FIR) design, the filter was 
configurated for achieving its linear phase response, effectively 
preventing a phase distortion. The filter’s order was algorithmically 
determined, based on a predefined multiple of the sampling rate and 
the lower cutoff frequency. Post-filtering, the Independent 
Component Analysis (ICA) algorithm from EEGLAB (Delorme and 
Makeig, 2004) was employed to eliminate artifacts, including eye 
movements and muscle activity, resulting in purified EEG signals. 
To ensure the validity of MI, a time window of 3 s was selected 
for analysis.

2.5.3 Public datasets
To validate the effectiveness of the proposed algorithm, this study 

employs the datasets from BCI Competition IV 2a (Tangermann et al., 
2012) and PhysioNet’s BCI2000 (Schalk et al., 2004). The BCI IV 2a 
dataset records EEG data through 22 scalp electrodes at a 250 Hz 
sampling frequency. In the experiment, each subject performed 6 
experimental runs, totaling 48 trials (12 each for left-hand, right-hand, 
both feet, and tongue MI). The average duration of each trial was 
approximately 8 s, with an actual MI period of 3 s. On the other hand, 
the BCI2000 dataset employs 64 scalp electrodes and captures data at 
a 160 Hz sampling frequency, featuring eight tasks that include MI of 
the left hand, right hand, both hands, both feet, and actual movement 
tasks. Each subject performed 14 experimental runs, totaling 84 trials. 
Each trial lasted for 4 s. The MI task studied in this article is a binary 
classification task with a left-hand MI class and a right-hand MI class. 
To ensure consistency with our experimental tasks, the same 
electrodes and MI tasks (left and right hand) were also selected from 
these public datasets.

3 Results

3.1 Data collected by IMUT

3.1.1 The effect of CSP, DTF, graph theory 
features on MI task classification performance

To investigate the effect of network features on the classification 
performance of MI tasks, a DTF brain network model was constructed 
using various channel configurations, including 4-channel (FC1, FC2, 
C3, and C4), 8-channel (Fz, FC1, FC2, C3, Cz, C4, CP1, and CP2), 
12-channel (Fz, FC1, FC2, C3, Cz, C4, CP1, CP2, F3, F4, P3, and P4), 
15-channel (Fz, FC1, FC2, C3, Cz, C4, CP1, CP2, F3, F4, P3, P4, FC5, 
and FC6), and 32-channel configurations. The actual values of DTF 
matrices are used here to construct the feature set.

The DTF coefficient connection matrix was selected as the feature 
set for the classification task, and a SVM was employed as the classifier. 
To ensure the stability of the classification results, a 10-fold cross-
validation method was utilized. The study involved 26 participants 
who performed MI classification task in both the Alpha and Beta 
frequency bands. The average classification performance of the 
DTF + SVM method is presented in Table 1.

Table  1 demonstrates that DTF network features possess the 
capability to distinguish between left and right hand MI tasks, 
enabling accurate recognition of these tasks. It was observed that as 
the number of channels increased, the classification accuracy also 
improved. Notably, when utilizing 32 channels, the classification 
system not only reached a high level of accuracy at 91.74%, but also 
demonstrated a sensitivity of 92.32% and a specificity of 90.51%. 
Furthermore, analysis of the Alpha and Beta bands revealed that the 
DTF coefficient matrix yielded slightly higher classification accuracy 
for the Beta band compared to the Alpha band. In this study, a 
Two-Factor Analysis of Variance (ANOVA) was performed to provide 
a detailed analysis of the results. This analysis is crucial for evaluating 
the effects of various channel combinations (X1) and frequency band 
(X2) analyses on the essential metrics of the research.

Table 2 displays the results of ANOVA analyses, which provide a 
comparative overview of accuracy, specificity, and sensitivity under 
different conditions. The results indicated significant effects of channel 
combinations on the three metrics: accuracy [F(4, 250) = 33.16, 
p < 0.0001], specificity [F(4, 250) = 28.35, p < 0.0001], and sensitivity 
[F(4, 250) = 19.89, p < 0.0001], each showing considerable differences. 
Similarly, frequency band types significantly influenced these metrics, 
as shown by accuracy [F(1, 250) = 14.73, p = 0.000157], specificity [F(1, 
250) = 17.47, p < 0.0001], and sensitivity [F(1, 250) = 16.05, p < 0.0001]. 
However, no significant interaction effect was observed between 

TABLE 1 The average classification performance of the DTF  +  SVM method using different channel configurations for 26 subjects.

Accuracy Sensitivity Specificity

Alpha Beta Alpha Beta Alpha Beta

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Channels = 4 72.03 7.9 75.70 8.9 74.33 9.6 76.15 9.1 69.72 9.9 76.44 10.8

Channels = 8 76.03 9.1 81.14 8.7 77.12 9.2 81.48 9.2 75.69 9.8 79.81 10.2

Channels = 12 79.65 8.3 84.30 7.8 80.71 8.6 84.39 7.7 78.01 10.9 83.91 9.7

Channels = 15 82.43 7.8 85.54 9.3 83.30 8.1 86.73 7.5 80.33 11.2 85.45 9.5

Channels = 32 89.17 6.7 91.74 5.9 90.30 7.6 92.32 6.5 87.12 8.8 90.51 8.3
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channel combination and frequency band [Accuracy: F(4, 250) = 0.17, 
p = 0.9546; Specificity: F(4, 250) = 0.27, p = 0.8941; Sensitivity: F(4, 
250) = 0.28, p = 0.8881], suggesting that the interaction of channel 
combination and frequency band type does not significantly alter 
these outcomes. BrainNet Viewer (Xia et  al., 2013) software was 
employed to visualize the connectivity matrix. It is worth noting that 

IO, TP9, and TP10 electrodes were excluded from the visualization 
due to channel position considerations.

The analysis of Figure 6 reveals a distinction in the direction of 
EEG signal transmission during MI tasks involving different hands. 
The color gradient from blue to red signifies weaker to stronger 
connections, respectively. This difference is a reliable foundation for 

FIGURE 6

Visualization of the DTF connectivity matrix. Panel (A) shows the DTF connectivity matrix for left hand MI in the Alpha frequency band. Panel (B) shows 
the DTF connectivity matrix for right hand MI in the Alpha frequency band. Panel (C) shows the DTF connectivity matrix for left hand MI in the Beta 
frequency band. Panel (D) shows the DTF connectivity matrix for right hand MI in the Beta frequency band.

TABLE 2 The comparison of accuracy, specificity, and sensitivity for DTF+SVM using a two-way ANOVA analysis.

Accuracy Sensitivity Specificity

F P F P F P

X1 33.16 3.46e-22 28.35 1.51e-19 19.89 3.07e-14

X2 17.47 4.03e-5 11.57 7.79e-4 16.05 8.12e-5

X1*X2 0.1678 0.9546 0.2714 0.8941 0.2842 0.8881
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accurately classifying left and right hands movements. When 
performing MI tasks with the left and right hands, the information 
connectivity patterns within the brain regions exhibit significant 
variations. To be more specific, there is an increase in connectivity 
strength within the right hemisphere of the brain when engaging in 
MI of the left hand, and conversely, an increase within the left 
hemisphere when MI of the right hand.

The DTF graph-theoretic features serve to depict the information 
transfer relationships between different brain regions by transforming 
the DTF coefficient connectivity matrix into graph structures and 
extracting relevant features. The topology of the brain network is 
represented by feature vectors derived from three graph theory 
features: node degree (ND), clustering coefficient (CC), and global 
efficiency (GE). This paper directly utilizes the DTF coefficient matrix 
as a directed weighted graph for calculating the graph-theoretic 
features. Notably, ND assumes a pivotal role in graph theory analysis 
as it quantifies the significance or activity level of individual nodes 
within the network.

Based on the ND in Figure  7, notable distinctions in ND are 
observed among the electrodes during the two different MI tasks, 
particularly for the C3, C4, Cz, P3, P4, FC1, and FC2 electrodes. These 
discrepancies highlight the regions of the brain where these electrodes 
are positioned, which exhibit significant information flow and strong 
connectivity with other electrodes during MI tasks. Taking this 
characteristic as a feature in the classification of MI tasks proves 
effective in accurately distinguishing between left and right hand 
MI tasks.

Figure 8 illustrates the average performance achieved using an 
SVM classifier for five distinct features of EEG signals extracted from 
26 subjects. These features include CSP features, DTF network 
features, ND features, CC features, and GE features.

Analysis of Figure  8 reveals how the number of electrodes 
influences complexity of the brain functional network and the 
discriminative ability of feature selections. As the number of electrodes 
increases, the classification accuracy using the graph theory features 

for the MI-BCI tasks demonstrates an increasing trend [confirmed by 
a one-way ANOVA under Alpha for ND feature, F(4, 250) = 2.95, 
p < 0.001]. In the Alpha band, utilizing 32 channels, ND features 
exhibited average classification accuracy, sensitivity, and specificity of 
86.88, 87.54, and 86.06%. CC features showed values of 85.22, 87.61, 
and 84.75%, while GE features had 86.04, 87.17, and 84.62%. In the 
Beta band, ND features demonstrated corresponding values of 87.51, 
89.33, and 89.64%; CC features presented 89.15, 88.38, and 86.59%; 
and GE features had 87.57, 88.35, and 87.08%, respectively. ND’s 
performance between Alpha and Beta frequency bands revealed 
significant differences by one-way ANOVA in the results of F(1, 
50) = 4.19, p = 0.04 for accuracy, F(1, 50) = 4.08, p = 0.04 for sensitivity, 
and F(1, 50) = 4.67, p = 0.03 for specificity. CC’s performance: F(1, 
50) = 4.61, p = 0.03; F(1, 50) = 4.94, p = 0.03; F(1, 50) = 4.6, p = 0.03 for 
the three metrics, respectively. GE’s performance: F(1, 50) = 4.16, 
p = 0.04; F(1, 50) = 4.19, p = 0.04; F(1, 50) = 4.23, p = 0.04 for the three 
metrics, respectively. However, due to feature redundancy, the 
effectiveness of these graph theory features on classification tasks 
remains slightly lower than the performance of the traditional CSP 
algorithm, which achieves an accuracy of 94.91% [In Beta: ANOVA 
in the results of F(1, 50) = 12, p < 0.001 for ND feature, F(1, 50) = 19.82, 
p < 0.001 for CC feature, and F(1, 50) = 19.22, p < 0.001 for GE feature].

3.1.2 The effect of feature fusion on MI task 
classification performance (including the new 
method proposed)

The CSP algorithm is effective in extracting spatial features from 
EEG signals. However, since the brain exhibits time-varying 
characteristics during MI tasks, a single spatial feature cannot fully 
capture all the information relating to the left and the right hand 
MI. To address this limitation, the DTF network features and graph 
theory features are integrated into the CSP algorithm to explore the 
impact of the DTF brain functional network on the classification 
effectiveness of MI tasks. As the fused features possess high 
dimensionality, they are susceptible to feature redundancy, which can 

FIGURE 7

The node degree of each electrode for different frequency bands. Panel (A) shows the node degree of each electrode in the Alpha frequency band. 
Panel (B) shows the node degree of each electrode in the Beta frequency band.
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lead to a decrease in the classification accuracy. To avoid this issue, the 
Lasso method is employed to screen the fused features, selecting the 
optimal ones for classification. Figure 9 presents box-and-line plots 

for four MI EEG decoding algorithms under two frequency bands: the 
CSP algorithm, the CSP added DTF with Lasso regularization (CDL), 
the CSP added graph theory with Lasso regularization (CGL), and 

FIGURE 8

The average classification performance of five feature selections for different frequency bands. Panel (A) shows the average classification accuracy in 
the Alpha frequency band. Panel (B) shows the average classification accuracy in the Beta frequency band. Panel (C) shows the average classification 
sensitivity in the Alpha frequency band. Panel (D) shows the average classification sensitivity in the Beta frequency band. Panel (E) shows the average 
classification specificity in the Alpha frequency band. Panel (F) shows the average classification specificity in the Beta frequency band.
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CSP added DTF and graph theory with Lasso regularization (CDGL). 
Due to the relatively balance between different classes for the datasets, 
only one metric “accuracy” is chosen to evaluate the 
algorithm performance.

Figure  9 reveals that the accuracy of CSP algorithms can 
be enhanced by integrating DTF network features and graph theory 
features into traditional CSP algorithms. As the number of channels 
increases, all four algorithms’ average classification accuracy 
improves. Notably, both the CDL, CGL, and CDGL algorithms 
outperform the traditional CSP algorithms. A One-way ANOVA was 
used here to test for significance, yielding a result of F(3, 100) = 15.12, 
p < 0.001. Following this result, a post hoc analysis was further 
conducted using the “multcompare” function in MATLAB, with a 
“CType” parameter set to “tukey–kramer,” which means the Tukey 
HSD method was used. The analysis indicated that there are 
significant differences between the CSP algorithm and the other 
three algorithms, with all p-values being less than 0.005. When the 
number of channels reaches 32, the CDGL algorithm achieves 
higher accuracy in the Beta frequency band than in the Alpha 
frequency band [confirmed by a one-way ANOVA, F(1, 50) = 4.55, 
p = 0.03]. This observation suggests that the Beta band exhibits more 
intricate and diverse signal features, which may be attributed to 
highlight brain activity and enhanced information processing 
capacity during cognitive tasks. Here, in Figure 9, one single asterisk 
(*) indicates a significance level of 0.05, double asterisks (**) 
indicates 0.01 level, and triple asterisks (***) indicates 0.001 level.

3.2 Data from BCI competition and 
PhysioNet BCI2000

3.2.1 The effect of CSP, DTF, graph theory 
features on MI task classification performance

To validate the aim drawn in this paper, the algorithms 
discussed in this article were also tested using the BCI Competition 
IV 2a dataset and PhysioNet’s BCI2000 dataset. To maintain data 
consistency, the validation was conducted using the same 
electrodes, specifically the 4-channel and 8-channel configurations. 
The broken lines depict the accuracy, sensitivity, and specificity 
metrics of the six classification methods according to different 
channels and different frequency band. Panels (a), (b), and (c) 
present the results obtained from the BCI IV 2a dataset, whereas 
panels (d), (e), and (f) show the results from PhysioNet’s 
BCI2000 dataset.

It can be  easily seen from Figure  10 that the algorithms 
involved in 4-channel are less correctly classified than 8-channel, 
both in the Alpha band and in the Beta band. The accuracy, 
sensitivity, and specificity of CDGL (CSP+DTF+Graph theory 
feature+Lasso) are significantly higher than that of CSP, DTF, 
CSPL (CSP+Lasso), CDL (CSP+DTF+Lasso), and CGL 
(CSP+Graph theory feature+Lasso). As the analysis focuses on 
discerning significant differences among various algorithms 
applied to the same datasets, a paired sample t-test is employed 
to ascertain the statistical disparities between the CDGL 

FIGURE 9

The classification accuracies of four methods for two frequency bands with five different channel combinations. Panel (A) shows the classification 
accuracy for two frequency band and 4 channels. Panel (B) shows the classification accuracy for two frequency band and 8 channels. Panel (C) shows 
the classification sensitivity for two frequency band and 12 channels. Panel (D) shows the classification sensitivity for two frequency band and 15 
channels. Panel (E) shows the classification specificity for two frequency band and 32 channels.
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algorithm and others. Due to requiring multiple comparisons, 
therefore, the Bonferroni correction was employed, leading to 
the adjustment of the p-value from 0.05 to 0.01 (0.05/5). The 
findings reveal that the p-values of the three assessment model 
indicators are consistently below the significance threshold of 
0.01, whether within the BCI IV 2a dataset or the PhysioNet’s 
BCI2000 dataset.

3.2.2 The effect of feature fusion on MI task 
classification performance (including the new 
method proposed) and comparison with EEGNet 
method

In the validation using public datasets, this paper also 
explored the impact of the feature fusion algorithm CDGL on 
classification performance. As shown in Figure  10, the CDGL 
algorithm’s performance was rigorously evaluated under varying 
conditions of channel and frequency band configurations using 
the three specific evaluation metrics. Comparisons were 
conducted in two primary scenarios: First, the algorithm’s 
performance were compared between alpha band and beta band 
while maintaining constant channel settings. This involved an 
assessment of the performance in alpha and beta bands separately 
configured at channels = 4 or channels = 8. Secondly, the study 
focused on comparing the algorithm’s performance metrics across 
different channel configurations, channels = 4 and channels = 8, 
within unchanged frequency band. The results of each comparison 
show significant differences (all p-value <0.0125). This 
comparative analysis was aimed at exploring the impact of channel 
and frequency band variations on the effectiveness of the 
CDGL algorithm.

In addition, this paper also made a comparison with one of gold-
standard methods (EEGNet) commonly used for MI-BCI 
classification tasks. The comparison results of the three performance 
indicators of the two algorithms are shown in Figure 11.

The parameter selection for CDGL is as channel numbers = 8, 
Beta band, the model’s order = 8. A comparative analysis of two 
models—EEGNet and CDGL—was conducted using the 
standardized BCI IV 2a and PhysioNet’s BCI2000 dataset. It was 
indicated that for the three key metrics (accuracy, sensitivity, and 
specificity), CDGL performs better than EEGNet, affirming the 
superior capability and dependability of CDGL for the classification 
of MI-BCI tasks. On the BCI IV 2a dataset, the CDGL achieved 
84.98% accuracy, 86.08% sensitivity, and 84.82% specificity 
respectively, surpassing the values of 80.77, 78.13, and 82.65% 
reported by EEGNet (Paired t-test, p = 0.008 for accuracy, p = 0.01 
for sensitivity and p = 0.012 for specificity). Similarly, for the 
PhysioNet’s BCI2000 dataset, CDGL attained an accuracy of 
91.37%, a sensitivity rate of 86.08%, and a specificity rate of 90.96%, 
in contrast to the 81.84, 78.82, and 75.57% obtained by EEGNet 
(Paired t-test, p = 0.012 for accuracy, p = 0.014 for sensitivity and 
p = 0.003 for specificity).

4 Discussion

This article presents an exploration of a brain functional network 
construction method based on the DTF. We  demonstrate its 
discriminative ability in left and right hand MI tasks by extracting 
DTF network features and graph theory features. Specifically, for the 
left-hand MI tasks, there is a noticeable enhancement in the strength 

FIGURE 10

Three metrics of the six algorithms for the MI-BCI task classifications for two frequency bands and the two different datasets. Panels (A–C) display the 
classification accuracy, sensitivity, and specificity, respectively, for the BCI competition dataset. Panels (D–F) display the classification accuracy, 
sensitivity, and specificity, respectively, for the PhysioNet BCI2000 dataset.

https://doi.org/10.3389/fnins.2024.1306283
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ma et al. 10.3389/fnins.2024.1306283

Frontiers in Neuroscience 15 frontiersin.org

of neural connections within the left hemisphere, indicating an 
increased neural activity and a significant flow of information (as 
demonstrated in Figure 6). This increment in activity not only results 
in reduced energy within the left hemisphere but is also correlated 
with a decline in power within specific frequency bands (namely, the 
alpha and beta bands), consistent with the Event-Related 
Desynchronization (ERD) phenomenon observed in the contralateral 
sensorimotor cortex. Similarly, this phenomenon occurs within the 
right hemisphere during right hand MI tasks.

The findings of this study offer a novel approach to enhancing the 
performance of traditional CSP algorithms. We showed the improved 
classification results by integrating DTF network features and graph 
theory features into CSP. These findings are consistent with previous 
findings (Ghosh et al., 2015; Filho et al., 2018; Li and Zhang, 2022) 
that indicators of functional brain connectivity have the potential for 
categorization in the domain of MI tasks. Compared to the methods 
used in previous research, we innovatively integrate DTF network 
features with graph theory features, obtaining significantly improved 
experimental results. Our study further demonstrates the 
effectiveness of the DTF-based brain functional network construction 
method for MI tasks. Graph feature application effectively captures 
the spatial correlations and network structures in EEG data, which 
are the aspects often overlooked in traditional time-frequency feature 
analysis. Insight into this spatial correlation is crucial for deeply 
understanding the brain’s activity patterns while MI tasks. Our use of 
graph features aims not merely to achieve superior performance on 
datasets but is based on a profound understanding of brain network 
analysis and signal processing. Our research delves deeply into the 
brain activity analysis during the MI process, seeking a comprehensive 
understanding of these complex activities rather than a mere 
accumulation of features. It is worth noting that our study was limited 
to the dichotomous categorization problem for left and right hand MI 
tasks. Future studies could extend it to more complex multi-
categorization MI tasks. This will further validate our proposed 

approach for various tasks and contexts. In addition, we  plan to 
explore the impact of multiple network feature fusion techniques on 
motion imagery decoding algorithms. By combining different types 
of features, such as time-domain features, frequency-domain features, 
and spatial features, we can expect to further improve the decoding 
accuracy and robustness of the MI tasks.

The algorithm’s information transmission rate in offline 
experiments, which utilized 3 s of data, was not enough for a real-
time application, for examples brain-controlled wheel chair and 
robots. The sliding time window sampling might be a reasonable 
choice to enhance this rate in forthcoming real-time studies. The 
further research will focus on evaluating the real-time performance 
of the proposed algorithm, applying it to develop a brain-controlled 
robotic arm for enhancing the rehabilitation of patients suffering 
from nerve injuries.

5 Conclusion

In this paper, a brain functional network feature extraction 
method based on DTF network features and graph theory features is 
proposed for classifying two MI tasks. The following conclusions 
were reached:

(1) Both DTF network features and graph theory features have 
demonstrated their effectiveness in classifying MI tasks and have 
positively contributed to the performance improvement of the CSP 
algorithm. Especially, the proposed CDGL incorporating DTF 
network features and graph theory features together achieves the 
highest classification accuracy among the other feature fusion 
methods. This indicates that analyzing the features of brain functional 
networks can provide essential information for distinguishing between 
different MI tasks.

(2) Increasing the number of channels provides more information 
about the EEG signals, which improves the model’s sensitivity and 

FIGURE 11

The performance comparison of two algorithms (EEGNet and CDGL) on two different datasets (BCI IV 2a and PhysioNet’s BCI2000). Panel (A) shows 
the classification performance of two algorithms for the BCI IV 2A dataset. Panel (B) shows the classification performance of two algorithms for the 
PhysioNet BCI2000 dataset.
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ability to discriminate between specific activities in brain regions. 
Specifically, as the number of channels increases, the ability to 
characterize the expression of EEG signals is enhanced.

(3) The Beta band functional brain network features exhibited 
superior performance enhancement for the CDGL algorithm compared 
to the Alpha band. This suggests that EEG signals in the Beta band may 
contain more valuable information and have a greater impact on the 
accuracy and robustness of the classification algorithm in MI tasks.

These findings contribute significantly to our understanding of the 
mechanisms underlying BCIs and MI tasks, offering fresh insights and 
novel possibility for further research in the field of neuroscience. 
Future studies can focus on exploring and refining feature extraction 
methods based on DTF and graph theory, extending their applicability 
to a wider range of tasks and practical applications.
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